101
|
Lei M, Wang X, Ke Y, Solaro RJ. Regulation of Ca(2+) transient by PP2A in normal and failing heart. Front Physiol 2015; 6:13. [PMID: 25688213 PMCID: PMC4310266 DOI: 10.3389/fphys.2015.00013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/09/2015] [Indexed: 11/13/2022] Open
Abstract
Calcium transient in cardiomyocytes is regulated by multiple protein kinases and phosphatases. PP2A is a major protein phosphatase in the heart modulating Ca2+ handling through an array of ion channels, antiporters and pumps, etc. The assembly, localization/translocation, and substrate specificity of PP2A are controlled by different post-translational mechanisms, which in turn are linked to the activities of upstream signaling molecules. Abnormal PP2A expression and activities are associated with defective response to β-adrenergic stimulation and are indication and causal factors in arrhythmia and heart failure.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Xin Wang
- Faculty of Life Science, University of Manchester Manchester, UK
| | - Yunbo Ke
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago Chicago, IL, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
102
|
Wolke C, Bukowska A, Goette A, Lendeckel U. Redox control of cardiac remodeling in atrial fibrillation. Biochim Biophys Acta Gen Subj 2014; 1850:1555-65. [PMID: 25513966 DOI: 10.1016/j.bbagen.2014.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/04/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia in clinical practice and is a potential cause of thromboembolic events. AF induces significant changes in the electrophysiological properties of atrial myocytes and causes alterations in the structure, metabolism, and function of the atrial tissue. The molecular basis for the development of structural atrial remodeling of fibrillating human atria is still not fully understood. However, increased production of reactive oxygen or nitrogen species (ROS/RNS) and the activation of specific redox-sensitive signaling pathways observed both in patients with and animal models of AF are supposed to contribute to development, progression and self-perpetuation of AF. SCOPE OF REVIEW The present review summarizes the sources and targets of ROS/RNS in the setting of AF and focuses on key redox-sensitive signaling pathways that are implicated in the pathogenesis of AF and function either to aggravate or protect from disease. MAJOR CONCLUSIONS NADPH oxidases and various mitochondrial monooxygenases are major sources of ROS during AF. Besides direct oxidative modification of e.g. ion channels and ion handling proteins that are crucially involved in action potential generation and duration, AF leads to the reversible activation of redox-sensitive signaling pathways mediated by activation of redox-regulated proteins including Nrf2, NF-κB, and CaMKII. Both processes are recognized to contribute to the formation of a substrate for AF and, thus, to increase AF inducibility and duration. GENERAL SIGNIFICANCE AF is a prevalent disease and due to the current demographic developments its socio-economic relevance will further increase. Improving our understanding of the role that ROS and redox-related (patho)-mechanisms play in the development and progression of AF may allow the development of a targeted therapy for AF that surpasses the efficacy of previous general anti-oxidative strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17487 Greifswald, Germany
| | - Alicja Bukowska
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, D-39120 Magdeburg, Germany
| | - Andreas Goette
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, D-39120 Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, D-33098 Paderborn, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17487 Greifswald, Germany.
| |
Collapse
|
103
|
Harleton E, Besana A, Chandra P, Danilo P, Rosen TS, Rosen MR, Argenziano M, Robinson RB, Feinmark SJ. TASK-1 current is inhibited by phosphorylation during human and canine chronic atrial fibrillation. Am J Physiol Heart Circ Physiol 2014; 308:H126-34. [PMID: 25437921 DOI: 10.1152/ajpheart.00614.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is a common arrhythmia with significant morbidities and only partially adequate therapeutic options. AF is associated with atrial remodeling processes, including changes in the expression and function of ion channels and signaling pathways. TWIK protein-related acid-sensitive K+ channel (TASK)-1, a two-pore domain K+ channel, has been shown to contribute to action potential repolarization as well as to the maintenance of resting membrane potential in isolated myocytes, and TASK-1 inhibition has been associated with the induction of perioperative AF. However, the role of TASK-1 in chronic AF is unknown. The present study investigated the function, expression, and phosphorylation of TASK-1 in chronic AF in atrial tissue from chronically paced canines and in human subjects. TASK-1 current was present in atrial myocytes isolated from human and canine hearts in normal sinus rhythm but was absent in myocytes from humans with AF and in canines after the induction of AF by chronic tachypacing. The addition of phosphatase to the patch pipette rescued TASK-1 current from myocytes isolated from AF hearts, indicating that the change in current is phosphorylation dependent. Western blot analysis showed that total TASK-1 protein levels either did not change or increased slightly in AF, despite the absence of current. In studies of perioperative AF, we have shown that phosphorylation of TASK-1 at Thr383 inhibits the channel. However, phosphorylation at this site was unchanged in atrial tissue from humans with AF or in canines with chronic pacing-induced AF. We conclude that phosphorylation-dependent inhibition of TASK-1 is associated with AF, but the phosphorylation site responsible for this inhibition remains to be identified.
Collapse
Affiliation(s)
- Erin Harleton
- Department of Pharmacology, Columbia University Medical Center, New York, New York
| | - Alessandra Besana
- Department of Pharmacology, Columbia University Medical Center, New York, New York
| | - Parag Chandra
- Department of Pharmacology, Columbia University Medical Center, New York, New York
| | - Peter Danilo
- Department of Pharmacology, Columbia University Medical Center, New York, New York
| | - Tove S Rosen
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Michael R Rosen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Michael Argenziano
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, New York; and
| | - Richard B Robinson
- Department of Pharmacology, Columbia University Medical Center, New York, New York
| | - Steven J Feinmark
- Department of Pharmacology, Columbia University Medical Center, New York, New York;
| |
Collapse
|
104
|
Greiser M, Kerfant BG, Williams GS, Voigt N, Harks E, Dibb KM, Giese A, Meszaros J, Verheule S, Ravens U, Allessie MA, Gammie JS, van der Velden J, Lederer WJ, Dobrev D, Schotten U. Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes. J Clin Invest 2014; 124:4759-72. [PMID: 25329692 PMCID: PMC4347234 DOI: 10.1172/jci70102] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/28/2014] [Indexed: 01/06/2023] Open
Abstract
Atrial fibrillation (AF) is characterized by sustained high atrial activation rates and arrhythmogenic cellular Ca2+ signaling instability; however, it is not clear how a high atrial rate and Ca2+ instability may be related. Here, we characterized subcellular Ca2+ signaling after 5 days of high atrial rates in a rabbit model. While some changes were similar to those in persistent AF, we identified a distinct pattern of stabilized subcellular Ca2+ signaling. Ca2+ sparks, arrhythmogenic Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and SR Ca2+ content were largely unaltered. Based on computational analysis, these findings were consistent with a higher Ca2+ leak due to PKA-dependent phosphorylation of SR Ca2+ channels (RyR2s), fewer RyR2s, and smaller RyR2 clusters in the SR. We determined that less Ca2+ release per [Ca2+]i transient, increased Ca2+ buffering strength, shortened action potentials, and reduced L-type Ca2+ current contribute to a stunning reduction of intracellular Na+ concentration following rapid atrial pacing. In both patients with AF and in our rabbit model, this silencing led to failed propagation of the [Ca2+]i signal to the myocyte center. We conclude that sustained high atrial rates alone silence Ca2+ signaling and do not produce Ca2+ signaling instability, consistent with an adaptive molecular and cellular response to atrial tachycardia.
Collapse
Affiliation(s)
- Maura Greiser
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Benoît-Gilles Kerfant
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - George S.B. Williams
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Niels Voigt
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Erik Harks
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Katharine M. Dibb
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Anne Giese
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Janos Meszaros
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ursula Ravens
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Maurits A. Allessie
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - James S. Gammie
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - W. Jonathan Lederer
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Dobromir Dobrev
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
105
|
Colman MA, Varela M, Hancox JC, Zhang H, Aslanidi OV. Evolution and pharmacological modulation of the arrhythmogenic wave dynamics in canine pulmonary vein model. Europace 2014; 16:416-23. [PMID: 24569896 PMCID: PMC3934846 DOI: 10.1093/europace/eut349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aims Atrial fibrillation (AF), the commonest cardiac arrhythmia, has been strongly linked with arrhythmogenic sources near the pulmonary veins (PVs), but underlying mechanisms are not fully understood. We aim to study the generation and sustenance of wave sources in a model of the PV tissue. Methods and results A previously developed biophysically detailed three-dimensional canine atrial model is applied. Effects of AF-induced electrical remodelling are introduced based on published experimental data, as changes of ion channel currents (ICaL, IK1, Ito, and IKur), the action potential (AP) and cell-to-cell coupling levels. Pharmacological effects are introduced by blocking specific ion channel currents. A combination of electrical heterogeneity (AP tissue gradients of 5–12 ms) and anisotropy (conduction velocities of 0.75–1.25 and 0.21–0.31 m/s along and transverse to atrial fibres) can results in the generation of wave breaks in the PV region. However, a long wavelength (171 mm) prevents the wave breaks from developing into re-entry. Electrical remodelling leads to decreases in the AP duration, conduction velocity and wavelength (to 49 mm), such that re-entry becomes sustained. Pharmacological effects on the tissue heterogeneity and vulnerability (to wave breaks and re-entry) are quantified to show that drugs that increase the wavelength and stop re-entry (IK1 and IKur blockers) can also increase the heterogeneity (AP gradients of 26–27 ms) and the likelihood of wave breaks. Conclusion Biophysical modelling reveals large conduction block areas near the PVs, which are due to discontinuous fibre arrangement enhanced by electrical heterogeneity. Vulnerability to re-entry in such areas can be modulated by pharmacological interventions.
Collapse
Affiliation(s)
- Michael A Colman
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, UK
| | | | | | | | | |
Collapse
|
106
|
Barana A, Matamoros M, Dolz-Gaitón P, Pérez-Hernández M, Amorós I, Núñez M, Sacristán S, Pedraz Á, Pinto Á, Fernández-Avilés F, Tamargo J, Delpón E, Caballero R. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current. Circ Arrhythm Electrophysiol 2014; 7:861-8. [PMID: 25107449 DOI: 10.1161/circep.114.001709] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Atrial fibrillation is characterized by progressive atrial structural and electrical changes (atrial remodeling) that favor arrhythmia recurrence and maintenance. Reduction of L-type Ca(2+) current (I(Ca,L)) density is a hallmark of the electrical remodeling. Alterations in atrial microRNAs could contribute to the protein changes underlying atrial fibrillation-induced atrial electrical remodeling. This study was undertaken to compare miR-21 levels in isolated myocytes from atrial appendages obtained from patients in sinus rhythm and with chronic atrial fibrillation (CAF) and to determine whether L-type Ca(2+) channel subunits are targets for miR-21. METHODS AND RESULTS Quantitative polymerase chain reaction analysis showed that miR-21 was expressed in human atrial myocytes from patients in sinus rhythm and that its expression was significantly greater in CAF myocytes. There was an inverse correlation between miR-21 and the mRNA of the α1c subunit of the calcium channel (CACNA1C) expression and I(Ca,L) density. Computational analyses predicted that CACNA1C and the mRNA of the β2 subunit of the calcium channel (CACNB2) could be potential targets for miR-21. Luciferase reporter assays demonstrated that miR-21 produced a concentration-dependent decrease in the luciferase activity in Chinese Hamster Ovary cells transfected with CACNA1C and CACNB2 3' untranslated region regions. miR-21 transfection in HL-1 cells produced changes in I(Ca,L) properties qualitatively similar to those produced by CAF (ie, a marked reduction of I(Ca,L) density and shift of the inactivation curves to more depolarized potentials). CONCLUSIONS Our results demonstrated that CAF increases miR-21 expression in enzymatically isolated human atrial myocytes. Moreover, it decreases I(Ca,L) density by downregulating Ca(2+) channel subunits expression. These results suggested that this microRNA could participate in the CAF-induced I(Ca,L) downregulation and in the action potential duration shortening that maintains the arrhythmia.
Collapse
Affiliation(s)
- Adriana Barana
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Marcos Matamoros
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Pablo Dolz-Gaitón
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Marta Pérez-Hernández
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Irene Amorós
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Mercedes Núñez
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Sandra Sacristán
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Álvaro Pedraz
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Ángel Pinto
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Francisco Fernández-Avilés
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Juan Tamargo
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Eva Delpón
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| | - Ricardo Caballero
- From the Department of Pharmacology (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), and Instituto de Investigación Sanitaria Gregorio Marañón (A.B., M.M., P.D.-G., M.P.-H., I.A., M.N., S.S., J.T., E.D., R.C.), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; and Cardiology and Cardiovascular Surgery Services, Hospital General Universitario Gregorio Marañón, Madrid, Spain (Á.P., Á.P., F.F.-A.)
| |
Collapse
|
107
|
Arrhythmias, elicited by catecholamines and serotonin, vanish in human chronic atrial fibrillation. Proc Natl Acad Sci U S A 2014; 111:11193-8. [PMID: 25024212 DOI: 10.1073/pnas.1324132111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder. Transient postoperative AF can be elicited by high sympathetic nervous system activity. Catecholamines and serotonin cause arrhythmias in atrial trabeculae from patients with sinus rhythm (SR), but whether these arrhythmias occur in patients with chronic AF is unknown. We compared the incidence of arrhythmic contractions caused by norepinephrine, epinephrine, serotonin, and forskolin in atrial trabeculae from patients with SR and patients with AF. In the patients with AF, arrhythmias were markedly reduced for the agonists and abolished for forskolin, whereas maximum inotropic responses were markedly blunted only for serotonin. Serotonin and forskolin produced spontaneous diastolic Ca(2+) releases in atrial myocytes from the patients with SR that were abolished or reduced in myocytes from the patients with AF. For matching L-type Ca(2+)-current (ICa,L) responses, serotonin required and produced ∼ 100-fold less cAMP/PKA at the Ca(2+) channel domain compared with the catecholamines and forskolin. Norepinephrine-evoked ICa,L responses were decreased by inhibition of Ca(2+)/calmodulin-dependent kinase II (CaMKII) in myocytes from patients with SR, but not in those from patients with AF. Agonist-evoked phosphorylation by CaMKII at phospholamban (Thr-17), but not of ryanodine2 (Ser-2814), was reduced in trabeculae from patients with AF. The decreased CaMKII activity may contribute to the blunting of agonist-evoked arrhythmias in the atrial myocardium of patients with AF.
Collapse
|
108
|
Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 2014; 114:1483-99. [PMID: 24763466 DOI: 10.1161/circresaha.114.302226] [Citation(s) in RCA: 509] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common clinically relevant arrhythmia and is associated with increased morbidity and mortality. The incidence of AF is expected to continue to rise with the aging of the population. AF is generally considered to be a progressive condition, occurring first in a paroxysmal form, then in persistent, and then long-standing persistent (chronic or permanent) forms. However, not all patients go through every phase, and the time spent in each can vary widely. Research over the past decades has identified a multitude of pathophysiological processes contributing to the initiation, maintenance, and progression of AF. However, many aspects of AF pathophysiology remain incompletely understood. In this review, we discuss the cellular and molecular electrophysiology of AF initiation, maintenance, and progression, predominantly based on recent data obtained in human tissue and animal models. The central role of Ca(2+)-handling abnormalities in both focal ectopic activity and AF substrate progression is discussed, along with the underlying molecular basis. We also deal with the ionic determinants that govern AF initiation and maintenance, as well as the structural remodeling that stabilizes AF-maintaining re-entrant mechanisms and finally makes the arrhythmia refractory to therapy. In addition, we highlight important gaps in our current understanding, particularly with respect to the translation of these concepts to the clinical setting. Ultimately, a comprehensive understanding of AF pathophysiology is expected to foster the development of improved pharmacological and nonpharmacological therapeutic approaches and to greatly improve clinical management.
Collapse
Affiliation(s)
- Jordi Heijman
- From the Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany (J.H., N.V., D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (S.N.); and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (S.N.)
| | | | | | | |
Collapse
|
109
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
110
|
Chiang DY, Li N, Wang Q, Alsina KM, Quick AP, Reynolds JO, Wang G, Skapura D, Voigt N, Dobrev D, Wehrens XHT. Impaired local regulation of ryanodine receptor type 2 by protein phosphatase 1 promotes atrial fibrillation. Cardiovasc Res 2014; 103:178-87. [PMID: 24812280 DOI: 10.1093/cvr/cvu123] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS Altered Ca(2+) handling in atrial fibrillation (AF) has been associated with dysregulated protein phosphatase 1 (PP1) and subcellular heterogeneities in protein phosphorylation, but the underlying mechanisms remain unclear. This is due to a lack of investigation into the local, rather than global, regulation of PP1 on different subcellular targets such as ryanodine receptor type 2 (RyR2), especially in AF. METHODS AND RESULTS We tested the hypothesis that impaired local regulation of PP1 causes RyR2 hyperphosphorylation thereby promoting AF susceptibility. To specifically disrupt PP1's local regulation of RyR2, we used the spinophilin knockout (Sp(-/-)) mice (Mus musculus) since PP1 is targeted to RyR2 via spinophilin. Without spinophilin, the interaction between PP1 and RyR2 was reduced by 64%, while RyR2 phosphorylation was increased by 43% at serine (S)2814 but unchanged at S2808. Lipid bilayer experiments revealed that single RyR2 channels isolated from Sp(-/-) hearts had an increased open probability. Likewise, Ca(2+) spark frequency normalized to sarcoplasmic reticulum Ca(2+) content was also enhanced in Sp(-/-) atrial myocytes, but normalized by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitors KN-93 and AIP and also by genetic inhibition of RyR2 S2814 phosphorylation. Finally, Sp(-/-) mice exhibited increased atrial ectopy and susceptibility to pacing-induced AF, both of which were also prevented by the RyR2 S2814A mutation. CONCLUSION PP1 regulates RyR2 locally by counteracting CaMKII phosphorylation of RyR2. Decreased local PP1 regulation of RyR2 contributes to RyR2 hyperactivity and promotes AF susceptibility. This represents a novel mechanism for subcellular modulation of calcium channels and may represent a potential drug target of AF.
Collapse
Affiliation(s)
- David Y Chiang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Na Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Qiongling Wang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Katherina M Alsina
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ann P Quick
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Julia O Reynolds
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Guoliang Wang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Darlene Skapura
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Niels Voigt
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
111
|
Effects of the Selective KACh Channel Blocker NTC-801 on Atrial Fibrillation in a Canine Model of Atrial Tachypacing. J Cardiovasc Pharmacol 2014; 63:421-7. [DOI: 10.1097/fjc.0000000000000065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
112
|
Heijman J, Voigt N, Wehrens XHT, Dobrev D. Calcium dysregulation in atrial fibrillation: the role of CaMKII. Front Pharmacol 2014; 5:30. [PMID: 24624086 PMCID: PMC3940963 DOI: 10.3389/fphar.2014.00030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most frequently encountered clinical arrhythmia and is associated with increased morbidity and mortality. Ectopic activity and reentry are considered major arrhythmogenic mechanisms contributing to the initiation and maintenance of AF. In addition, AF is self-reinforcing through progressive electrical and structural remodeling which stabilize the arrhythmia and make it more difficult to treat. Recent research has suggested an important role for Ca(2+)-dysregulation in AF. Ca(2+)-handling abnormalities may promote ectopic activity, conduction abnormalities facilitating reentry, and AF-related remodeling. In this review article, we summarize the Ca(2+)-handling derangements occurring in AF and discuss their impact on fundamental arrhythmogenic mechanisms. We focus in particular on the role of the multifunctional Ca(2+)/calmodulin-dependent protein kinase type-II (CaMKII), which acts as a major link between Ca(2+)-dysregulation and arrhythmogenesis. CaMKII expression and activity are increased in AF and promote arrhythmogenesis through phosphorylation of various targets involved in cardiac electrophysiology and excitation-contraction coupling. We discuss the implications for potential novel therapeutic strategies for AF based on CaMKII and Ca(2+)-handling abnormalities.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, and Medicine-Cardiology, Baylor College of Medicine Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen Essen, Germany
| |
Collapse
|
113
|
|
114
|
Abstract
Atrial fibrillation is the most common arrhythmia affecting patients today. Disease prevalence is increasing at an alarming rate worldwide, and is associated with often catastrophic and costly consequences, including heart failure, syncope, dementia, and stroke. Therapies including anticoagulants, anti-arrhythmic medications, devices, and non-pharmacologic procedures in the last 30 years have improved patients' functionality with the disease. Nonetheless, it remains imperative that further research into AF epidemiology, genetics, detection, and treatments continues to push forward rapidly as the worldwide population ages dramatically over the next 20 years.
Collapse
Affiliation(s)
- Thomas M. Munger
- Heart Rhythm Services, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA;
| | - Li-Qun Wu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200025, China;
| | - Win K. Shen
- Division of Cardiovascular Diseases, Mayo Clinic, Phoenix, AZ 85054, USA.
| |
Collapse
|
115
|
Rozmaritsa N, Christ T, Van Wagoner DR, Haase H, Stasch JP, Matschke K, Ravens U. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation. Cardiovasc Res 2013; 101:533-42. [PMID: 24336332 DOI: 10.1093/cvr/cvt334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). METHODS AND RESULTS Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. CONCLUSION NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.
Collapse
Affiliation(s)
- Nadiia Rozmaritsa
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
116
|
Heijman J, Dewenter M, El-Armouche A, Dobrev D. Function and regulation of serine/threonine phosphatases in the healthy and diseased heart. J Mol Cell Cardiol 2013; 64:90-8. [PMID: 24051368 DOI: 10.1016/j.yjmcc.2013.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation is a major control mechanism of a wide range of physiological processes and plays an important role in cardiac pathophysiology. Serine/threonine protein phosphatases control the dephosphorylation of a variety of cardiac proteins, thereby fine-tuning cardiac electrophysiology and function. Specificity of protein phosphatases type-1 and type-2A is achieved by multiprotein complexes that target the catalytic subunits to specific subcellular domains. Here, we describe the composition, regulation and target substrates of serine/threonine phosphatases in the heart. In addition, we provide an overview of pharmacological tools and genetic models to study the role of cardiac phosphatases. Finally, we review the role of protein phosphatases in the diseased heart, particularly in ventricular arrhythmias and atrial fibrillation and discuss their role as potential therapeutic targets.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, 45122 Essen, Germany
| | | | | | | |
Collapse
|
117
|
Colman MA, Aslanidi OV, Kharche S, Boyett MR, Garratt C, Hancox JC, Zhang H. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria. J Physiol 2013; 591:4249-4272. [PMID: 23732649 PMCID: PMC3779115 DOI: 10.1113/jphysiol.2013.254987] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/28/2013] [Indexed: 12/17/2022] Open
Abstract
Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves.
Collapse
Affiliation(s)
- Michael A Colman
- Professor H. Zhang: School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.
| | | | | | | | | | | | | |
Collapse
|
118
|
Musa H, Kaur K, O'Connell R, Klos M, Guerrero-Serna G, Avula UMR, Herron TJ, Kalifa J, Anumonwo JMB, Jalife J. Inhibition of platelet-derived growth factor-AB signaling prevents electromechanical remodeling of adult atrial myocytes that contact myofibroblasts. Heart Rhythm 2013; 10:1044-51. [PMID: 23499624 PMCID: PMC3692578 DOI: 10.1016/j.hrthm.2013.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Persistent atrial fibrillation (PAF) results in electromechanical and structural remodeling by mechanisms that are poorly understood. Myofibroblast proliferation and fibrosis are major sources of structural remodeling in PAF. Myofibroblasts also interact with atrial myocytes via direct physical contact and release of signaling molecules, which may contribute to remodeling. OBJECTIVE To determine whether myofibroblasts contribute to atrial myocyte electromechanical remodeling via direct physical contact and platelet-derived growth factor (PDGF) signaling. METHODS Myofibroblasts and myocytes from adult sheep atria were co-cultured for 24 hours. Alternatively adult sheep atrial myocytes were exposed to 1 ng/mL recombitant PDGF AB peptide for 24 hours. RESULTS Myocytes making contact with myofibroblasts demonstrated significant reduction (P ≤ .05) in peak L-type calcium current density, shortening of action potential duration (APD), and reduction in calcium transients. These effects were blocked by pretreatment with a PDGF-AB neutralizing anti-body. Heterocellular contact also severely disturbed the localization of the L-type calcium channel. Myocytes exposed to recombinant PDGF-AB peptide for 24 hours demonstrated reduced APD50, APD80 and Peak L-type calcium current. Pretreatment with a PDGF-AB neutralizing antibody prevented these effects. Finally, while control atrial myocytes did not respond in a 1:1 manner to pacing frequencies of 3 Hz or higher, atrial myocytes from hearts that were tachypaced for 2 months and normal myocytes treated with PDGF-AB for 24 hours could be paced up to 10 Hz. CONCLUSIONS In addition to leading to fibrosis, atrial myofibroblasts contribute to electromechanical remodeling of myocytes via direct physical contact and release of PDGF-AB, which may be a factor in PAF-induced remodeling.
Collapse
Affiliation(s)
- Hassan Musa
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Zhang Y, Matthews GDK, Lei M, Huang CLH. Abnormal Ca(2+) homeostasis, atrial arrhythmogenesis, and sinus node dysfunction in murine hearts modeling RyR2 modification. Front Physiol 2013; 4:150. [PMID: 23805105 PMCID: PMC3691467 DOI: 10.3389/fphys.2013.00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022] Open
Abstract
Ryanodine receptor type 2 (RyR2) mutations are implicated in catecholaminergic polymorphic ventricular tachycardia (CPVT) thought to result from altered myocyte Ca(2+) homeostasis reflecting inappropriate "leakiness" of RyR2-Ca(2+) release channels arising from increases in their basal activity, alterations in their phosphorylation, or defective interactions with other molecules or ions. The latter include calstabin, calsequestrin-2, Mg(2+), and extraluminal or intraluminal Ca(2+). Recent clinical studies additionally associate RyR2 abnormalities with atrial arrhythmias including atrial tachycardia (AT), fibrillation (AF), and standstill, and sinus node dysfunction (SND). Some RyR2 mutations associated with CPVT in mouse models also show such arrhythmias that similarly correlate with altered Ca(2+) homeostasis. Some examples show evidence for increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2. A homozygotic RyR2-P2328S variant demonstrates potential arrhythmic substrate resulting from reduced conduction velocity (CV) in addition to delayed afterdepolarizations (DADs) and ectopic action potential (AP) firing. Finally, one model with an increased RyR2 activity in the sino-atrial node (SAN) shows decreased automaticity in the presence of Ca(2+)-dependent decreases in I Ca, L and diastolic sarcoplasmic reticular (SR) Ca(2+) depletion.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Paediatrics, Institute of Shaanxi Province Children's Cardiovascular Diseases, The Shaanxi Provincial People's Hospital of Xi'an Jiaotong UniversityXi'an, PR of China
- Faculty of Medicine and Human Sciences, Institute of Cardiovascular Sciences, University of ManchesterManchester, UK
| | | | - Ming Lei
- Faculty of Medicine and Human Sciences, Institute of Cardiovascular Sciences, University of ManchesterManchester, UK
| | - Christopher L.-H. Huang
- Physiological Laboratory, Faculty of Biology, University of CambridgeCambridge, UK
- Department of Biochemistry, University of CambridgeCambridge, UK
| |
Collapse
|
120
|
Électrophysiologie de la fibrillation atriale. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2013. [DOI: 10.1016/s1878-6480(13)70885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
121
|
Trafford AW, Clarke JD, Richards MA, Eisner DA, Dibb KM. Calcium signalling microdomains and the t-tubular system in atrial mycoytes: potential roles in cardiac disease and arrhythmias. Cardiovasc Res 2013; 98:192-203. [PMID: 23386275 DOI: 10.1093/cvr/cvt018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The atria contribute 25% to ventricular stroke volume and are the site of the commonest cardiac arrhythmia, atrial fibrillation (AF). The initiation of contraction in the atria is similar to that in the ventricle involving a systolic rise of intracellular Ca(2+) concentration ([Ca(2+)](i)). There are, however, substantial inter-species differences in the way systolic Ca(2+) is regulated in atrial cells. These differences are a consequence of a well-developed and functionally relevant transverse (t)-tubule network in the atria of large mammals, including humans, and its virtual absence in smaller laboratory species such as the rat. Where T-tubules are absent, the systolic Ca(2+) transient results from a 'fire-diffuse-fire' sequential recruitment of Ca(2+) release sites from the cell edge to the centre and hence marked spatiotemporal heterogeneity of systolic Ca(2+). Conversely, the well-developed T-tubule network in large mammals ensures a near synchronous rise of [Ca(2+)](i). In addition to synchronizing the systolic rise of [Ca(2+)](i), the presence of T-tubules in the atria of large mammals, by virtue of localization of the L-type Ca(2+) channels and Na(+)-Ca(2+) exchanger antiporters on the T-tubules, may serve to, respectively, accelerate changes in the amplitude of the systolic Ca(2+) transient during inotropic manoeuvres and lower diastolic [Ca(2+)](i). On the other hand, the presence of T-tubules and hence wider cellular distribution of the Na(+)-Ca(2+) exchanger may predispose the atria of large mammals to Ca(2+)-dependent delayed afterdepolarizations (DADs); this may be a determining factor in why the atria of large mammals spontaneously develop and maintain AF.
Collapse
Affiliation(s)
- Andrew W Trafford
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, Institute of Cardiovascular Science, University of Manchester, 3.23 Core Technology Facility, 46 Grafton Street, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
122
|
Greiser M, Schotten U. Dynamic remodeling of intracellular Ca2+ signaling during atrial fibrillation. J Mol Cell Cardiol 2013; 58:134-42. [DOI: 10.1016/j.yjmcc.2012.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/23/2022]
|
123
|
Voigt N, Dobrev D. Cellular and molecular correlates of ectopic activity in patients with atrial fibrillation. Europace 2013; 14 Suppl 5:v97-v105. [PMID: 23104921 DOI: 10.1093/europace/eus282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia and is associated with increased morbidity and mortality. Current drugs for AF treatment have limited efficacy and a substantial risk of proarrhythmic side effects, making novel drug development critical. Emerging evidence suggests that abnormal intracellular calcium (Ca(2+)) signalling is a key contributor to ectopic (triggered) electrical activity in human AF. Accordingly, atrial Ca(2+)-handling abnormalities underlying ectopic activity may constitute novel mechanism-based therapeutic approaches to treat AF. This article reviews the recent evidence for a role of cellular ectopic activity in human AF pathophysiology, discusses the molecular mechanisms underlying triggered activity in human atrial myocytes, and considers their relevance to the design of novel therapeutic options.
Collapse
Affiliation(s)
- Niels Voigt
- Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | | |
Collapse
|
124
|
Abstract
Ion channels and transporters are expressed in every living cell, where they participate in controlling a plethora of biological processes and physiological functions, such as excitation of cells in response to stimulation, electrical activities of cells, excitation-contraction coupling, cellular osmolarity, and even cell growth and death. Alterations of ion channels/transporters can have profound impacts on the cellular physiology associated with these proteins. Expression of ion channels/transporters is tightly regulated and expression deregulation can trigger abnormal processes, leading to pathogenesis, the channelopathies. While transcription factors play a critical role in controlling the transcriptome of ion channels/transporters at the transcriptional level by acting on the 5'-flanking region of the genes, microribonucleic acids (miRNAs), a newly discovered class of regulators in the gene network, are also crucial for expression regulation at the posttranscriptional level through binding to the 3'untranslated region of the genes. These small noncoding RNAs fine tune expression of genes involved in a wide variety of cellular processes. Recent studies revealed the role of miRNAs in regulating expression of ion channels/transporters and the associated physiological functions. miRNAs can target ion channel genes to alter cardiac excitability (conduction, repolarization, and automaticity) and affect arrhythmogenic potential of heart. They can modulate circadian rhythm, pain threshold, neuroadaptation to alcohol, brain edema, etc., through targeting ion channel genes in the neuronal systems. miRNAs can also control cell growth and tumorigenesis by acting on the relevant ion channel genes. Future studies are expected to rapidly increase to unravel a new repertoire of ion channels/transporters for miRNA regulation.
Collapse
Affiliation(s)
- Zhiguo Wang
- Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
125
|
Lu YY, Chen YC, Kao YH, Chen SA, Chen YJ. Extracellular matrix of collagen modulates arrhythmogenic activity of pulmonary veins through p38 MAPK activation. J Mol Cell Cardiol 2013; 59:159-66. [PMID: 23524328 DOI: 10.1016/j.yjmcc.2013.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, p<0.005) and a larger amplitude of delayed afterdepolarization (16±2 vs. 10±1mV, p<0.01). Moreover, collagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
126
|
Cardiac ion channels and mechanisms for protection against atrial fibrillation. Rev Physiol Biochem Pharmacol 2013; 162:1-58. [PMID: 21987061 DOI: 10.1007/112_2011_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different ion channel composition in the atria and ventricles. The present text will review the aetiology of arrhythmias with focus on AF and include a description of cardiac ion channels. Channels that constitute potentially atria-selective targets will be described in details. Specific focus is addressed to the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included.
Collapse
|
127
|
Xie Y, Grandi E, Puglisi JL, Sato D, Bers DM. β-adrenergic stimulation activates early afterdepolarizations transiently via kinetic mismatch of PKA targets. J Mol Cell Cardiol 2013; 58:153-61. [PMID: 23481579 DOI: 10.1016/j.yjmcc.2013.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/25/2013] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
Abstract
Sympathetic stimulation regulates cardiac excitation-contraction coupling in hearts but can also trigger ventricular arrhythmias caused by early afterdepolarizations (EADs) in pathological conditions. Isoproterenol (ISO) stimulation can transiently cause EADs which could result from differential kinetics of L-type Ca current (ICaL) vs. delayed rectifier potassium current (IKs) effects, but multiple PKA targets complicate mechanistic analysis. Utilizing a biophysically detailed model integrating Ca and β-adrenergic signaling, we investigate how different phosphorylation kinetics and targets influence β-adrenergic-induced transient EADs. We found that: 1) The faster time course of ICaL vs. IKs increases recapitulates experimentally observed ISO-induced transient EADs (which are due to ICaL reactivation). These EADs disappear at steady state ISO and do not occur during more gradual ISO application. 2) This ICaL vs. IKs kinetic mismatch with ISO can also induce transient EADs due to spontaneous sarcoplasmic reticulum (SR) Ca release and Na/Ca exchange current. The increased ICaL, SR Ca uptake and action potential duration (APD) raise SR Ca to cause spontaneous SR Ca release, but eventual IKs activation and APD shortening abolish these EADs. 3) Phospholemman (PLM) phosphorylation decreases both types of EADs by increasing outward Na/K-ATPase current (INaK) for ICaL-mediated EADs, and reducing intracellular Na and Ca loading for SR Ca-release-mediated EADs. Slowing PLM phosphorylation kinetics abolishes this protective effect. 4) Blocking phospholamban (PLB) phosphorylation has little effect on ICaL-mediated transient EADs, but abolishes SR Ca-release-mediated transient EADs by limiting SR Ca loading. 5) RyR phosphorylation has little effect on either transient EAD type. Our study emphasizes the importance of understanding non-steady state kinetics of several systems in mediating β-adrenergic-induced EADs and arrhythmias.
Collapse
Affiliation(s)
- Yuanfang Xie
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | | | | | | | | |
Collapse
|
128
|
Heijman J, Voigt N, Nattel S, Dobrev D. Calcium handling and atrial fibrillation. Wien Med Wochenschr 2013; 162:287-91. [PMID: 22695810 DOI: 10.1007/s10354-012-0109-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia in the clinical setting. It is associated with substantial cardiovascular morbidity and mortality. Recent research has indicated that abnormal Ca(2+) handling plays a critical role in the induction and maintenance of AF, contributing to ectopic activity, AF-maintaining reentry circuits and related prothrombotic atrial hypocontractility. The AF-specific Ca(2+)-handling abnormalities may constitute viable therapeutic approaches to treat AF. Here, we review the causes, consequences, and therapeutic implications of altered atrial Ca(2+) handling for AF pathophysiology.
Collapse
Affiliation(s)
- Jordi Heijman
- Division of Experimental Cardiology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | | | |
Collapse
|
129
|
Heijman J, Voigt N, Dobrev D. New directions in antiarrhythmic drug therapy for atrial fibrillation. Future Cardiol 2013; 9:71-88. [DOI: 10.2217/fca.12.78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia and has a significant impact on morbidity and mortality. Current antiarrhythmic drugs for AF suffer from limited safety and efficacy, probably because they were not designed based on specific pathological mechanisms. Recent research has provided important insights into the mechanisms contributing to AF and highlighted several potential novel antiarrhythmic strategies. In this review, we highlight the main pathological mechanisms of AF, discuss traditional and novel aspects of atrial antiarrhythmic drugs in relation to these pathological mechanisms, and present potential novel therapeutic approaches including structure-based modulation of atrial-specific cardiac ion channels, restoring abnormal Ca2+ handling in AF and targeting atrial remodeling.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, Medical Faculty Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology, Medical Faculty Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
- Division of Experimental Cardiology, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Dobromir Dobrev
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
130
|
Atrial remodeling: New pathophysiological mechanism of atrial fibrillation. Med Hypotheses 2013; 80:53-6. [DOI: 10.1016/j.mehy.2012.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/18/2012] [Indexed: 11/17/2022]
|
131
|
Bers DM, Grandi E. Human atrial fibrillation: insights from computational electrophysiological models. Trends Cardiovasc Med 2012; 21:145-50. [PMID: 22732550 DOI: 10.1016/j.tcm.2012.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/16/2022]
Abstract
Computational electrophysiology has proven useful to investigate the mechanisms of cardiac arrhythmias at various spatial scales, from isolated myocytes to the whole heart. This article reviews how mathematical modeling has aided our understanding of human atrial myocyte electrophysiology to study the contribution of structural and electrical remodeling to human atrial fibrillation. Potential new avenues of investigation and model development are suggested.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California at Davis, Davis, CA 95616-8636, USA.
| | | |
Collapse
|
132
|
Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 2012; 59:2182-90. [PMID: 22676938 DOI: 10.1016/j.jacc.2012.01.060] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 12/08/2011] [Accepted: 01/09/2012] [Indexed: 01/21/2023]
Abstract
OBJECTIVES This study was designed to examine whether a cyclic adenosine monophosphate (cAMP) phosphodiesterase (PDE), PDE4, is expressed in human atrium and contributes to the control of electrical stability. BACKGROUND Atrial fibrillation is accompanied by a profound remodeling of membrane receptors and alterations in cAMP-dependent regulation of Ca(2+) handling. Being responsible for cAMP hydrolysis, PDEs are likely to play a role in this setting. In the rodent heart, PDE4 contributes up to 60% of total cAMP-hydrolytic activity. However, its role in the human heart remains controversial. METHODS L-type Ca(2+) current and spontaneous Ca(2+) release were recorded in isolated human atrial myocytes. Intracellular cAMP was measured by live cell imaging using a fluorescence resonance energy transfer-based sensor. Contractile force and arrhythmias were recorded in human atrial trabeculae. PDE activity was measured in human atrial tissue from patients in sinus rhythm and permanent atrial fibrillation. RESULTS PDE4 is expressed in human atrial myocytes and accounts for approximately 15% of total PDE activity. PDE4D represents the major PDE4 subtype. PDE4 inhibition increased intracellular cAMP and L-type Ca(2+) current and dramatically delayed their decay after a brief β-adrenergic stimulation. PDE4 inhibition also increased the frequency of spontaneous Ca(2+) release at baseline, as well as the contractile response and the incidence of arrhythmias in human atrial strips during β-adrenergic stimulation. Total PDE activity decreased with age, and the relative PDE4 activity was lower in patients with permanent atrial fibrillation than in age-matched sinus rhythm controls. CONCLUSIONS PDE4 is critical in controlling cAMP levels and thereby Ca(2+) influx and release in human atrial muscle, hence limiting the susceptibility to arrhythmias.
Collapse
|
133
|
Grandi E, Workman AJ, Pandit SV. Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation. J Atr Fibrillation 2012; 4:495. [PMID: 28496736 DOI: 10.4022/jafib.495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/10/2012] [Accepted: 03/19/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca2+ transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Sandeep V Pandit
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
134
|
Xie LH, Shanmugam M, Park JY, Zhao Z, Wen H, Tian B, Periasamy M, Babu GJ. Ablation of sarcolipin results in atrial remodeling. Am J Physiol Cell Physiol 2012; 302:C1762-71. [PMID: 22496245 DOI: 10.1152/ajpcell.00425.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sarcolipin (SLN) is a key regulator of sarco(endo)plasmic reticulum (SR) Ca(2+)-ATPase (SERCA), and its expression is altered in diseased atrial myocardium. To determine the precise role of SLN in atrial Ca(2+) homeostasis, we developed a SLN knockout (sln-/-) mouse model and demonstrated that ablation of SLN enhances atrial SERCA pump activity. The present study is designed to determine the long-term effects of enhanced SERCA activity on atrial remodeling in the sln-/- mice. Calcium transient measurements show an increase in atrial SR Ca(2+) load and twitch Ca(2+) transients. Patch-clamping experiments demonstrate activation of the forward mode of sodium/calcium exchanger, increased L-type Ca(2+) channel activity, and prolongation of action potential duration at 90% repolarization in the atrial myocytes of sln-/- mice. Spontaneous Ca(2+) waves, delayed afterdepolarization, and triggered activities are frequent in the atrial myocytes of sln-/- mice. Furthermore, loss of SLN in atria is associated with increased interstitial fibrosis and altered expression of genes encoding collagen and other extracellular matrix proteins. Our results also show that the sln-/- mice are susceptible to atrial arrhythmias upon aging. Together, these findings indicate that ablation of SLN results in increased SERCA activity and SR Ca(2+) load, which, in turn, could cause abnormal intracellular Ca(2+) handling and atrial remodeling.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Hatem S. [Biology of the substrate of atrial fibrillation]. Biol Aujourdhui 2012; 206:5-9. [PMID: 22463991 DOI: 10.1051/jbio/2012004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Indexed: 11/14/2022]
Abstract
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia in clinical practice, is often associated with progressive dilatation and remodeling of the atria which constitute the substrate of the arrhythmia. This atrial remodeling is characterized by complex structural and functional alterations of the atrial myocardium: short action potentials, heterogeneous refractory periods, dystrophic myocytes and interstitial fibrosis which act together to favor local conduction bloc, activation of ectopies and the forma-tion of microreentries of the electrical excitation. However, the underlying mechanisms of the AF substrate are not yet fully understood. The possibility of studying human atrial myocytes has led to the identification of ionic currents that contribute to the shortening of the action potential and refractory periods during AF. The down-regulation of the L-type calcium current plays a central role in this electrical remodeling. It results mainly from the dephosphorylation of calcium channels as the consequence of an excessive stimulation of atrial myocytes by neurohormones such as the atrial natriuretic factor. Abnormal trafficking and targeting of ion channels at the plasma membrane has emerged as mechanisms that can contribute to the abnormal electrical properties of the atria during AF. Fibrosis is the other feature of the AF substrate and it is favored by the atrial hemodynamic overload. Local activation of the renin-angiotensin system is involved in the extracellular matrix remodeling of the atrial myocardium. Thrombin that accumulates in dilated and fibrillating atria could be another important mediator of the myocardial structural alterations during AF. This peptide, by binding on its receptor PAR1, can modulate several signaling pathways regulating growth and survival of myocardial cells. Better understanding of pathogenic factors involved in the formation of the AF substrate is crucial for the identification of novel biomarkers and therapeutic targets that could be used to improve the diagnostic and treatment of AF.
Collapse
Affiliation(s)
- Stéphane Hatem
- ICAN Institute of Cardiometabolism & Nutrition, UMRS-956 (INSERM/UPMC), Faculté de Médecine Pitié-Salpêtrière, 91 boulevard de l'Hôspital, 75634 Paris Cedex 13, France.
| |
Collapse
|
136
|
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmia, and is responsible for substantial morbidity and mortality in the general population. Current treatments have moderate efficacy and considerable risks, especially of pro-arrhythmia, highlighting the need for new therapeutic strategies. In recent years, substantial efforts have been invested in developing novel treatments that target the underlying molecular determinants of atrial fibrillation, and several new compounds are under development. This Review focuses on the mechanistic rationale for the development of new anti-atrial fibrillation drugs, on the molecular and structural motifs that they target and on the results obtained so far in experimental and clinical studies.
Collapse
|
137
|
Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XHT, Dobrev D. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 2012; 125:2059-70. [PMID: 22456474 DOI: 10.1161/circulationaha.111.067306] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Delayed afterdepolarizations (DADs) carried by Na(+)-Ca(2+)-exchange current (I(NCX)) in response to sarcoplasmic reticulum (SR) Ca(2+) leak can promote atrial fibrillation (AF). The mechanisms leading to delayed afterdepolarizations in AF patients have not been defined. METHODS AND RESULTS Protein levels (Western blot), membrane currents and action potentials (patch clamp), and [Ca(2+)](i) (Fluo-3) were measured in right atrial samples from 76 sinus rhythm (control) and 72 chronic AF (cAF) patients. Diastolic [Ca(2+)](i) and SR Ca(2+) content (integrated I(NCX) during caffeine-induced Ca(2+) transient) were unchanged, whereas diastolic SR Ca(2+) leak, estimated by blocking ryanodine receptors (RyR2) with tetracaine, was ≈50% higher in cAF versus control. Single-channel recordings from atrial RyR2 reconstituted into lipid bilayers revealed enhanced open probability in cAF samples, providing a molecular basis for increased SR Ca(2+) leak. Calmodulin expression (60%), Ca(2+)/calmodulin-dependent protein kinase-II (CaMKII) autophosphorylation at Thr287 (87%), and RyR2 phosphorylation at Ser2808 (protein kinase A/CaMKII site, 236%) and Ser2814 (CaMKII site, 77%) were increased in cAF. The selective CaMKII blocker KN-93 decreased SR Ca(2+) leak, the frequency of spontaneous Ca(2+) release events, and RyR2 open probability in cAF, whereas protein kinase A inhibition with H-89 was ineffective. Knock-in mice with constitutively phosphorylated RyR2 at Ser2814 showed a higher incidence of Ca(2+) sparks and increased susceptibility to pacing-induced AF compared with controls. The relationship between [Ca(2+)](i) and I(NCX) density revealed I(NCX) upregulation in cAF. Spontaneous Ca(2+) release events accompanied by inward I(NCX) currents and delayed afterdepolarizations/triggered activity occurred more often and the sensitivity of resting membrane voltage to elevated [Ca(2+)](i) (diastolic [Ca(2+)](i)-voltage coupling gain) was higher in cAF compared with control. CONCLUSIONS Enhanced SR Ca(2+) leak through CaMKII-hyperphosphorylated RyR2, in combination with larger I(NCX) for a given SR Ca(2+) release and increased diastolic [Ca(2+)](i)-voltage coupling gain, causes AF-promoting atrial delayed afterdepolarizations/triggered activity in cAF patients.
Collapse
Affiliation(s)
- Niels Voigt
- Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Kučerová D, Baba HA, Bokník P, Fabritz L, Heinick A, Mát'uš M, Müller FU, Neumann J, Schmitz W, Kirchhefer U. Modulation of SR Ca2+ release by the triadin-to-calsequestrin ratio in ventricular myocytes. Am J Physiol Heart Circ Physiol 2012; 302:H2008-17. [PMID: 22427521 DOI: 10.1152/ajpheart.00457.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to β-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.
Collapse
Affiliation(s)
- Dana Kučerová
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Meijering RAM, Zhang D, Hoogstra-Berends F, Henning RH, Brundel BJJM. Loss of proteostatic control as a substrate for atrial fibrillation: a novel target for upstream therapy by heat shock proteins. Front Physiol 2012; 3:36. [PMID: 22375124 PMCID: PMC3284689 DOI: 10.3389/fphys.2012.00036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/09/2012] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common, sustained clinical tachyarrhythmia associated with significant morbidity and mortality. AF is a persistent condition with progressive structural remodeling of the atrial cardiomyocytes due to the AF itself, resulting in cellular changes commonly observed in aging and in other heart diseases. While rhythm control by electrocardioversion or drug treatment is the treatment of choice in symptomatic AF patients, its efficacy is still limited. Current research is directed at preventing first-onset AF by limiting the development of substrates underlying AF progression and resembles mechanism-based therapy. Upstream therapy refers to the use of non-ion channel anti-arrhythmic drugs that modify the atrial substrate- or target-specific mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention) or recurrence of the arrhythmia following (spontaneous) conversion (secondary prevention). Heat shock proteins (HSPs) are molecular chaperones and comprise a large family of proteins involved in the protection against various forms of cellular stress. Their classical function is the conservation of proteostasis via prevention of toxic protein aggregation by binding to (partially) unfolded proteins. Our recent data reveal that HSPs prevent electrical, contractile, and structural remodeling of cardiomyocytes, thus attenuating the AF substrate in cellular, Drosophila melanogaster, and animal experimental models. Furthermore, studies in humans suggest a protective role for HSPs against the progression from paroxysmal AF to persistent AF and in recurrence of AF. In this review, we discuss upregulation of the heat shock response system as a novel target for upstream therapy to prevent derailment of proteostasis and consequently progression and recurrence of AF.
Collapse
Affiliation(s)
- Roelien A M Meijering
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | | | | | | | | |
Collapse
|
140
|
Voigt N, Nattel S, Dobrev D. Proarrhythmic atrial calcium cycling in the diseased heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1175-91. [PMID: 22453988 DOI: 10.1007/978-94-007-2888-2_53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades Ca(2+) has been found to play a crucial role in cardiac arrhythmias associated with heart failure and a number of congenital arrhythmia syndromes. Recent studies demonstrated that altered atrial Ca(2+) cycling may promote the initiation and maintenance of atrial fibrillation, the most common clinical arrhythmia that contributes significantly to population morbidity and mortality. This article describes physiological Ca(2+) cycling mechanisms in atrial cardiomyocytes and relates them to fundamental cellular proarrhythmic mechanisms involving Ca(2+) signaling abnormalities in the atrium during atrial fibrillation.
Collapse
Affiliation(s)
- Niels Voigt
- Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
141
|
Sharma D, Li G, Xu G, Liu Y, Xu Y. Atrial remodeling in atrial fibrillation and some related microRNAs. Cardiology 2011; 120:111-21. [PMID: 22179059 DOI: 10.1159/000334434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/12/2011] [Indexed: 01/17/2023]
Abstract
Atrial fibrillation is the most common sustained arrhythmia associated with substantial cardiovascular morbidity and mortality, with stroke being the most critical complication. The role of atrial remodeling has emerged as the new pathophysiological mechanism of atrial fibrillation. Electrical remodeling and structural remodeling will increase the probability of generating multiple atrial wavelets by enabling rapid atrial activation and dispersion of refractoriness. MicroRNAs (miRNAs) are small non-coding RNAs of 20-25 nucleotides in length that regulate expression of target genes through sequence-specific hybridization to the 3' untranslated region of messenger RNAs and either block translation or direct degradation of their target messenger RNA. They have also been implicated in a variety of pathological conditions, such as arrhythmogenesis and atrial fibrillation. Target genes of miRNAs have the potential to affect atrial fibrillation vulnerability.
Collapse
Affiliation(s)
- Deepak Sharma
- International College of Tianjin Medical University, Tianjin, China
| | | | | | | | | |
Collapse
|
142
|
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade. Pflugers Arch 2011; 463:537-48. [PMID: 22160437 DOI: 10.1007/s00424-011-1061-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
Abstract
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K(+) currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K(+) currents (I(TO), I(KSUS) and I(K1)) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in I(TO) density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. I(K1) was reduced by 34% at -120 mV (p < 0.05). Neither I(KSUS), nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of I(TO)- and I(K1)-decrease could result in a 28% increase in APD(90). Chronic β-blockade did not alter mRNA or protein expression of the I(TO) pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in I(K1). A reduction in atrial I(TO) and I(K1) associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits.
Collapse
|
143
|
Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, Bers DM. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res 2011; 109:1055-66. [PMID: 21921263 DOI: 10.1161/circresaha.111.253955] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Understanding atrial fibrillation (AF) requires integrated understanding of ionic currents and Ca2+ transport in remodeled human atrium, but appropriate models are limited. OBJECTIVE To study AF, we developed a new human atrial action potential (AP) model, derived from atrial experimental results and our human ventricular myocyte model. METHODS AND RESULTS Atria versus ventricles have lower I(K1), resulting in more depolarized resting membrane potential (≈7 mV). We used higher I(to,fast) density in atrium, removed I(to,slow), and included an atrial-specific I(Kur). I(NCX) and I(NaK) densities were reduced in atrial versus ventricular myocytes according to experimental results. SERCA function was altered to reproduce human atrial myocyte Ca2+ transients. To simulate chronic AF, we reduced I(CaL), I(to), I(Kur) and SERCA, and increased I(K1),I(Ks) and I(NCX). We also investigated the link between Kv1.5 channelopathy, [Ca2+]i, and AF. The sinus rhythm model showed a typical human atrial AP morphology. Consistent with experiments, the model showed shorter APs and reduced AP duration shortening at increasing pacing frequencies in AF or when I(CaL) was partially blocked, suggesting a crucial role of Ca2+ and Na+ in this effect. This also explained blunted Ca2+ transient and rate-adaptation of [Ca2+]i and [Na+]i in chronic AF. Moreover, increasing [Na+]i and altered I(NaK) and I(NCX) causes rate-dependent atrial AP shortening. Blocking I(Kur) to mimic Kv1.5 loss-of-function increased [Ca2+]i and caused early afterdepolarizations under adrenergic stress, as observed experimentally. CONCLUSIONS Our study provides a novel tool and insights into ionic bases of atrioventricular AP differences, and shows how Na+ and Ca2+ homeostases critically mediate abnormal repolarization in AF.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Dr, GBSF Room 3513, Davis, CA 95616-8636, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 2011; 52:376-87. [PMID: 21888911 DOI: 10.1016/j.yjmcc.2011.08.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/11/2011] [Accepted: 08/17/2011] [Indexed: 11/23/2022]
Abstract
Influx of Ca(2+) through L-type Ca(2+) channels (LTCCs) contributes to numerous cellular processes in cardiomyocytes including excitation-contraction (EC) coupling, membrane excitability, and transcriptional regulation. Distinct subpopulations of LTCCs have been identified in cardiac myocytes, including those at dyadic junctions and within different plasma membrane microdomains such as lipid rafts and caveolae. These subpopulations of LTCCs exhibit regionally distinct functional properties and regulation, affording precise spatiotemporal modulation of L-type Ca(2+) current (I(Ca,L)). Different subcellular LTCC populations demonstrate variable rates of Ca(2+)-dependent inactivation and sometimes coupled gating of neighboring channels, which can lead to focal, persistent I(Ca,L). In addition, the assembly of spatially defined macromolecular signaling complexes permits compartmentalized regulation of I(Ca,L) by a variety of neurohormonal pathways. For example, β-adrenergic receptor subtypes signal to different LTCC subpopulations, with β(2)-adrenergic activation leading to enhanced I(Ca,L) through caveolar LTCCs and β(1)-adrenergic stimulation modulating LTCCs outside of caveolae. Disruptions in the normal subcellular targeting of LTCCs and associated signaling proteins may contribute to the pathophysiology of a variety of cardiac diseases including heart failure and certain arrhythmias. Further identifying the characteristic functional properties and array of regulatory molecules associated with specific LTCC subpopulations will provide a mechanistic framework to understand how LTCCs contribute to diverse cellular processes in normal and diseased myocardium. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
|
145
|
Cunha SR, Hund TJ, Hashemi S, Voigt N, Li N, Wright P, Koval O, Li J, Gudmundsson H, Gumina RJ, Karck M, Schott JJ, Probst V, Le Marec H, Anderson ME, Dobrev D, Wehrens XHT, Mohler PJ. Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation. Circulation 2011; 124:1212-22. [PMID: 21859974 DOI: 10.1161/circulationaha.111.023986] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting >2 million patients in the United States alone. Despite decades of research, surprisingly little is known regarding the molecular pathways underlying the pathogenesis of AF. ANK2 encodes ankyrin-B, a multifunctional adapter molecule implicated in membrane targeting of ion channels, transporters, and signaling molecules in excitable cells. METHODS AND RESULTS In the present study, we report early-onset AF in patients harboring loss-of-function mutations in ANK2. In mice, we show that ankyrin-B deficiency results in atrial electrophysiological dysfunction and increased susceptibility to AF. Moreover, ankyrin-B(+/-) atrial myocytes display shortened action potentials, consistent with human AF. Ankyrin-B is expressed in atrial myocytes, and we demonstrate its requirement for the membrane targeting and function of a subgroup of voltage-gated Ca(2+) channels (Ca(v)1.3) responsible for low voltage-activated L-type Ca(2+) current. Ankyrin-B is associated directly with Ca(v)1.3, and this interaction is regulated by a short, highly conserved motif specific to Ca(v)1.3. Moreover, loss of ankyrin-B in atrial myocytes results in decreased Ca(v)1.3 expression, membrane localization, and function sufficient to produce shortened atrial action potentials and arrhythmias. Finally, we demonstrate reduced ankyrin-B expression in atrial samples of patients with documented AF, further supporting an association between ankyrin-B and AF. CONCLUSIONS These findings support that reduced ankyrin-B expression or mutations in ANK2 are associated with AF. Additionally, our data demonstrate a novel pathway for ankyrin-B-dependent regulation of Ca(v)1.3 channel membrane targeting and regulation in atrial myocytes.
Collapse
Affiliation(s)
- Shane R Cunha
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 2011; 121:2955-68. [PMID: 21804195 DOI: 10.1172/jci46315] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is an extremely common cardiac rhythm disorder that causes substantial morbidity and contributes to mortality. The mechanisms underlying AF are complex, involving both increased spontaneous ectopic firing of atrial cells and impulse reentry through atrial tissue. Over the past ten years, there has been enormous progress in understanding the underlying molecular pathobiology. This article reviews the basic mechanisms and molecular processes causing AF. We discuss the ways in which cardiac disease states, extracardiac factors, and abnormal genetic control lead to the arrhythmia. We conclude with a discussion of the potential therapeutic implications that might arise from an improved mechanistic understanding.
Collapse
Affiliation(s)
- Reza Wakili
- Research Center, Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
147
|
|
148
|
Ronkainen JJ, Hänninen SL, Korhonen T, Koivumäki JT, Skoumal R, Rautio S, Ronkainen VP, Tavi P. Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. J Physiol 2011; 589:2669-86. [PMID: 21486818 DOI: 10.1113/jphysiol.2010.201400] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have demonstrated that changes in the activity of calcium-calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation-contraction (E-C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM-GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+-CaMKII-DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII.
Collapse
Affiliation(s)
- Jarkko J Ronkainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, Neulaniementie 2, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Atrial fibrillation (AF) is the most commonly encountered clinical arrhythmia associated with pronounced morbidity, mortality, and socio-economic burden. This pathological entity is associated with an altered expression profile of genes that are important for atrial function. MicroRNAs (miRNAs), a new class of non-coding mRNAs of around 22 nucleotides in length, have rapidly emerged as one of the key players in the gene expression regulatory network. The potential roles of miRNAs in controlling AF have recently been investigated. The studies have provided some promising results for our better understanding of the molecular mechanisms of AF. In this review article, we provide a synopsis of the studies linking miRNAs to cardiac excitability and other processes pertinent to AF. To introduce the main topic, we discuss basic knowledge about miRNA biology and our current understanding of mechanisms for AF. The most up-to-date research data on the possible roles of miRNAs in AF initiation and maintenance are presented, and the available experimental results on miRNA and AF are discussed. Some speculations pertinent to the subject are made. Finally, perspectives on future directions of research on miRNAs in AF are provided.
Collapse
Affiliation(s)
- Zhiguo Wang
- Research Center, Montreal Heart Institute, 5000 Belanger East, Montreal, Canada PQ H1T 1C8.
| | | | | |
Collapse
|
150
|
Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 2011; 91:265-325. [PMID: 21248168 DOI: 10.1152/physrev.00031.2009] [Citation(s) in RCA: 885] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological alterations promoting AF have been studied extensively in animal models. Atrial tachycardia or AF itself shortens atrial refractoriness and causes loss of atrial contractility. Aging, neurohumoral activation, and chronic atrial stretch due to structural heart disease activate a variety of signaling pathways leading to histological changes in the atria including myocyte hypertrophy, fibroblast proliferation, and complex alterations of the extracellular matrix including tissue fibrosis. These changes in electrical, contractile, and structural properties of the atria have been called "atrial remodeling." The resulting electrophysiological substrate is characterized by shortening of atrial refractoriness and reentrant wavelength or by local conduction heterogeneities caused by disruption of electrical interconnections between muscle bundles. Under these conditions, ectopic activity originating from the pulmonary veins or other sites is more likely to occur and to trigger longer episodes of AF. Many of these alterations also occur in patients with or at risk for AF, although the direct demonstration of these mechanisms is sometimes challenging. The diversity of etiological factors and electrophysiological mechanisms promoting AF in humans hampers the development of more effective therapy of AF. This review aims to give a translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process. We pay attention to translation of pathophysiological insights gained from in vitro experiments and animal models to patients. Also, suggestions for future research objectives and therapeutical implications are discussed.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|