101
|
Zhao W, Zheng XL, Peng DQ, Zhao SP. Myocyte Enhancer Factor 2A Regulates Hydrogen Peroxide-Induced Senescence of Vascular Smooth Muscle Cells Via microRNA-143. J Cell Physiol 2015; 230:2202-11. [PMID: 25655189 DOI: 10.1002/jcp.24948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Wang Zhao
- Department of Cardiology; The Second Xiangya Hospital; Central South University; Changsha Hunan China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology; The Libin Cardiovascular Institute of Alberta; Cumming School of Medicine; The University of Calgary; Health Sciences Center; Calgary Alberta Canada
| | - Dao-Quan Peng
- Department of Cardiology; The Second Xiangya Hospital; Central South University; Changsha Hunan China
| | - Shui-Ping Zhao
- Department of Cardiology; The Second Xiangya Hospital; Central South University; Changsha Hunan China
| |
Collapse
|
102
|
Hu X, Wang Z, Wu H, Jiang W, Hu R. Ras ssDNA aptamer inhibits vascular smooth muscle cell proliferation and migration through MAPK and PI3K pathways. Int J Mol Med 2015; 35:1355-61. [PMID: 25778421 DOI: 10.3892/ijmm.2015.2139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/25/2015] [Indexed: 11/05/2022] Open
Abstract
Proliferation and migration of vascular smooth muscle cells (VSMCs) mediated by Ras proteins are crucial in restenosis following percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG). In this study, a novel, single-stranded DNA (ssDNA) aptamer designated as Ras-a1 with high affinity and specificity to human Ras protein was isolated using systematic evolution of ligands by exponential enrichment. Ras-a1 was delivered into VSMCs by electroporation using one square waveform of 200 V for 20 msec. Proliferation of VSMCs was determined using a cell counting kit‑8 assay, which revealed the maximal inhibitory rate (40%) was obtained at 24 h after Ras-a1 transfection. The migration of VSMCs, determined using a Transwell assay, was significantly inhibited in Rasa1 cells in a time-dependent manner. To investigate the potential mechanisms of transfected Ras-a1 on the migration and proliferation of VSMCs, the phosphorylation of MEK1/2, ERK1/2, and Akt was determined using western blot analysis, which showed that a marked downregulation was observed in the phosphorylation of MEK1/2, ERK1/2, and Akt following the delivery of Ras-a1. This result demonstrated that Ras-a1 inhibits the proliferation and migration of VSMCs by inhibiting the phosphorylation of Ras and interrupting signal transduction in the Ras‑MEK1/2‑ERK1/2 and phosphoinositide-3 kinase/Akt pathways. The novel Ras protein-targeted ssDNA aptamer selected may be applicable for the prevention of restenosis after PCI and CABG.
Collapse
Affiliation(s)
- Xiaoping Hu
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Hongbing Wu
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Wanli Jiang
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Rui Hu
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
103
|
Guan N, Ren YL, Liu XY, Zhang Y, Pei P, Zhu SN, Fan Q. Protective role of cyclosporine A and minocycline on mitochondrial disequilibrium-related podocyte injury and proteinuria occurrence induced by adriamycin. Nephrol Dial Transplant 2015; 30:957-69. [DOI: 10.1093/ndt/gfv015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/11/2014] [Indexed: 11/14/2022] Open
|
104
|
Wang W, Xie Q, Zhou X, Yao J, Zhu X, Huang P, Zhang L, Wei J, Xie H, Zhou L, Zheng S. Mitofusin-2 triggers mitochondria Ca2+ influx from the endoplasmic reticulum to induce apoptosis in hepatocellular carcinoma cells. Cancer Lett 2014; 358:47-58. [PMID: 25541060 DOI: 10.1016/j.canlet.2014.12.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
In previous studies, we confirmed that mitofusin-2 (Mfn2) induced apoptosis in hepatocellular carcinoma (HCC) cells. However, the exact molecular mechanism remained unclear. Mfn2 expressed lower in tumour tissues, compared with adjacent non-cancer tissues. Furthermore, Mfn2 immunostaining was very weak in HCC tissue (P < 0.05) and was significantly associated with tumour size and TNM stage (P = 0.038 and 0.040, respectively), and patients with HCC with lower Mfn2 expression had a poorer prognosis. Overexpression of Mfn2 induced HepG2 cells apoptosis, reduced the mitochondrial membrane potential (ΔΨm) and endoplasmic reticulum (ER) calcium ion (Ca(2+)) concentrations, and elevated intracellular reactive oxygen species (ROS) and mitochondrial Ca(2+) concentrations. However, when HepG2 cells overexpressing Mfn2 were treated with both heparin and RU360, there was no induction of apoptosis, decline in ΔΨm or ER Ca(2+), or increase in intracellular ROS or mitochondrial Ca(2+). We also found downregulation in the expression of mitochondrial calcium uptake1 and 2 (MICU1 and MICU2) in cells transfected with Adv-Mfn2. Thus, we confirmed that Mfn2 induced apoptosis in HCC cells by triggering influx of Ca(2+) into the mitochondria from the ER.
Collapse
Affiliation(s)
- Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Qingsong Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Xiaohu Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jingzi Yao
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Xiaoxiang Zhu
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Pengfei Huang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Lufei Zhang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jianfeng Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.
| |
Collapse
|
105
|
Chiong M, Cartes-Saavedra B, Norambuena-Soto I, Mondaca-Ruff D, Morales PE, García-Miguel M, Mellado R. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front Cell Dev Biol 2014; 2:72. [PMID: 25566542 PMCID: PMC4266092 DOI: 10.3389/fcell.2014.00072] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022] Open
Abstract
Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs) are essential processes of vascular development. VSMC have biosynthetic, proliferative, and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMC play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension, and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e., mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER). Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial–ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Mario Chiong
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Benjamín Cartes-Saavedra
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Ignacio Norambuena-Soto
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - David Mondaca-Ruff
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Pablo E Morales
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Marina García-Miguel
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Rosemarie Mellado
- Faculty of Chemistry, Pontifical Catholic University of Chile Santiago, Chile
| |
Collapse
|
106
|
Hall AR, Burke N, Dongworth RK, Hausenloy DJ. Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 2014; 171:1890-906. [PMID: 24328763 PMCID: PMC3976611 DOI: 10.1111/bph.12516] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are no longer considered to be solely the static powerhouses of the cell. While they are undoubtedly essential to sustaining life and meeting the energy requirements of the cell through oxidative phosphorylation, they are now regarded as highly dynamic organelles with multiple functions, playing key roles in cell survival and death. In this review, we discuss the emerging role of mitochondrial fusion and fission proteins, as novel therapeutic targets for treating a wide range of cardiovascular diseases.
Collapse
Affiliation(s)
- A R Hall
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, London, UK
| | | | | | | |
Collapse
|
107
|
Abstract
Mitochondria are highly specialized in function, but mitochondrial and, therefore, cellular integrity is maintained through their dynamic nature. Through the frequent processes of fusion and fission, mitochondria continuously change in shape and adjust function to meet cellular requirements. Abnormalities in fusion/fission dynamics generate cellular dysfunction that may lead to diseases. Mutations in the genes encoding mitochondrial fusion/fission proteins, such as MFN2 and OPA1, have been associated with an increasing number of genetic disorders, including Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy. In this review, we address the mitochondrial dynamic changes in several important genetic diseases, which will bring the new insight of clinical relevance of mitochondrial genetics.
Collapse
Affiliation(s)
- Le Chen
- Molecular & Cellular Cardiology, University of California, Davis, One Shields Avenue Davis, CA, 95616, USA,
| | | | | |
Collapse
|
108
|
Kaufman RJ, Malhotra JD. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2233-9. [PMID: 24690484 PMCID: PMC4285153 DOI: 10.1016/j.bbamcr.2014.03.022] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 12/31/2022]
Abstract
Calcium homeostasis is central to all cellular functions and has been studied for decades. Calcium acts as a critical second messenger for both extracellular and intracellular signaling and is fundamental in cell life and death decisions (Berridge et al., 2000) [1]. The calcium gradient in the cell is coupled with an inherent ability of the divalent cation to reversibly bind multiple target biological molecules to generate an extremely versatile signaling system [2]. Calcium signals are used by the cell to control diverse processes such as development, neurotransmitter release, muscle contraction, metabolism, autophagy and cell death. "Cellular calcium overload" is detrimental to cellular health, resulting in massive activation of proteases and phospholipases leading to cell death (Pinton et al., 2008) [3]. Historically, cell death associated with calcium ion perturbations has been primarily recognized as necrosis. Recent evidence clearly associates changes in calcium ion concentrations with more sophisticated forms of cellular demise, including apoptosis (Kruman et al., 1998; Tombal et al., 1999; Lynch et al., 2000; Orrenius et al., 2003) [4-7]. Although the endoplasmic reticulum (ER) serves as the primary calcium store in the metazoan cell, dynamic calcium release to the cytosol, mitochondria, nuclei and other organelles orchestrate diverse coordinated responses. Most evidence supports that calcium transport from the ER to mitochondria plays a significant role in regulating cellular bioenergetics, production of reactive oxygen species, induction of autophagy and apoptosis. Recently, molecular identities that mediate calcium traffic between the ER and mitochondria have been discovered (Mallilankaraman et al., 2012a; Mallilankaraman et al., 2012b; Sancak et al., 2013)[8-10]. The next questions are how they are regulated for exquisite tight control of ER-mitochondrial calcium dynamics. This review attempts to summarize recent advances in the role of calcium in regulation of ER and mitochondrial function. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
|
109
|
Hu X, Lei X, Wang J, Pan H, Li C, Yao Z. Lentivirus vector-mediated mitofusin-2 overexpression in rat ovary changes endocrine function and promotes follicular development in vivo.. Exp Ther Med 2014; 8:731-736. [PMID: 25120590 PMCID: PMC4113544 DOI: 10.3892/etm.2014.1835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023] Open
Abstract
The aim of the present study was to evaluate the expression and effect of rat mitofusin-2 (rMfn2) in the ovaries and other organs in rats. Rat models were developed by the intraovarian microinjection of an rMfn2-overexpressing lentiviral vector. Lenti-green fluorescent protein (GFP)-rMfn2 was microinjected into rat ovaries at a dosage of 2×106 tuberculin units virosome (n=25) and lenti-GFP was microinjected as a control (n=25). The expression of rMfn2 in the ovaries and other tissues was observed by fluorescence microscopy on days 7, 15, 30, 45 and 60 after the microinjection (n=5/day from each group). The serum levels of estradiol (E2), progesterone (P), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were determined by radioimmunoassay. Western blotting was used for the quantitative analysis of the expression of rMfn2 and the progesterone receptor (PR), estradiol receptor (ER), luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR). The expression of rMfn2 was detected on day 7 after infection, increased with time and was maintained efficiently until day 60. In addition, rMfn2 was highly expressed in the fallopian tubes, uterus, cardiac muscle, liver and kidney, but expressed at a low level in adipose tissue. The serum levels of E2 and P in the model group were significantly increased compared with those in the control group, whereas the FSH and LH levels showed no significant difference between groups. The expression levels of the ER and PR in the model group were higher than those in the control group; however, no significant difference was observed between groups for the expression levels of LHR and FSHR. These findings suggest that the intraovarian microinjection of lenti-GFP-rMfn2 resulted in a significant time-dependent overexpression of rMfn2 in various organs, and that rMfn2 overexpression in rat ovaries changed the endocrine function and promoted follicular development.
Collapse
Affiliation(s)
- Xiaojing Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiubing Lei
- Department of Infectious Disease, The People's Hospital of Chongqing Banan, Chongqing 401320, P.R. China
| | - Jidong Wang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Hongjuan Pan
- Department of Obstetrics and Gynecology, The Third People's Hospital of Wuhan, Wuhan, Hubei 430060, P.R. China
| | - Cong Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhenwei Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
110
|
Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ. Biochem Biophys Res Commun 2014; 450:500-6. [PMID: 24928385 DOI: 10.1016/j.bbrc.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 02/08/2023]
Abstract
Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.
Collapse
|
111
|
Cosentino K, García-Sáez AJ. Mitochondrial alterations in apoptosis. Chem Phys Lipids 2014; 181:62-75. [PMID: 24732580 DOI: 10.1016/j.chemphyslip.2014.04.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/20/2014] [Accepted: 04/02/2014] [Indexed: 12/31/2022]
Abstract
Besides their conventional role as energy suppliers for the cell, mitochondria in vertebrates are active regulators of apoptosis. They release apoptotic factors from the intermembrane space into the cytosol through a mechanism that involves the Bcl-2 protein family, mediating permeabilization of the outer mitochondrial membrane. Associated with this event, a number of additional changes affect mitochondria during apoptosis. They include loss of important mitochondrial functions, such as the ability to maintain calcium homeostasis and to generate ATP, as well as mitochondrial fragmentation and cristae remodeling. Moreover, the lipidic component of mitochondrial membranes undergoes important alterations in composition and distribution, which have turned out to be relevant regulatory events for the proteins involved in apoptotic mitochondrial damage.
Collapse
Affiliation(s)
- Katia Cosentino
- German Cancer Research Center, Heidelberg, Germany; Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Ana J García-Sáez
- German Cancer Research Center, Heidelberg, Germany; Max-Planck Institute for Intelligent Systems, Stuttgart, Germany; Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
112
|
Shu Z, Yu M, Zeng G, Zhang X, Wu L, Tan X. Epigallocatechin-3-gallate inhibits proliferation of human aortic smooth muscle cells via up-regulating expression of mitofusin 2. Eur J Cell Biol 2014; 93:137-144. [PMID: 24880525 DOI: 10.1016/j.ejcb.2014.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that epigallocatechin-3-gallate (EGCG) inhibits the proliferation of vascular smooth muscle cells (VSMCs) via the extracellular-signal-regulated kinase (ERK1/2) and mitogen activated protein kinases (MAPKs) pathway. Mitofusin 2 (Mfn-2) also suppresses VSMC proliferation through Ras-Raf-ERK/MAPK, suggesting a possible link between EGCG, Mfn-2 and ERK/MAPK. However, the effect of EGCG on Mfn-2 remains unknown. In this study, we investigated the role of Mfn-2 in the regulation of VSMC proliferation by EGCG, and assessed the underlying mechanisms. The effects of EGCG on the proliferation of cultured human aortic smooth muscle cells (HASMCs) were observed by 5-ethynl-2-deoxyuridine (EdU) incorporation assay. Mfn-2 gene and protein levels, and Ras, p-c-Raf and p-ERK1/2 protein levels were determined by quantitative real-time polymerase chain reaction and western blotting, respectively. Mfn-2 gene silencing was achieved by RNA interference. EGCG 50 μmol/L profoundly inhibited the proliferation of HASMCs in culture, up-regulated Mfn-2, and down-regulated the expression of p-c-Raf and p-ERK1/2. Furthermore, RNA interference-mediated gene knockdown of Mfn-2 antagonized EGCG-induced anti-proliferation and down-regulation of Ras, p-c-Raf and p-ERK1/2. These results suggest that EGCG inhibits the proliferation of HASMCs in vitro largely via Mfn-2-mediated suppression of the Ras-Raf-ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhouwu Shu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; Molecular Biology Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Min Yu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; Molecular Biology Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guoning Zeng
- Molecular Biology Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xin Zhang
- Molecular Biology Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Libiao Wu
- Molecular Biology Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xuerui Tan
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
113
|
Marín-García J, Akhmedov AT, Moe GW. Mitochondria in heart failure: the emerging role of mitochondrial dynamics. Heart Fail Rev 2014; 18:439-56. [PMID: 22707247 DOI: 10.1007/s10741-012-9330-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past decade, mitochondria have emerged as critical integrators of energy production, generation of reactive oxygen species (ROS), multiple cell death, and signaling pathways in the constantly beating heart. Clarification of the molecular mechanisms, underlying mitochondrial ROS generation and ROS-induced cell death pathways, associated with cardiovascular diseases, by itself remains an important aim; more recently, mitochondrial dynamics has emerged as an important active mechanism to maintain normal mitochondria number and morphology, both are necessary to preserve cardiomyocytes integrity. The two opposing processes, division (fission) and fusion, determine the cell type-specific mitochondrial morphology, the intracellular distribution and activity. The tightly controlled balance between fusion and fission is of particular importance in the high energy demanding cells, such as cardiomyocytes, skeletal muscles, and neuronal cells. A shift toward fission will lead to mitochondrial fragmentation, observed in quiescent cells, while a shift toward fusion will result in the formation of large mitochondrial networks, found in metabolically active cardiomyocytes. Defects in mitochondrial dynamics have been associated with various human disorders, including heart failure, ischemia reperfusion injury, diabetes, and aging. Despite significant progress in our understanding of the molecular mechanisms of mitochondrial function in the heart, further focused research is needed to translate this knowledge into the development of new therapies for various ailments.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ 08904, USA.
| | | | | |
Collapse
|
114
|
Morales PE, Torres G, Sotomayor-Flores C, Peña-Oyarzún D, Rivera-Mejías P, Paredes F, Chiong M. GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum-mitochondria coupling. Biochem Biophys Res Commun 2014; 446:410-6. [PMID: 24613839 DOI: 10.1016/j.bbrc.2014.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 11/27/2022]
Abstract
Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity.
Collapse
Affiliation(s)
- Pablo E Morales
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Gloria Torres
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Cristian Sotomayor-Flores
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pablo Rivera-Mejías
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Felipe Paredes
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
115
|
Aravamudan B, Kiel A, Freeman M, Delmotte P, Thompson M, Vassallo R, Sieck GC, Pabelick CM, Prakash YS. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2014; 306:L840-54. [PMID: 24610934 DOI: 10.1152/ajplung.00155.2013] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Division of Anesthesia Research, Dept. of Anesthesiology, 4-184 W. Joseph SMH, Mayo Clinic, Rochester, MN 55905.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol 2014; 2014:156020. [PMID: 24587804 PMCID: PMC3920668 DOI: 10.1155/2014/156020] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/11/2013] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the aetiology of many complex diseases, as well as the ageing process. Much of the research on mitochondrial dysfunction has focused on how mitochondrial damage may potentiate pathological phenotypes. The purpose of this review is to draw attention to the less well-studied mechanisms by which the cell adapts to mitochondrial perturbations. This involves communication of stress to the cell and successful induction of quality control responses, which include mitophagy, unfolded protein response, upregulation of antioxidant and DNA repair enzymes, morphological changes, and if all else fails apoptosis. The mitochondrion is an inherently stressful environment and we speculate that dysregulation of stress signaling or an inability to switch on these adaptations during times of mitochondrial stress may underpin mitochondrial dysfunction and hence amount to pathological states over time.
Collapse
|
117
|
Hwang SJ, Kim W. Mitochondrial dynamics in the heart as a novel therapeutic target for cardioprotection. Chonnam Med J 2013; 49:101-7. [PMID: 24400211 PMCID: PMC3881204 DOI: 10.4068/cmj.2013.49.3.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023] Open
Abstract
Traditionally, mitochondria have been regarded solely as energy generators for cells; however, accumulating data have demonstrated that these complex organelles play a variety of roles within the cardiomyocyte that extend beyond this classic function. Mitochondrial dynamics involves mitochondrial movements and morphologic alterations by tethering, fusion, and fission, which depend on cellular energy requirements and metabolic status. Many studies have indicated that mitochondrial dynamics may be a fundamental component of the maintenance of normal cellular homeostasis and cardiac function. Mitochondrial dynamics is controlled by the protein machinery responsible for mitochondrial fusion and fission, but cardiomyocytes are densely packed as part of an intricate cytoarchitecture for efficient and imbalanced contraction; thus, mitochondrial dynamics in the adult heart are restricted and occur more slowly than in other organs. Cardiac mitochondrial dynamics is important for cardiac physiology in diseased conditions such as ischemia-reperfusion (IR) injury. Changes in mitochondrial morphology through modulation of the expression of proteins regulating mitochondrial dynamics demonstrates the beneficial effects on cardiac performance after IR injury. Thus, accurately defining the roles of mitochondrial dynamics in the adult heart can guide the identification and development of novel therapeutic targets for cardioprotection. Further studies should be performed to establish the exact mechanisms of mitochondrial dynamics.
Collapse
Affiliation(s)
- Seung Joon Hwang
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
118
|
Relationship between the expressions of mitofusin-2 and procollagen in uterosacral ligament fibroblasts of postmenopausal patients with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol 2013; 174:141-5. [PMID: 24361166 DOI: 10.1016/j.ejogrb.2013.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/07/2013] [Accepted: 11/28/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To compare the mRNA and protein expressions of mitochondrial fusion protein-2 (mitofusin-2, Mfn2), and procollagen 1A1/1A2/3A1 in uterosacral ligament fibroblasts of postmenopausal patients with or without pelvic organ prolapse (POP). The effect of Mfn2 on the expression of procollagen in fibroblasts was also investigated. STUDY DESIGN Thirty-seven POP patients and 23 non-POP postmenopausal patients were included in the POP (study) and non-POP (control) groups, respectively. Laser capture microdissection (LCM) was combined with quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting to detect the mRNA and protein expressions of Mfn2, and types I and III procollagen in uterosacral ligament fibroblasts of the two groups, and the differences in expression levels were compared between the groups. The correlation between Mfn2 and procollagens was also investigated. RESULTS Fibroblasts were successfully isolated from frozen sections of the uterosacral ligament using LCM. The results of qRT-PCR and western blot showed that the expressions of types I and III procollagen were significantly lower and those of Mfn2 were significantly higher in the POP group than in the non-POP group (p<0.05, all). In POP, opposite trends of protein expression changes of Mfn2 and procollagens were observed along with the duration of postmenopause (P<0.05), while this was not the case in POP accompanied by stress urinary incontinence and frequency of vaginal delivery (P>0.05). The expressions of type I and III procollagen were negatively associated with Mfn2 in POP patients (-1<r<0, P<0.001, all). CONCLUSIONS Mfn2 expression changed along with the duration of postmenopause and had a negative association with the expression of procollagens. Our results suggest that the Mfn2 protein may affect the synthesis of procollagen of fibroblasts in postmenopausal patients with POP. Changes in Mfn2 and procollagen expression may play a role in the development of POP.
Collapse
|
119
|
Chen KH, Dasgupta A, Ding J, Indig FE, Ghosh P, Longo DL. Role of mitofusin 2 (Mfn2) in controlling cellular proliferation. FASEB J 2013; 28:382-94. [PMID: 24081906 DOI: 10.1096/fj.13-230037] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been reported that Mitofusin2 (Mfn2) inhibits cell proliferation when overexpressed. We wanted to study the role of endogenous Mfn2 in cell proliferation, along with the structural features of Mfn2 that influence its mitochondrial localization and control of cell proliferation. Mfn2-knockdown clones of a B-cell lymphoma cell line BJAB exhibited an increased rate of cell proliferation. A 2-fold increase in cell proliferation was also observed in Mfn2-knockout mouse embryonic fibroblast (MEF) cells as compared with the control wild-type cells, and the proliferative advantage of the knockout MEF cells was blocked on reintroduction of the Mfn2 gene. Mfn2 exerts its antiproliferative effect by acting as an effector molecule of Ras, resulting in the inhibition of the Ras-Raf-ERK signaling pathway. Furthermore, both the N-terminal (aa 1-264) and the C-terminal (aa 265-757) fragments of Mfn2 blocked cell proliferation through distinct mechanisms: the N-terminal-mediated inhibition was due to its interaction with Raf-1, whereas the C-terminal fragment of Mfn2 inhibited cell proliferation by interacting with Ras. The inhibition of proliferation by the N-terminal fragment was independent of its mitochondrial localization. Collectively, our data provide new insights regarding the role of Mfn2 in controlling cellular proliferation.
Collapse
Affiliation(s)
- Kuang-Hueih Chen
- 2Lymphocyte Cell Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Blvd., Baltimore, MD 21224, USA. P.G.,
| | | | | | | | | | | |
Collapse
|
120
|
Gene expression profiling on the molecular action of danshen-gegen formula in a randomized placebo-controlled trial of postmenopausal women with hypercholesterolemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:703705. [PMID: 24174980 PMCID: PMC3794622 DOI: 10.1155/2013/703705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/28/2013] [Accepted: 06/16/2013] [Indexed: 02/04/2023]
Abstract
The Danshen-Gegen formula (DG) is a traditional Chinese herbal formula which has long been used to treat cardiovascular disease. DG was found to be a cardiovascular tonic in our recent research. However, a comprehensive investigation of the molecular mechanism of DG in cardiovascular disease has not been performed. The aim of this study was to clarify the transcriptional profiling of genes modulated by DG on postmenopausal women by using DNAmicroarray technology. We obtained 29 whole blood samples both from DG-treated and placebo-treated subjects. Blood lipid profile and intima-media thickness (IMT) were measured. Affymetrix GeneChip was used to identify differentially expressed genes (DEGs), followed by validation by the real-time PCR method. The results showed that DG-treated group has a significant improvement in IMT and lipid profile as compared to placebo-treated group. For the genomic study, the DG-treated group has a higher number of DEGs identified as compared to the placebo-treated group. Two important biological processes of “regulation of systemic arterial blood pressure by hormone” and “regulation of smooth muscle proliferation” have been identified by GePS in the DG-treated group. No significant biological process and cellular components were identified in the placebo-treated group. This genomic study on the molecular action of DG in postmenopausal women gathered sufficient molecular targets and pathways to reveal that DG could improve neointima thickening and hypertension.
Collapse
|
121
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013; 7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | |
Collapse
|
122
|
Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J 2013; 32:2348-61. [PMID: 23921556 DOI: 10.1038/emboj.2013.168] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 07/03/2013] [Indexed: 12/11/2022] Open
Abstract
Mitofusin 2 (Mfn2) is a key protein in mitochondrial fusion and it participates in the bridging of mitochondria to the endoplasmic reticulum (ER). Recent data indicate that Mfn2 ablation leads to ER stress. Here we report on the mechanisms by which Mfn2 modulates cellular responses to ER stress. Induction of ER stress in Mfn2-deficient cells caused massive ER expansion and excessive activation of all three Unfolded Protein Response (UPR) branches (PERK, XBP-1, and ATF6). In spite of an enhanced UPR, these cells showed reduced activation of apoptosis and autophagy during ER stress. Silencing of PERK increased the apoptosis of Mfn2-ablated cells in response to ER stress. XBP-1 loss-of-function ameliorated autophagic activity of these cells upon ER stress. Mfn2 physically interacts with PERK, and Mfn2-ablated cells showed sustained activation of this protein kinase under basal conditions. Unexpectedly, PERK silencing in these cells reduced ROS production, normalized mitochondrial calcium, and improved mitochondrial morphology. In summary, our data indicate that Mfn2 is an upstream modulator of PERK. Furthermore, Mfn2 loss-of-function reveals that PERK is a key regulator of mitochondrial morphology and function.
Collapse
|
123
|
Abstract
SIGNIFICANCE Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently been investigated. In this article, we review the emerging role of mitochondrial dynamics in cardiovascular health and disease. RECENT ADVANCES Changes in mitochondrial dynamics have been implicated in vascular smooth cell proliferation, cardiac development and differentiation, cardiomyocyte hypertrophy, myocardial ischemia-reperfusion injury, cardioprotection, and heart failure. CRITICAL ISSUES Many of the experimental studies investigating mitochondrial dynamics in the cardiovascular system have been confined to cardiac cell lines, vascular cells, or neonatal cardiomyocytes, in which mitochondria are distributed throughout the cytoplasm and are free to move. However, in the adult heart where mitochondrial movements are restricted by their tightly-packed distribution along myofibrils or beneath the subsarcolemma, the relevance of mitochondrial dynamics is less obvious. The investigation of transgenic mice deficient in cardiac mitochondrial fission or fusion proteins should help elucidate the role of mitochondrial dynamics in the adult heart. FUTURE DIRECTIONS Investigating the role of mitochondrial dynamics in cardiovascular health and disease should result in the identification of novel therapeutic targets for treating patients with cardiovascular disease, the leading cause of death and disability globally.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
124
|
McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S. From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 2013; 50:357-71. [PMID: 23887139 PMCID: PMC3884171 DOI: 10.1159/000353883] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 12/29/2022] Open
Abstract
The diversity of mitochondrial arrangements, which arise from the organelle being static or moving, or fusing and dividing in a dynamically reshaping network, is only beginning to be appreciated. While significant progress has been made in understanding the proteins that reorganise mitochondria, the physiological significance of the various arrangements is poorly understood. The lack of understanding may occur partly because mitochondrial morphology is studied most often in cultured cells. The simple anatomy of cultured cells presents an attractive model for visualizing mitochondrial behaviour but contrasts with the complexity of native cells in which elaborate mitochondrial movements and morphologies may not occur. Mitochondrial changes may take place in native cells (in response to stress and proliferation), but over a slow time-course and the cellular function contributed is unclear. To determine the role mitochondrial arrangements play in cell function, a crucial first step is characterisation of the interactions among mitochondrial components. Three aspects of mitochondrial behaviour are described in this review: (1) morphology, (2) motion and (3) rapid shape changes. The proposed physiological roles to which various mitochondrial arrangements contribute and difficulties in interpreting some of the physiological conclusions are also outlined.
Collapse
Affiliation(s)
- John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
- Department of Biomedical Engineering, University of Strathclyde Wolfson Centre, Glasgow, UK
| | - Mairi E. Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - Marnie L. Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - John M. Girkin
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham, UK
| | - Christopher Saunter
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| |
Collapse
|
125
|
Ryan JJ, Marsboom G, Fang YH, Toth PT, Morrow E, Luo N, Piao L, Hong Z, Ericson K, Zhang HJ, Han M, Haney CR, Chen CT, Sharp WW, Archer SL. PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 187:865-78. [PMID: 23449689 DOI: 10.1164/rccm.201209-1687oc] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a lethal, female-predominant, vascular disease. Pathologic changes in PA smooth muscle cells (PASMC) include excessive proliferation, apoptosis-resistance, and mitochondrial fragmentation. Activation of dynamin-related protein increases mitotic fission and promotes this proliferation-apoptosis imbalance. The contribution of decreased fusion and reduced mitofusin-2 (MFN2) expression to PAH is unknown. OBJECTIVES We hypothesize that decreased MFN2 expression promotes mitochondrial fragmentation, increases proliferation, and impairs apoptosis. The role of MFN2's transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), was assessed. MFN2 therapy was tested in PAH PASMC and in models of PAH. METHODS Fusion and fission mediators were measured in lungs and PASMC from patients with PAH and female rats with monocrotaline or chronic hypoxia+Sugen-5416 (CH+SU) PAH. The effects of adenoviral mitofusin-2 (Ad-MFN2) overexpression were measured in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS In normal PASMC, siMFN2 reduced expression of MFN2 and PGC1α; conversely, siPGC1α reduced PGC1α and MFN2 expression. Both interventions caused mitochondrial fragmentation. siMFN2 increased proliferation. In rodent and human PAH PASMC, MFN2 and PGC1α were decreased and mitochondria were fragmented. Ad-MFN2 increased fusion, reduced proliferation, and increased apoptosis in human PAH and CH+SU. In CH+SU, Ad-MFN2 improved walking distance (381 ± 35 vs. 245 ± 39 m; P < 0.05); decreased pulmonary vascular resistance (0.18 ± 0.02 vs. 0.38 ± 0.14 mm Hg/ml/min; P < 0.05); and decreased PA medial thickness (14.5 ± 0.8 vs. 19 ± 1.7%; P < 0.05). Lung vascularity was increased by MFN2. CONCLUSIONS Decreased expression of MFN2 and PGC1α contribute to mitochondrial fragmentation and a proliferation-apoptosis imbalance in human and experimental PAH. Augmenting MFN2 has therapeutic benefit in human and experimental PAH.
Collapse
Affiliation(s)
- John J Ryan
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 2013; 305:H459-76. [PMID: 23748424 DOI: 10.1152/ajpheart.00936.2012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|
127
|
Appukuttan A, Kasseckert SA, Kumar S, Reusch HP, Ladilov Y. Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase. Cardiovasc Res 2013; 99:734-42. [PMID: 23729662 DOI: 10.1093/cvr/cvt137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Apoptosis of vascular smooth muscle cells (VSMC) in advanced atherosclerotic plaques is an important cause of plaque instability. Oxysterols have been suggested as important inducers of apoptosis in VSMC, but the precise mechanism is still poorly understood. Here we aimed to analyse the role of the soluble adenylyl cyclase (sAC). METHODS AND RESULTS VSMC derived from rat aorta were treated with either 25-hydroxycholesterol or 7-ketocholesterol for 24 h. Apoptosis was detected by TUNEL staining and caspases cleavage. Oxysterols treatment led to the activation of the mitochondrial pathway of apoptosis (cytochrome c release and caspase-9 cleavage) and mitochondrial ROS formation, which were suppressed by the pharmacological inhibition or knockdown of sAC. Scavenging ROS with N-acetyl-l-cysteine prevented oxysterol-induced apoptosis. Analyses of the downstream pathway suggest that protein kinase A (PKA)-dependent phosphorylation and the mitochondrial translocation of the pro-apoptotic protein Bax is a key link between sAC and oxysterol-induced ROS formation and apoptosis. To distinguish between intra-mitochondrial and extra-mitochondrial/cytosolic sAC pools, sAC was overexpressed in mitochondria or in the cytosol. sAC expression in the cytosol, but not in mitochondria, significantly promoted apoptosis and ROS formation during oxysterol treatment. CONCLUSION These results suggest that the sAC/PKA axis plays a key role in the oxysterol-induced apoptosis of VSMC by controlling mitochondrial Bax translocation and ROS formation and that cytosolic sAC, rather than the mitochondrial pool, is involved in the apoptotic mechanism.
Collapse
|
128
|
Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 2013; 4:102. [PMID: 23675354 PMCID: PMC3650619 DOI: 10.3389/fphys.2013.00102] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dynamics is a recent topic of research in the field of cardiac physiology. The study of mechanisms involved in the morphological changes and in the mobility of mitochondria is legitimate since the adult cardiomyocytes possess numerous mitochondria which occupy at least 30% of cell volume. However, architectural constraints exist in the cardiomyocyte that limit mitochondrial movements and communication between adjacent mitochondria. Still, the proteins involved in mitochondrial fusion and fission are highly expressed in these cells and could be involved in different processes important for the cardiac function. For example, they are required for mitochondrial biogenesis to synthesize new mitochondria and for the quality-control of the organelles. They are also involved in inner membrane organization and may play a role in apoptosis. More generally, change in mitochondrial morphology can have consequences in the functioning of the respiratory chain, in the regulation of the mitochondrial permeability transition pore (MPTP), and in the interactions with other organelles. Furthermore, the proteins involved in fusion and fission of mitochondria are altered in cardiac pathologies such as ischemia/reperfusion or heart failure (HF), and appear to be valuable targets for pharmacological therapies. Thus, mitochondrial dynamics deserves particular attention in cardiac research. The present review draws up a report of our knowledge on these phenomena.
Collapse
Affiliation(s)
- Jerome Piquereau
- Department of Signaling and Cardiac Pathophysiology, U-769, INSERM Châtenay-Malabry, France ; IFR141, Université Paris-Sud Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Wang Z, Liu Y, Liu J, Niu Q, Wen J, Wen S, Wu Z. A novel 5'-uncoding region -1248 A>G variation of mitofusin-2 gene is associated with hypertension in Chinese. Yonsei Med J 2013; 54:603-8. [PMID: 23549803 PMCID: PMC3635618 DOI: 10.3349/ymj.2013.54.3.603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Mitofusin2 gene (Mfn2, also named Hyperplasia suppressive gene, HSG) is very important in the origin and development of hypertension. However, the mechanism of Mfn2/HSG expression regulation was not uncovered. This study was designed to explore the association of a novel 5'-uncoding region (UCR) -1248 A>G variation of HSG/Mfn2 gene and hypertension. MATERIALS AND METHODS 472 healthy, normotensive subjects [normotension (NT) group], 454 prehypertensive subjects [prehypertension (PH) group] and 978 hypertensive patients [essential hypertension (EH) group] were screened for an association study between 5'-UCR -1248 A>G of Mfn2/HSG and hypertension by polymerase chain reaction and DNA sequencing after venous blood was drawn and DNA was extracted. RESULTS When comparing the A and G frequency in EH, PH and NT groups, in total, NT group significantly had higher A frequency than in PH group [odds ratio (OR)=1.605, confidence interval (CI) 95%=1.063-2.242, p=0.025] and EH group (OR=5.395, CI 95%=3.783-7.695, p<0.01). When subgrouped by gender, A frequency in NT group was still significantly higher than in EH group (male: OR= 4.264, CI 95%=2.780-6.543, p<0.01; female: OR=8.897, CI 95%=4.686-16.891, p<0.01), but not from PH group, either in male group or in female group. Ordinal Logistic Regression analysis showed that A>G variation was significantly related with blood pressure level (B=-1.271, Wald=40.914, CI 95%=-1.660 - -0.881, p<0.01). CONCLUSION 5'-UCR -1248 A>G variation of Mfn2/HSG gene was a novel variation and may be associated with hypertension in Chinese.
Collapse
Affiliation(s)
- Zuoguang Wang
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ya Liu
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jieling Liu
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiuli Niu
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Wen
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shaojun Wen
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhaosu Wu
- Department of Epidemiology, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
130
|
He C, Chen Y, Liu C, Cao M, Fan YJ, Guo XM. Mitofusin2 decreases intracellular cholesterol of oxidized LDL-induced foam cells from rat vascular smooth muscle cells. ACTA ACUST UNITED AC 2013; 33:212-218. [DOI: 10.1007/s11596-013-1099-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Indexed: 01/01/2023]
|
131
|
SHENG LIN, JIAO BO, SHAO LIJUAN, BI SHAOJIE, CHENG CHAO, ZHANG JINGBO, JIANG YIHAO. Probucol inhibits hydrogen peroxide to induce apoptosis of vascular smooth muscle cells. Mol Med Rep 2013; 7:1185-90. [DOI: 10.3892/mmr.2013.1299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/31/2012] [Indexed: 11/06/2022] Open
|
132
|
Abstract
Parkinson's disease is a debilitating disorder characterized by a progressive loss of dopaminergic neurons caused by programmed cell death. The aim of this review is to provide an up-to-date summary of the major programmed cell death pathways as they relate to PD. For a long time, programmed cell death has been synonymous with apoptosis but there now is evidence that other types of programmed cell death exist, such as autophagic cell death or programmed necrosis, and that these types of cell death are relevant to PD. The pathways and signals covered here include namely the death receptors, BCL-2 family, caspases, calpains, cdk5, p53, PARP-1, autophagy, mitophagy, mitochondrial fragmentation, and parthanatos. The review will present evidence from postmortem PD studies, toxin-induced models (especially MPTP/MPP+, 6-hydroxydopamine and rotenone), and from α-synuclein, LRRK2, Parkin, DJ-1, and PINK1 genetic models of PD, both in vitro and in vivo.
Collapse
Affiliation(s)
- Katerina Venderova
- University of the Pacific, Thomas J. Long School of Pharmacy, Department of Physiology and Pharmacology, Stockton, CA 95211, USA.
| | | |
Collapse
|
133
|
Wolin MS. Novel role for the regulation of mitochondrial fission by hypoxia inducible factor-1α in the control of smooth muscle remodeling and progression of pulmonary hypertension. Circ Res 2012; 110:1395-7. [PMID: 22628570 DOI: 10.1161/circresaha.112.270801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
134
|
Zhao T, Huang X, Han L, Wang X, Cheng H, Zhao Y, Chen Q, Chen J, Cheng H, Xiao R, Zheng M. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 2012; 287:23615-25. [PMID: 22619176 DOI: 10.1074/jbc.m112.379164] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the heart, autophagy has been implicated in cardioprotection and ischemia-reperfusion tolerance, and the dysregulation of autophagy is associated with the development of heart failure. Mitochondrial dynamic proteins are profoundly involved in autophagic processes, especially the initiation and formation of autophagosomes, but it is not clear whether they play any role in cardiac autophagy. We previously reported that mitofusin 2 (MFN2), a mitochondrial outer membrane protein, serves as a major determinant of cardiomyocyte apoptosis mediated by oxidative stress. Here, we reveal a novel and essential role of MFN2 in mediating cardiac autophagy. We found that specific deletion of MFN2 in cardiomyocytes caused extensive accumulation of autophagosomes. In particular, the fusion of autophagosomes with lysosomes, a critical step in autophagic degradation, was markedly retarded without altering the formation of autophagosomes and lysosomes in response to ischemia-reperfusion stress. Importantly, MFN2 co-immunoprecipitated with RAB7 in the heart, and starvation further increased it. Knockdown of MFN2 by shRNA prevented, whereas re-expression of MFN2 restored, the autophagosome-lysosome fusion in neonatal cardiomyocytes. Hearts from cardiac-specific MFN2 knock-out mice had abnormal mitochondrial and cellular metabolism and were vulnerable to ischemia-reperfusion challenge. Our study defined a novel and essential role of MFN2 in the cardiac autophagic process by mediating the maturation of autophagy at the phase of autophagosome-lysosome fusion; deficiency of MFN2 caused multiple molecular and functional defects that undermined cardiac reserve and gradually led to cardiac vulnerability and dysfunction.
Collapse
Affiliation(s)
- Ting Zhao
- Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Wang W, Zhou D, Wei J, Wu Z, Cheng X, Sun Q, Xie H, Zhou L, Zheng S. Hepatitis B virus X protein inhibits p53-mediated upregulation of mitofusin-2 in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 421:355-60. [DOI: 10.1016/j.bbrc.2012.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023]
|
136
|
Zhao GJ, Yao YM, Lu ZQ, Hong GL, Zhu XM, Wu Y, Wang DW, Dong N, Yu Y, Sheng ZY. Up-regulation of mitofusin-2 protects CD4+ T cells from HMGB1-mediated immune dysfunction partly through Ca(2+)-NFAT signaling pathway. Cytokine 2012; 59:79-85. [PMID: 22549180 DOI: 10.1016/j.cyto.2012.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/21/2011] [Accepted: 03/29/2012] [Indexed: 11/29/2022]
Abstract
High mobility group box 1 protein (HMGB1) was recently discovered to be a critical late-acting cytokine and innate immune-modulating factor in sepsis, but the potential role and mechanism of HMGB1 in adaptive immunity remains elusive. The present study demonstrated that HMGB1 had a dual influence on immune function of CD4(+) T lymphocytes. Low dose of HMGB1 had no effect on the proliferation activity of CD4(+) T lymphocytes, but the Th1 cytokines production was increased. In contrast, treatment with high amount of HMGB1 suppressed the proliferative response and induced Th2 polarization of CD4(+) T lymphocytes. We found that the expression of mitofusin-2 (Mfn2; also named hyperplasia suppressor gene), a member of the mitofusin family, was decreased in CD4(+) T lymphocytes when stimulated with high dose of HMGB1. Up-regulation of Mfn2 attenuated the suppressive effect of HMGB1 on CD4(+) T lymphocytes, which was associated with profound elevation of intracellular calcium concentration ([Ca(2+)](i)) and nuclear factor of activated T cells (NFAT) activity. These results indicate that HMGB1 have a direct role on adaptive immunity, and the decrease of Mfn2 expression may be a major cause of HMGB1-mediated immune dysfunction and Ca(2+)-NFAT signaling defect of CD4(+) T lymphocytes.
Collapse
Affiliation(s)
- Guang-ju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial Ca(2+) and apoptosis. Cell Calcium 2012; 52:36-43. [PMID: 22480931 PMCID: PMC3396846 DOI: 10.1016/j.ceca.2012.02.008] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/13/2023]
Abstract
Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca(2+)) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca(2+) homeostasis and in turn modulate the effectiveness of Ca(2+)-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca(2+) overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Type 2 diabetic patients and their offspring show altered parameters of iron status, oxidative stress and genes related to mitochondrial activity. Biometals 2012; 25:725-35. [DOI: 10.1007/s10534-012-9540-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
139
|
Gomes LC, Scorrano L. Mitochondrial morphology in mitophagy and macroautophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:205-12. [PMID: 22406072 DOI: 10.1016/j.bbamcr.2012.02.012] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 12/17/2022]
Abstract
Mitochondria are critical organelles in energy conversion, metabolism and amplification of signalling. They are however also major sources of reactive oxygen species and when dysfunctional they consume cytosolic ATP. Maintenance of a cohort of healthy mitochondria is therefore crucial for the overall cell fitness. Superfluous or damaged organelles are mainly degraded by mitophagy, a selective process of autophagy. In response to the triggers of mitophagy, mitochondria fragment: this morphological change accompanies the exposure of "eat-me" signals, resulting in the engulfment of the organelle by the autophagosomes. Conversely, during macroautophagy mitochondria fuse to be spared from degradation and to sustain ATP production in times of limited nutrient availability. Thus, mitochondrial shape defines different types of autophagy, highlighting the interplay between morphology of the organelle and complex cellular responses. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Ligia C Gomes
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | | |
Collapse
|
140
|
Valsartan inhibits angiotensin II-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin 2. ACTA ACUST UNITED AC 2012; 32:31-35. [DOI: 10.1007/s11596-012-0005-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Indexed: 01/07/2023]
|
141
|
Bononi A, Missiroli S, Poletti F, Suski JM, Agnoletto C, Bonora M, De Marchi E, Giorgi C, Marchi S, Patergnani S, Rimessi A, Wieckowski MR, Pinton P. Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:411-37. [DOI: 10.1007/978-94-007-2888-2_17] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
Fan R. Changes of protein expression profile in vascular tissues of spontaneously hypertensive rats treated by a compound Chinese herbal medicine. ACTA ACUST UNITED AC 2011; 9:643-50. [DOI: 10.3736/jcim20110611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
143
|
Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 2011; 286:16606-14. [PMID: 21454583 DOI: 10.1074/jbc.m111.227611] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-205 is significantly suppressed in melanoma specimens when compared with nevi and is correlated inversely with melanoma progression. miRNA target databases predicted E2F1 and E2F5 as putative targets. The expression levels of E2F1 and E2F5 were correlated inversely with that of miR-205 in melanoma cell lines. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR sequences complementary to either E2F1 or E2F5. Overexpression of miR-205 in melanoma cells reduced E2F1 and E2F5 protein levels. The proliferative capacity of melanoma cells was suppressed by miR-205 and mediated by E2F-regulated AKT phosphorylation. miR-205 overexpression resulted in induction of apoptosis, as evidenced by increased cleaved caspase-3, poly-(ADP-ribose) polymerase, and cytochrome c release. Stable overexpression of miR-205 suppressed melanoma cell proliferation, colony formation, and tumor cell growth in vivo and induced a senescence phenotype accompanied by elevated expression of p16INK4A and other markers for senescence. E2F1 overexpression in miR-205-expressing cells partially reversed the effects on melanoma cell growth and senescence. These results demonstrate a novel role for miR-205 as a tumor suppressor in melanoma.
Collapse
Affiliation(s)
- Altaf A Dar
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | | | | | |
Collapse
|
144
|
Decuypere JP, Monaco G, Missiaen L, De Smedt H, Parys JB, Bultynck G. IP(3) Receptors, Mitochondria, and Ca Signaling: Implications for Aging. J Aging Res 2011; 2011:920178. [PMID: 21423550 PMCID: PMC3056293 DOI: 10.4061/2011/920178] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
The tight interplay between endoplasmic-reticulum-(ER-) and mitochondria-mediated Ca(2+) signaling is a key determinant of cellular health and cellular fate through the control of apoptosis and autophagy. Proteins that prevent or promote apoptosis and autophagy can affect intracellular Ca(2+) dynamics and homeostasis through binding and modulation of the intracellular Ca(2+)-release and Ca(2+)-uptake mechanisms. During aging, oxidative stress becomes an additional factor that affects ER and mitochondrial function and thus their role in Ca(2+) signaling. Importantly, mitochondrial dysfunction and sustained mitochondrial damage are likely to underlie part of the aging process. In this paper, we will discuss the different mechanisms that control intracellular Ca(2+) signaling with respect to apoptosis and autophagy and review how these processes are affected during aging through accumulation of reactive oxygen species.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Biology, K.U.Leuven, Campus Gasthuisberg O/N-1, Herestraat 49, Bus 802, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
145
|
Pro-apoptotic and anti-proliferative effects of mitofusin-2 via Bax signaling in hepatocellular carcinoma cells. Med Oncol 2010; 29:70-6. [PMID: 21190094 DOI: 10.1007/s12032-010-9779-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/08/2010] [Indexed: 01/12/2023]
Abstract
Mitochondrial GTPase mitofusin-2 (Mfn2) is a novel gene that remarkably suppresses the injury-mediated proliferation of vascular smooth muscle cells (VSMCs) and has a potential apoptotic effect via the mitochondrial apoptotic pathway. Hepatocellular carcinoma (HCC) tissues and matched normal tissues were examined for mfn2 expression. HCC cells were infected with adenovirus carrying Mfn2 (Ad-mfn2) or green fluorescent protein (Ad-GFP), used as a control. Short hairpin RNA (shRNA) was formed by shR-mfn2 and shR-Bax to repress mfn2 and Bax transcription, respectively. The effects of mfn2 on cell cycle distribution and apoptosis were measured by flow cytometric analysis. Significant downregulation of mfn2 was observed in HCC tissues compared with nearby normal tissues. Overexpression of mfn2 inhibited HCC cell proliferation and induced apoptosis by increasing the level of active caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage. Overexpression of mfn2 also induced cytochrome c release to the cytoplasm by enhancing Bax translocation from the cytoplasm to the mitochondrial membrane. Upregulation of mfn2 promoted apoptosis of HCC cells, and this was dramatically suppressed by shR-Bax. Our results show that the mfn2 gene is a potential tumor suppressor target that may significantly promote apoptosis via Bax and may inhibit proliferation in HCC cells. This gene may be an important therapeutic target for the treatment of tumors or hyperproliferative diseases.
Collapse
|
146
|
Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB. The IP(3) receptor-mitochondria connection in apoptosis and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1003-13. [PMID: 21146562 DOI: 10.1016/j.bbamcr.2010.11.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 01/08/2023]
Abstract
The amount of Ca(2+) taken up in the mitochondrial matrix is a crucial determinant of cell fate; it plays a decisive role in the choice of the cell between life and death. The Ca(2+) ions mainly originate from the inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores of the endoplasmic reticulum (ER). The uptake of these Ca(2+) ions in the mitochondria depends on the functional properties and the subcellular localization of the IP(3) receptor (IP(3)R) in discrete domains near the mitochondria. To allow for an efficient transfer of the Ca(2+) ions from the ER to the mitochondria, structural interactions between IP(3)Rs and mitochondria are needed. This review will focus on the key proteins involved in these interactions, how they are regulated, and what are their physiological roles in apoptosis, necrosis and autophagy. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signalling, Dept. Molecular and Cellular, campus Gasthuisberg O/N1 K.U.Leuven, Bus 802, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
147
|
Yu H, Guo Y, Mi L, Wang X, Li L, Gao W. Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. J Cardiovasc Pharmacol Ther 2010; 16:205-11. [PMID: 21106870 DOI: 10.1177/1074248410385683] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Myocardial hypertrophy is a common clinical finding leading to heart failure and sudden death. Mitofusin 2 (Mfn2), a hyperplasia suppressor protein, is downregulated in hypertrophic heart. This study examined the role of Mfn2 in myocardial hypertrophy and its potential signal pathway. METHODS AND RESULTS In in vitro studies, neonatal cardiac myocytes were isolated and cultured. Incubation of cultured cardiomycytes with angiotensin II (Ang II) inhibited gene expression of Mfn2; induced cell hypertrophy and protein synthesis; and activated protein kinase Akt. Pretreatment of cells with AdMfn2-a replication-deficient adenoviral vector encoding rat Mfn2 gene-upregulated Mfn2 expression and subsequently attenuated Ang II-induced cell hypertrophy; protein synthesis; and Akt activation. In in vivo studies, direct gene delivery of AdMfn2 into myocardium decreased the infusion of Ang II-induced atrial natriuretic factor (ANF, a hypertrophic marker) expression and cardiomyocyte cross-sectional area. Consistently, upregulation of Mfn2 in myocardium decreased the thicknesses of anterior and posterior walls of left ventricle (LV) and the ratio of LV mass/body weight in Ang II-treated rats. Of note, AdGFP (control for AdMfn2) did not affect the effects of Ang II in vitro or in vivo. CONCLUSIONS Upregulation of Mfn2 inhibits Ang II-induced myocardial hypertrophy. In this process, inhibition of Akt activation seems to play a significant role. These findings indicate Mfn2 is a critical protein in modulating myocyte hypertrophy.
Collapse
Affiliation(s)
- Haiyi Yu
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
148
|
Wang Z, Liu Y, Liu J, Liu K, Wen J, Wen S, Wu Z. HSG/Mfn2 gene polymorphism and essential hypertension: a case-control association study in Chinese. J Atheroscler Thromb 2010; 18:24-31. [PMID: 20940517 DOI: 10.5551/jat.5611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Hyperplasia suppressor gene/mitofusion-2 (HSG/Mfn2) is a hyperplasia suppressor gene and an essential component of mitochondrial fusion machinery; however, the association between the single nucleotide polymorphism (SNP) of HSG/Mfn2 and hypertension is unclear. METHODS In this study, 542 normotensive subjects (NT group) and 539 hypertensive patients (EH group) were screened for an association study between HSG/Mfn2 and hypertension. RESULTS The results showed that the genotype distribution and allelic frequency of rs873457, rs2336384, rs1474868, rs4846085 and rs2236055 were significantly different (p lt; 0.05 for all) between EH and NT groups, although those of rs4240897 and rs873458 were not. When comparing the dominant model, significant differences still existed (p lt; 0.05 for all). The allelic frequency of rs4240897 was also slightly different between EH and NT groups (P = 0.047). When subgrouped by sex, the genotype distribution and allelic frequency of all the SNPs (except rs873458) were significantly different in male (p lt; 0.05 for all) but not in female groups. For all the SNPs, only the allelic frequency of rs4240897 was obviously different in female NT and EH groups (p lt; 0.01). Logistic regression showed that body mass index and rs873457 were closely associated with BP after adjusting for age. The frequency of the C-G-A-A-A-C-C haplotype was significantly higher in essential hypertensive patients versus control individuals, both in the entire population, in male or female groups (p lt; 0.01 for all). As for other haplotypes, most were only significantly different in the entire population and male subjects. CONCLUSION The genetic variations of HSG/Mfn2 may be associated with hypertension in male Chinese.
Collapse
Affiliation(s)
- Zuoguang Wang
- Department of Hypertension, Beijing Anzhen Hospital, Attached to Capital University of Medical Sciences, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Chaoyang District, Beijing, PR China.
| | | | | | | | | | | | | |
Collapse
|
149
|
Krüppel-like factor 4 interacts with p300 to activate mitofusin 2 gene expression induced by all-trans retinoic acid in VSMCs. Acta Pharmacol Sin 2010; 31:1293-302. [PMID: 20711222 DOI: 10.1038/aps.2010.96] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM To elucidate how krüppel-like factor 4 (KLF4) activates mitofusin 2 (mfn-2) expression in all-trans retinoic acid (ATRA)-induced vascular smooth muscle cell (VSMC) differentiation. METHODS The mfn-2 promoter-reporter constructs and the KLF4 acetylation-deficient or phosphorylation-deficient mutants were constructed. Adenoviral vector of KLF4-mediated overexpression and Western blot analysis were used to determine the effect of KLF4 on mfn-2 expression. The luciferase assay and chromatin immunoprecipitation were used to detect the transactivation of KLF4 on mfn-2 gene expression. Co-immunoprecipitation and GST pull-down assays were used to determine the modification of KLF4 and interaction of KLF4 with p300 in VSMCs. RESULTS KLF4 mediated ATRA-induced mfn-2 expression in VSMCs. KLF4 bound directly to the mfn-2 promoter and activated its transcription. ATRA increased the interaction of KLF4 with p300 by inducing KLF4 phosphorylation via activation of JNK and p38 MAPK signaling. KLF4 acetylation by p300 increased its activity to transactivate the mfn-2 promoter. CONCLUSION ATRA induces KLF4 acetylation by p300 and increases the ability of KLF4 to transactivate the mfn-2 promoter in VSMCs.
Collapse
|
150
|
Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res 2010; 88:16-29. [PMID: 20631158 PMCID: PMC2936127 DOI: 10.1093/cvr/cvq237] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 01/14/2023] Open
Abstract
Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy, although the majority of studies have been largely confined to non-cardiac cells. Despite the unique arrangement of mitochondria in the adult heart, emerging data suggest that changes in mitochondrial morphology may be relevant to various aspects of cardiovascular biology-these include cardiac development, the response to ischaemia-reperfusion injury, heart failure, diabetes mellitus, and apoptosis. Interestingly, the machinery required for altering mitochondrial shape in terms of the mitochondrial fusion and fission proteins are all present in the adult heart, but their physiological function remains unclear. In this article, we review the current developments in this exciting new field of mitochondrial biology, the implications for cardiovascular physiology, and the potential for discovering novel therapeutic strategies for treating cardiovascular disease.
Collapse
Affiliation(s)
| | - Derek J. Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|