101
|
Vigliocco G, Krason A, Stoll H, Monti A, Buxbaum LJ. Multimodal comprehension in left hemisphere stroke patients. Cortex 2020; 133:309-327. [PMID: 33161278 PMCID: PMC8105917 DOI: 10.1016/j.cortex.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Hand gestures, imagistically related to the content of speech, are ubiquitous in face-to-face communication. Here we investigated people with aphasia's (PWA) processing of speech accompanied by gestures using lesion-symptom mapping. Twenty-nine PWA and 15 matched controls were shown a picture of an object/action and then a video-clip of a speaker producing speech and/or gestures in one of the following combinations: speech-only, gesture-only, congruent speech-gesture, and incongruent speech-gesture. Participants' task was to indicate, in different blocks, whether the picture and the word matched (speech task), or whether the picture and the gesture matched (gesture task). Multivariate lesion analysis with Support Vector Regression Lesion-Symptom Mapping (SVR-LSM) showed that benefit for congruent speech-gesture was associated with 1) lesioned voxels in anterior fronto-temporal regions including inferior frontal gyrus (IFG), and sparing of posterior temporal cortex and lateral temporal-occipital regions (pTC/LTO) for the speech task, and 2) conversely, lesions to pTC/LTO and sparing of anterior regions for the gesture task. The two tasks did not share overlapping voxels. Costs from incongruent speech-gesture pairings were associated with lesioned voxels in these same anterior (for the speech task) and posterior (for the gesture task) regions, but crucially, also shared voxels in superior temporal gyrus (STG) and middle temporal gyrus (MTG), including the anterior temporal lobe. These results suggest that IFG and pTC/LTO contribute to extracting semantic information from speech and gesture, respectively; however, they are not causally involved in integrating information from the two modalities. In contrast, regions in anterior STG/MTG are associated with performance in both tasks and may thus be critical to speech-gesture integration. These conclusions are further supported by associations between performance in the experimental tasks and performance in tests assessing lexical-semantic processing and gesture recognition.
Collapse
Affiliation(s)
- Gabriella Vigliocco
- Experimental Psychology, University College London, UK; Cognition and Action Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| | - Anna Krason
- Experimental Psychology, University College London, UK
| | - Harrison Stoll
- Cognition and Action Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | | - Laurel J Buxbaum
- Cognition and Action Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| |
Collapse
|
102
|
Sugimoto H, Kawagoe T, Otake-Matsuura M. Characteristics of resting-state functional connectivity in older adults after the PICMOR intervention program: a preliminary report. BMC Geriatr 2020; 20:486. [PMID: 33218309 PMCID: PMC7678164 DOI: 10.1186/s12877-020-01892-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study aimed to provide a basis for future research examining the neural mechanisms that underlie the beneficial effect of an intervention program, Photo-Integrated Conversation Moderated by Robots (PICMOR), on verbal fluency in older adults as identified in our previous randomized controlled trial. In this preliminary report, we conducted an additional experiment using resting-state functional magnetic resonance imaging (rsfMRI) after the intervention period. Specifically, we investigated the resting-state functional connectivity (rsFC) characteristics of the intervention group (INT) compared to the control group (CONT). METHODS rsfMRI data were acquired from 31 and 30 participants in INT and CONT, respectively, after the intervention. In the analyses, two of the most important regions in verbal fluency, the left inferior and middle frontal gyri, were selected as seed regions, and the rsFCs were compared between groups. We also conducted regression analyses for rsFCs using the difference in individual phonemic verbal fluency task (PVFT) scores between the pre- and post-intervention periods (i.e., post- minus pre-intervention) as an independent variable. RESULTS We found higher rsFC in INT than in CONT between the left inferior frontal gyrus as a seed region and the temporal pole and middle frontal gyrus. The rsFC strength between the left inferior frontal gyrus and temporal pole positively correlated with an increased PVFT score between the pre- and post-intervention periods. In contrast, we found lower rsFC in INT than in CONT between the left middle frontal gyrus as a seed region and the posterior cingulate cortex, precuneus, and postcentral gyrus. CONCLUSIONS Our findings suggest that the beneficial intervention effect of PICMOR on verbal fluency is characterized by enhanced rsFC of the left inferior frontal gyrus with semantic and executive control-related regions and suppressed rsFC between the left middle frontal gyrus and posterior cortical midline structures. No definitive conclusions can be made because of a lack of rsfMRI data before the intervention. However, this pilot study provides the candidates for rsFCs, reflecting the beneficial effects of PICMOR on the brain network involved in verbal fluency. TRIAL REGISTRATION The trial was retrospectively registered at the UMIN Clinical Trials Registry ( UMIN000036667 ) (May 7th, 2019).
Collapse
Affiliation(s)
- Hikaru Sugimoto
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
| | - Toshikazu Kawagoe
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
- Department of Psychology, College of Contemporary Psychology, Rikkyo University, 1-2-26, Kitano, Niiza City, Saitama, 352-8558, Japan
| | - Mihoko Otake-Matsuura
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| |
Collapse
|
103
|
Popal H, Quimby M, Hochberg D, Dickerson BC, Collins JA. Altered functional connectivity of cortical networks in semantic variant Primary Progressive Aphasia. Neuroimage Clin 2020; 28:102494. [PMID: 33395985 PMCID: PMC7708956 DOI: 10.1016/j.nicl.2020.102494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
As their illness progresses, patients with the semantic variant of Primary Progressive Aphasia (svPPA) frequently exhibit peculiar behaviors indicative of altered visual attention or an increased interest in artistic endeavors. In the present study, we examined changes within and between large-scale functional brain networks that may explain this altered visual behavior. We first examined the connectivity of the visual association network, the dorsal attention network, and the default mode network in healthy young adults (n = 89) to understand the typical architecture of these networks in the healthy brain. We then compared the large-scale functional connectivity of these networks in a group of svPPA patients (n = 12) to a group of age-matched cognitively normal controls (n = 30). Our results showed that the between-network connectivity of the dorsal attention and visual association networks was elevated in svPPA patients relative to controls. We further showed that this heightened between-network connectivity was associated with a decrease in the within-network connectivity of the default mode network, possibly due to progressive degeneration of the anterior temporal lobes in svPPA. These results suggest that focal neurodegeneration can lead to the reorganization of large-scale cognitive networks beyond the primarily affected network(s), possibly contributing to cognitive or behavioral changes that are commonly present as part of the clinical phenotype of svPPA.
Collapse
Affiliation(s)
- Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jessica A Collins
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
104
|
Intrinsic connectivity of anterior temporal lobe relates to individual differences in semantic retrieval for landmarks. Cortex 2020; 134:76-91. [PMID: 33259970 DOI: 10.1016/j.cortex.2020.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
Contemporary neuroscientific accounts suggest that ventral anterior temporal lobe (ATL) acts as a bilateral heteromodal semantic hub, which is particularly critical for the specific-level knowledge needed to recognise unique entities, such as familiar landmarks and faces. There may also be graded functional differences between left and right ATL, relating to effects of modality (linguistic versus non-linguistic) and category (e.g., knowledge of people and places). Individual differences in intrinsic connectivity from left and right ATL might be associated with variation in semantic categorisation performance across these categories and modalities. We recorded resting-state fMRI in 74 individuals and, in a separate session, examined semantic categorisation. People with greater connectivity between left and right ATL were more efficient at categorising landmarks (e.g., Eiffel Tower), especially when these were presented visually. In addition, participants who showed stronger connectivity from right than left ATL to medial occipital cortex showed more efficient semantic categorisation of landmarks regardless of modality of presentation. These results can be interpreted in terms of graded differences in the patterns of connectivity across left and right ATL, which give rise to a bilateral yet partially segregated semantic 'hub'. More specifically, right ATL connectivity supports the efficient semantic categorisation of landmarks.
Collapse
|
105
|
Distinct fronto-temporal substrates of distributional and taxonomic similarity among words: evidence from RSA of BOLD signals. Neuroimage 2020; 224:117408. [PMID: 33049407 DOI: 10.1016/j.neuroimage.2020.117408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/02/2023] Open
Abstract
A class of semantic theories defines concepts in terms of statistical distributions of lexical items, basing meaning on vectors of word co-occurrence frequencies. A different approach emphasizes abstract hierarchical taxonomic relationships among concepts. However, the functional relevance of these different accounts and how they capture information-encoding of lexical meaning in the brain still remains elusive. We investigated to what extent distributional and taxonomic models explained word-elicited neural responses using cross-validated representational similarity analysis (RSA) of functional magnetic resonance imaging (fMRI) and model comparisons. Our findings show that the brain encodes both types of semantic information, but in distinct cortical regions. Posterior middle temporal regions reflected lexical-semantic similarity based on hierarchical taxonomies, in coherence with the action-relatedness of specific semantic word categories. In contrast, distributional semantics best predicted the representational patterns in left inferior frontal gyrus (LIFG, BA 47). Both representations coexisted in the angular gyrus supporting semantic binding and integration. These results reveal that neuronal networks with distinct cortical distributions across higher-order association cortex encode different representational properties of word meanings. Taxonomy may shape long-term lexical-semantic representations in memory consistently with the sensorimotor details of semantic categories, whilst distributional knowledge in the LIFG (BA 47) may enable semantic combinatorics in the context of language use. Our approach helps to elucidate the nature of semantic representations essential for understanding human language.
Collapse
|
106
|
Lewis GA, Poeppel D, Murphy GL. Contrasting Semantic versus Inhibitory Processing in the Angular Gyrus: An fMRI Study. Cereb Cortex 2020; 29:2470-2481. [PMID: 29878066 DOI: 10.1093/cercor/bhy118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Recent studies of semantic memory have focused on dissociating the neural bases of two foundational components of human thought: taxonomic categories, which group similar objects like dogs and seals based on features, and thematic categories, which group dissimilar objects like dogs and leashes based on events. While there is emerging consensus that taxonomic concepts are represented in the anterior temporal lobe, there is disagreement over whether thematic concepts are represented in the angular gyrus (AG). We previously found AG sensitivity to both kinds of concepts; however, some accounts suggest that such activity reflects inhibition of irrelevant information rather than thematic activation. To test these possibilities, an fMRI experiment investigated both types of conceptual relations in the AG during two semantic judgment tasks. Each task trained participants to give negative responses (inhibition) or positive responses (activation) to word pairs based on taxonomic and thematic criteria of relatedness. Results showed AG engagement during both negative judgments and thematic judgments, but not during positive judgments about taxonomic pairs. Together, the results suggest that activity in the AG reflects functions that include both thematic (but not taxonomic) processing and inhibiting irrelevant semantic information.
Collapse
Affiliation(s)
- Gwyneth A Lewis
- Department of Psychology, New York University, 6 Washington Place, New York, NY, USA
| | - David Poeppel
- Department of Psychology, New York University, 6 Washington Place, New York, NY, USA.,Department of Neuroscience, Max-Planck-Institute (MPIEA), Grüneburgweg, Frankfurt, Germany
| | - Gregory L Murphy
- Department of Psychology, New York University, 6 Washington Place, New York, NY, USA
| |
Collapse
|
107
|
Arioli M, Gianelli C, Canessa N. Neural representation of social concepts: a coordinate-based meta-analysis of fMRI studies. Brain Imaging Behav 2020; 15:1912-1921. [DOI: 10.1007/s11682-020-00384-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
108
|
Chiou R, Humphreys GF, Lambon Ralph MA. Bipartite Functional Fractionation within the Default Network Supports Disparate Forms of Internally Oriented Cognition. Cereb Cortex 2020; 30:5484-5501. [PMID: 32494802 PMCID: PMC7472201 DOI: 10.1093/cercor/bhaa130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 01/01/2023] Open
Abstract
Our understanding about the functionality of the brain's default network (DN) has significantly evolved over the past decade. Whereas traditional views define this network based on its suspension/disengagement during task-oriented behavior, contemporary accounts have characterized various situations wherein the DN actively contributes to task performance. However, it is unclear how different task-contexts drive componential regions of the DN to coalesce into a unitary network and fractionate into different subnetworks. Here we report a compendium of evidence that provides answers to these questions. Across multiple analyses, we found a striking dyadic structure within the DN in terms of the profiles of task-triggered fMRI response and effective connectivity, significantly extending beyond previous inferences based on meta-analysis and resting-state activities. In this dichotomy, one subset of DN regions prefers mental activities "interfacing with" perceptible events, while the other subset prefers activities "detached from" perceptible events. While both show a common "aversion" to sensory-motoric activities, their differential preferences manifest a subdivision that sheds light upon the taxonomy of the brain's memory systems. This dichotomy is consistent with proposals of a macroscale gradational structure spanning across the cerebrum. This gradient increases its representational complexity, from primitive sensory-motoric processing, through lexical-semantic representations, to elaborated self-generated thoughts.
Collapse
Affiliation(s)
- Rocco Chiou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge UK
| | - Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge UK
| | | |
Collapse
|
109
|
Liu H, Chen SHA. The Neural Correlates of Spoken Sentence Comprehension in the Chinese Language: An fMRI Study. Psychol Res Behav Manag 2020; 13:641-652. [PMID: 32982499 PMCID: PMC7500081 DOI: 10.2147/prbm.s251935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Everyday social communication emphasizes speech comprehension. To date, most neurobiological models regarding auditory semantic processing are based on alphabetic languages, where the character-based languages such as Chinese are largely underrepresented. Thus, the current study attempted to investigate the neural network of speech comprehension specifically for the Chinese language. METHODS Twenty-two native Mandarin Chinese speakers were imaged while performing a passive listening task of forward and backward sentences. Sentences were used as task stimuli, as sentences compared with words were more frequently utilized in daily speech comprehension. RESULTS Our results suggested that spoken Chinese sentence comprehension may involve a neural network comprising the left middle temporal gyrus, the left anterior temporal lobe, and the bilateral posterior superior temporal lobes. The occipitotemporal visual cortex was not found to be significantly involved with the sentence-level network of spoken Chinese comprehension, as bottom-up visualization process from homophones to visual forms may be less needed due to the availability of top-down contextual controls in sentence processing. In addition, no significant functional connectivity was observed, likely obscured by the low cognitive demand of the task conditions. Limitations and future directions were discussed. CONCLUSION The current Chinese network seems to largely resemble the auditory semantic network for alphabetic languages but with features specific to Chinese. While the left inferior parietal lobule in the dorsal stream may have little involvement in the listening comprehension of Chinese sentences, the ventral neural stream via the temporal cortex appears to be more emphasized. The current findings deepen our understanding of how the semantic nature of spoken Chinese sentences influences the neural mechanism engaged.
Collapse
Affiliation(s)
- Hengshuang Liu
- Bilingual Cognition and Development Lab, National Key Research Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou, People’s Republic of China
- Psychology, School of Social Sciences (SSS), Nanyang Technological University, Singapore
| | - S H Annabel Chen
- Psychology, School of Social Sciences (SSS), Nanyang Technological University, Singapore
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore
- National Institute of Education, Nanyang Technological University, Singapore
| |
Collapse
|
110
|
Borghesani V, Battistella G, Mandelli ML, Welch A, Weis E, Younes K, Neuhaus J, Grinberg LT, Seeley WM, Spina S, Miller B, Miller Z, Gorno-Tempini ML. Regional and hemispheric susceptibility of the temporal lobe to FTLD-TDP type C pathology. Neuroimage Clin 2020; 28:102369. [PMID: 32798912 PMCID: PMC7426562 DOI: 10.1016/j.nicl.2020.102369] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Post-mortem studies show that focal anterior temporal lobe (ATL) neurodegeneration is most often caused by frontotemporal lobar degeneration TDP-43 type C pathology. Clinically, these patients are described with different terms, such as semantic variant primary progressive aphasia (svPPA), semantic dementia (SD), or right temporal variant frontotemporal dementia (FTD) depending on whether the predominant symptoms affect language, semantic knowledge for object or people, or socio-emotional behaviors. ATL atrophy presents with various degrees of lateralization, with right-sided cases considered rarer even though estimation of their prevalence is hampered by the paucity of studies on well-characterized, pathology-proven cohorts. Moreover, it is not clear whether left and right variants show a similar distribution of atrophy within the ATL cross-sectionally and longitudinally. Here we study the largest cohort to-date of pathology-proven TDP-43-C cases diagnosed during life as svPPA, SD or right temporal variant FTD. We analyzed clinical, cognitive, and neuroimaging data from 30 cases, a subset of which was followed longitudinally. Guided by recent structural and functional parcellation studies, we constructed four bilateral ATL regions of interest (ROIs). The computation of an atrophy lateralization index allowed the comparison of atrophy patterns between the two hemispheres. This led to an automatic, imaging-based classification of the cases as left-predominant or right-predominant. We then compared the two groups in terms of regional atrophy patterns within the ATL ROIs (cross-sectionally) and atrophy progression (longitudinally). Results showed that 40% of pathology proven cases of TDP-43-C diagnosed with a temporal variant presented with right-lateralized atrophy. Moreover, the findings of our ATL ROI analysis indicated that, irrespective of atrophy lateralization, atrophy distribution within both ATLs follows a medial-to-lateral gradient. Finally, in both left and right cases, atrophy appeared to progress to the contralateral ATL, and from the anterior temporal pole to posterior temporal and orbitofrontal regions. Taken together, our findings indicate that incipient right predominant ATL atrophy is common in TDP-43-C pathology, and that distribution of damage within the ATLs appears to be the same in left- and right- sided variants. Thus, regardless of differences in clinical phenotype and atrophy lateralization, both temporal variants of FTD should be viewed as a spectrum presentation of the same disease.
Collapse
Affiliation(s)
- V Borghesani
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States.
| | - G Battistella
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - M L Mandelli
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - A Welch
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - E Weis
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - K Younes
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - J Neuhaus
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - L T Grinberg
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - W M Seeley
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - S Spina
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - B Miller
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - Z Miller
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States
| | - M L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University
of California San Francisco, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
111
|
Cathodal tDCS stimulation of left anterior temporal lobe eliminates cross-category color discrimination response time advantage. Behav Brain Res 2020; 391:112682. [DOI: 10.1016/j.bbr.2020.112682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/24/2022]
|
112
|
Harpaintner M, Trumpp NM, Kiefer M. Time course of brain activity during the processing of motor- and vision-related abstract concepts: flexibility and task dependency. PSYCHOLOGICAL RESEARCH 2020; 86:2560-2582. [PMID: 32661582 PMCID: PMC9674762 DOI: 10.1007/s00426-020-01374-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Grounded cognition theories assume that conceptual processing depends on modality-specific brain systems in a context-dependent fashion. Although the relation of abstract concepts to modality-specific systems is less obvious than for concrete concepts, recent behavioral and neuroimaging studies indicated a foundation of abstract concepts in vision and action. However, due to their poor temporal resolution, neuroimaging studies cannot determine whether sensorimotor activity reflects rapid access to conceptual information or later conceptual processes. The present study therefore assessed the time course of abstract concept processing using event-related potentials (ERPs) and compared ERP responses to abstract concepts with a strong relation to vision or action. We tested whether possible ERP effects to abstract word categories would emerge in early or in later time windows and whether these effects would depend on the depth of the conceptual task. In Experiment 1, a shallow lexical decision task, early feature-specific effects starting at 178 ms were revealed, but later effects beyond 300 ms were also observed. In Experiment 2, a deep conceptual decision task, feature-specific effects with an onset of 22 ms were obtained, but effects again extended beyond 300 ms. In congruency with earlier neuroimaging work, the present feature-specific ERP effects suggest a grounding of abstract concepts in modal brain systems. The presence of early and late feature-specific effects indicates that sensorimotor activity observed in neuroimaging experiments may reflect both rapid conceptual and later post-conceptual processing. Results furthermore suggest that a deep conceptual task accelerates access to conceptual sensorimotor features, thereby demonstrating conceptual flexibility.
Collapse
Affiliation(s)
- Marcel Harpaintner
- Section for Cognitive Electrophysiology, Department of Psychiatry, Ulm University, Leimgrubenweg 12, 89075, Ulm, Germany.
| | - Natalie M Trumpp
- Section for Cognitive Electrophysiology, Department of Psychiatry, Ulm University, Leimgrubenweg 12, 89075, Ulm, Germany
| | - Markus Kiefer
- Section for Cognitive Electrophysiology, Department of Psychiatry, Ulm University, Leimgrubenweg 12, 89075, Ulm, Germany
| |
Collapse
|
113
|
Popp M, Trumpp NM, Sim EJ, Kiefer M. Brain Activation During Conceptual Processing of Action and Sound Verbs. Adv Cogn Psychol 2020; 15:236-255. [PMID: 32494311 PMCID: PMC7251527 DOI: 10.5709/acp-0272-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Grounded cognition approaches to conceptual representations postulate a close link between conceptual knowledge and the sensorimotor brain systems. The present fMRI study tested, whether a feature-specific representation of concepts, as previously demonstrated for nouns, can also be found for action- and sound-related verbs. Participants were presented with action- and soundrelated verbs along with pseudoverbs while performing a lexical decision task. Sound-related verbs activated auditory areas in the temporal cortex, whereas action-related verbs activated brain regions in the superior frontal gyrus and the cerebellum, albeit only at a more liberal threshold. This differential brain activation during conceptual verb processing partially overlapped with or was adjacent to brain regions activated during the functional localizers probing sound perception or action execution. Activity in brain areas involved in the processing of action information was parametrically modulated by ratings of action relevance. Comparisons of action- and sound-related verbs with pseudoverbs revealed activation for both verb categories in auditory and motor areas. In contrast to proposals of strong grounded cognition approaches, our study did not demonstrate a considerable overlap of activations for action- and sound-related verbs and for the corresponding functional localizer tasks. However, in line with weaker variants of grounded cognition theories, the differential activation pattern for action- and sound-related verbs was near corresponding sensorimotor brain regions depending on conceptual feature relevance. Possibly, action-sound coupling resulted in a mutual activation of the motor and the auditory system for both action- and sound-related verbs, thereby reducing the effect sizes for the differential contrasts.
Collapse
Affiliation(s)
- Margot Popp
- Ulm University, Department of Psychiatry, Ulm, Germany
| | | | - Eun-Jin Sim
- Ulm University, Department of Psychiatry, Ulm, Germany
| | - Markus Kiefer
- Ulm University, Department of Psychiatry, Ulm, Germany
| |
Collapse
|
114
|
Tomasi D, Volkow ND. Network connectivity predicts language processing in healthy adults. Hum Brain Mapp 2020; 41:3696-3708. [PMID: 32449559 PMCID: PMC7416057 DOI: 10.1002/hbm.25042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/25/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
Brain imaging has been used to predict language skills during development and neuropathology but its accuracy in predicting language performance in healthy adults has been poorly investigated. To address this shortcoming, we studied the ability to predict reading accuracy and single‐word comprehension scores from rest‐ and task‐based functional magnetic resonance imaging (fMRI) datasets of 424 healthy adults. Using connectome‐based predictive modeling, we identified functional brain networks with >400 edges that predicted language scores and were reproducible in independent data sets. To simplify these complex models we identified the overlapping edges derived from the three task‐fMRI sessions (language, working memory, and motor tasks), and found 12 edges for reading recognition and 11 edges for vocabulary comprehension that accounted for 20% of the variance of these scores, both in the training sample and in the independent sample. The overlapping edges predominantly emanated from language areas within the frontoparietal and default‐mode networks, with a strong precuneus prominence. These findings identify a small subset of edges that accounted for a significant fraction of the variance in language performance that might serve as neuromarkers for neuromodulation interventions to improve language performance or for presurgical planning to minimize language impairments.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.,National Institute on Drug Abuse, Bethesda, Maryland, USA
| |
Collapse
|
115
|
Zhao Y, Halai AD, Lambon Ralph MA. Evaluating the granularity and statistical structure of lesions and behaviour in post-stroke aphasia. Brain Commun 2020; 2:fcaa062. [PMID: 32954319 PMCID: PMC7472896 DOI: 10.1093/braincomms/fcaa062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023] Open
Abstract
The pursuit of relating the location of neural damage to the pattern of acquired language and general cognitive deficits post-stroke stems back to the 19th century behavioural neurology. While spatial specificity has improved dramatically over time, from the large areas of damage specified by post-mortem investigation to the millimetre precision of modern MRI, there is an underlying issue that is rarely addressed, which relates to the fact that damage to a given area of the brain is not random but constrained by the brain’s vasculature. Accordingly, the aim of this study was to uncover the statistical structure underlying the lesion profile in chronic aphasia post-stroke. By applying varimax-rotated principal component analysis to the lesions of 70 patients with chronic post-stroke aphasia, we identified 17 interpretable clusters, largely reflecting the vascular supply of middle cerebral artery sub-branches and other sources of individual variation in vascular supply as shown in classical angiography studies. This vascular parcellation produced smaller displacement error in simulated lesion–symptom analysis compared with individual voxels and Brodmann regions. A second principal component analysis of the patients’ detailed neuropsychological data revealed a four-factor solution reflecting phonological, semantic, executive-demand and speech fluency abilities. As a preliminary exploration, stepwise regression was used to relate behavioural factor scores to the lesion principal components. Phonological ability was related to two components, which covered the posterior temporal region including the posterior segment of the arcuate fasciculus, and the inferior frontal gyrus. Three components were linked to semantic ability and were located in the white matter underlying the anterior temporal lobe, the supramarginal gyrus and angular gyrus. Executive-demand related to two components covering the dorsal edge of the middle cerebral artery territory, while speech fluency was linked to two components that were located in the middle frontal gyrus, precentral gyrus and subcortical regions (putamen and thalamus). Future studies can explore in formal terms the utility of these principal component analysis-derived lesion components for relating post-stroke lesions and symptoms.
Collapse
Affiliation(s)
- Ying Zhao
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | | |
Collapse
|
116
|
Multimodal feature binding in object memory retrieval using event-related potentials: Implications for models of semantic memory. Int J Psychophysiol 2020; 153:116-126. [PMID: 32389620 DOI: 10.1016/j.ijpsycho.2020.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 11/23/2022]
Abstract
To test the hypothesis that semantic processes are represented in multiple subsystems, we recorded electroencephalogram (EEG) as we elicited object memories using the modified Semantic Object Retrieval Test, during which an object feature, presented as a visual word [VW], an auditory word [AW], or a picture [Pic], was followed by a second feature always presented as a visual word. We performed both hypothesis-driven and data-driven analyses using event-related potentials (ERPs) time locked to the second stimulus. We replicated a previously reported left fronto-temporal ERP effect (750-1000 ms post-stimulus) in the VW task, and also found that this ERP component was only present during object memory retrieval in verbal (VW, AW) as opposed to non-verbal (Pic) stimulus types. We also found a right temporal ERP effect (850-1000 ms post-stimulus) that was present in auditory (AW) but not in visual (VW, Pic) stimulus types. In addition, we found an earlier left temporo-parietal ERP effect between 350 and 700 ms post-stimulus and a later midline parietal ERP effect between 700 and 1100 ms post-stimulus, present in all stimulus types, suggesting common neural mechanisms for object retrieval processes and object activation, respectively. These findings support multiple semantic subsystems that respond to varying stimulus modalities, and argue against an ultimate unitary amodal semantic analysis.
Collapse
|
117
|
Cope TE, Shtyrov Y, MacGregor LJ, Holland R, Pulvermüller F, Rowe JB, Patterson K. Anterior temporal lobe is necessary for efficient lateralised processing of spoken word identity. Cortex 2020; 126:107-118. [PMID: 32065956 PMCID: PMC7253293 DOI: 10.1016/j.cortex.2019.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/22/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
In the healthy human brain, the processing of language is strongly lateralised, usually to the left hemisphere, while the processing of complex non-linguistic sounds recruits brain regions bilaterally. Here we asked whether the anterior temporal lobes, strongly implicated in semantic processing, are critical to this special treatment of spoken words. Nine patients with semantic dementia (SD) and fourteen age-matched controls underwent magnetoencephalography and structural MRI. Voxel based morphometry demonstrated the stereotypical pattern of SD: severe grey matter loss restricted to the anterior temporal lobes, with the left side more affected. During magnetoencephalography, participants listened to word sets in which identity and meaning were ambiguous until word completion, for example PLAYED versus PLATE. Whereas left-hemispheric responses were similar across groups, patients demonstrated increased right hemisphere activity 174-294 msec after stimulus disambiguation. Source reconstructions confirmed recruitment of right-sided analogues of language regions in SD: atrophy of anterior temporal lobes was associated with increased activity in right temporal pole, middle temporal gyrus, inferior frontal gyrus and supramarginal gyrus. Overall, the results indicate that anterior temporal lobes are necessary for normal and efficient lateralised processing of word identity by the language network.
Collapse
Affiliation(s)
- Thomas E Cope
- Department of Clinical Neurosciences, University of Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Yury Shtyrov
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Institute for Cognitive Neuroscience, NRU Higher School of Economics, Moscow, Russia
| | - Lucy J MacGregor
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Rachel Holland
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Division of Language and Communication Science, City University London, UK
| | - Friedemann Pulvermüller
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Germany
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Karalyn Patterson
- Department of Clinical Neurosciences, University of Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| |
Collapse
|
118
|
Assem M, Glasser MF, Van Essen DC, Duncan J. A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex. Cereb Cortex 2020; 30:4361-4380. [PMID: 32244253 PMCID: PMC7325801 DOI: 10.1093/cercor/bhaa023] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous brain imaging studies identified a domain-general or "multiple-demand" (MD) activation pattern accompanying many tasks and may play a core role in cognitive control. Though this finding is well established, the limited spatial localization provided by traditional imaging methods precluded a consensus regarding the precise anatomy, functional differentiation, and connectivity of the MD system. To address these limitations, we used data from 449 subjects from the Human Connectome Project, with the cortex of each individual parcellated using neurobiologically grounded multimodal MRI features. The conjunction of three cognitive contrasts reveals a core of 10 widely distributed MD parcels per hemisphere that are most strongly activated and functionally interconnected, surrounded by a penumbra of 17 additional areas. Outside cerebral cortex, MD activation is most prominent in the caudate and cerebellum. Comparison with canonical resting-state networks shows MD regions concentrated in the fronto-parietal network but also engaging three other networks. MD activations show modest relative task preferences accompanying strong co-recruitment. With distributed anatomical organization, mosaic functional preferences, and strong interconnectivity, we suggest MD regions are well positioned to integrate and assemble the diverse components of cognitive operations. Our precise delineation of MD regions provides a basis for refined analyses of their functions.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Matthew F Glasser
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO 63110, USA.,Department of Radiology, Washington University in St. Louis, Saint Louis, MO 63110, USA.,St. Luke's Hospital, Saint Louis, MO 63017, USA
| | - David C Van Essen
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.,Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| |
Collapse
|
119
|
Volfart A, Jonas J, Maillard L, Colnat-Coulbois S, Rossion B. Neurophysiological evidence for crossmodal (face-name) person-identity representation in the human left ventral temporal cortex. PLoS Biol 2020; 18:e3000659. [PMID: 32243450 PMCID: PMC7159237 DOI: 10.1371/journal.pbio.3000659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 04/15/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
Putting a name to a face is a highly common activity in our daily life that greatly enriches social interactions. Although this specific person-identity association becomes automatic with learning, it remains difficult and can easily be disrupted in normal circumstances or neurological conditions. To shed light on the neural basis of this important and yet poorly understood association between different input modalities in the human brain, we designed a crossmodal frequency-tagging paradigm coupled to brain activity recording via scalp and intracerebral electroencephalography. In Experiment 1, 12 participants were presented with variable pictures of faces and written names of a single famous identity at a 4-Hz frequency rate while performing an orthogonal task. Every 7 items, another famous identity appeared, either as a face or a name. Robust electrophysiological responses were found exactly at the frequency of identity change (i.e., 4 Hz / 7 = 0.571 Hz), suggesting a crossmodal neural response to person identity. In Experiment 2 with twenty participants, two control conditions with periodic changes of identity for faces or names only were added to estimate the contribution of unimodal neural activity to the putative crossmodal face-name responses. About 30% of the response occurring at the frequency of crossmodal identity change over the left occipito-temporal cortex could not be accounted for by the linear sum of unimodal responses. Finally, intracerebral recordings in the left ventral anterior temporal lobe (ATL) in 7 epileptic patients tested with this paradigm revealed a small number of "pure" crossmodal responses, i.e., with no response to changes of identity for faces or names only. Altogether, these observations provide evidence for integration of verbal and nonverbal person identity-specific information in the human brain, highlighting the contribution of the left ventral ATL in the automatic retrieval of face-name identity associations.
Collapse
Affiliation(s)
- Angélique Volfart
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université Catholique de Louvain, Institute of Research in Psychological Science, Institute of Neuroscience, Louvain-La-Neuve, Belgium
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université Catholique de Louvain, Institute of Research in Psychological Science, Institute of Neuroscience, Louvain-La-Neuve, Belgium
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| |
Collapse
|
120
|
Consistently inconsistent: Multimodal episodic deficits in semantic aphasia. Neuropsychologia 2020; 140:107392. [PMID: 32061831 DOI: 10.1016/j.neuropsychologia.2020.107392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
Semantic Aphasia (SA) patients have difficulty accessing semantic knowledge in both verbal and non-verbal tasks appropriately for the current context. Automatically activated semantic knowledge overwhelms the system, because it is no longer able to inhibit interference from dominant meanings in order to select weaker alternatives. Episodic memory, like semantic memory, requires control to select relevant memories amongst competing episodes. For example, our memory for what we ate for breakfast last Saturday is affected by competition from numerous other breakfast meals eaten on other days. Where one is unable to guide retrieval, we may rely on automatically activated knowledge about "breakfast foods", and therefore experience false memories. Brain systems that support semantic control are also implicated in episodic control, and therefore deficits in semantic control are likely to cause more widespread problems. Despite this, nearly all research to date focuses on semantic performance alone. This study explored the impact of this semantic impairment on episodic recall. We used a verbal and non-verbal episodic memory task: participants remembered nursery rhymes in the verbal condition and logos and their associated products in the visual condition (e.g. bowl of cereal and coco-pops). For both tasks, we manipulated a) congruency with pre-existing knowledge (e.g. expectancy of trials: baa baa blackbuild - instead of sheep) and b) whether these trial types were blocked by congruency or mixed, as well as (c) distractor strength. If SA patients experience overwhelming automatic activation, they should find incongruent items more difficult to suppress, particularly when presented in an unpredictable task format. A total of 13 SA patients were compared to 33 controls across three experiments. In line with our predictions, SA patients found it more difficult to retrieve episodic memories which were in conflict with pre-existing semantic knowledge. This was true across modalities. Moreover, these deficits were accentuated when the congruency was presented in a mixed fashion, and so unpredictable across trials. Evidence of these episodic control impairments in SA cases supports the idea of a shared mechanism for semantic and episodic memory control.
Collapse
|
121
|
Principles of temporal association cortex organisation as revealed by connectivity gradients. Brain Struct Funct 2020; 225:1245-1260. [PMID: 32157450 PMCID: PMC7270054 DOI: 10.1007/s00429-020-02047-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023]
Abstract
To establish the link between structure and function of any large area of the neocortex, it is helpful to identify its principles of organisation. One way to establish such principles is to investigate how differences in whole-brain connectivity are structured across the area. Here, we use Laplacian eigenmaps on diffusion MRI tractography data to investigate the organisational principles of the human temporal association cortex. We identify three overlapping gradients of connectivity that are, for the most part, consistent across hemispheres. The first gradient reveals an inferior–superior organisation of predominantly longitudinal tracts and separates visual and auditory unimodal and multimodal cortices. The second gradient radiates outward from the posterior middle temporal cortex with the arcuate fascicle as a distinguishing feature; the third gradient is concentrated in the anterior temporal lobe and emanates towards its posterior end. We describe the functional relevance of each of these gradients through the meta-analysis of data from the neuroimaging literature. Together, these results unravel the overlapping dimensions of structural organization of the human temporal cortex and provide a framework underlying its functional multiplicity.
Collapse
|
122
|
Mollica F, Siegelman M, Diachek E, Piantadosi ST, Mineroff Z, Futrell R, Kean H, Qian P, Fedorenko E. Composition is the Core Driver of the Language-selective Network. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:104-134. [PMID: 36794007 PMCID: PMC9923699 DOI: 10.1162/nol_a_00005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/19/2019] [Indexed: 05/11/2023]
Abstract
The frontotemporal language network responds robustly and selectively to sentences. But the features of linguistic input that drive this response and the computations that these language areas support remain debated. Two key features of sentences are typically confounded in natural linguistic input: words in sentences (a) are semantically and syntactically combinable into phrase- and clause-level meanings, and (b) occur in an order licensed by the language's grammar. Inspired by recent psycholinguistic work establishing that language processing is robust to word order violations, we hypothesized that the core linguistic computation is composition, and, thus, can take place even when the word order violates the grammatical constraints of the language. This hypothesis predicts that a linguistic string should elicit a sentence-level response in the language network provided that the words in that string can enter into dependency relationships as in typical sentences. We tested this prediction across two fMRI experiments (total N = 47) by introducing a varying number of local word swaps into naturalistic sentences, leading to progressively less syntactically well-formed strings. Critically, local dependency relationships were preserved because combinable words remained close to each other. As predicted, word order degradation did not decrease the magnitude of the blood oxygen level-dependent response in the language network, except when combinable words were so far apart that composition among nearby words was highly unlikely. This finding demonstrates that composition is robust to word order violations, and that the language regions respond as strongly as they do to naturalistic linguistic input, providing that composition can take place.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hope Kean
- Brain & Cognitive Sciences Department, MIT
| | - Peng Qian
- Brain & Cognitive Sciences Department, MIT
| | - Evelina Fedorenko
- Brain & Cognitive Sciences Department, MIT
- McGovern Institute for Brain Research, MIT
- Psychiatry Department, Massachusetts General Hospital
| |
Collapse
|
123
|
Harpaintner M, Sim EJ, Trumpp NM, Ulrich M, Kiefer M. The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex 2020; 124:1-22. [DOI: 10.1016/j.cortex.2019.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/07/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022]
|
124
|
MacGregor LJ, Rodd JM, Gilbert RA, Hauk O, Sohoglu E, Davis MH. The Neural Time Course of Semantic Ambiguity Resolution in Speech Comprehension. J Cogn Neurosci 2020; 32:403-425. [PMID: 31682564 PMCID: PMC7116495 DOI: 10.1162/jocn_a_01493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Semantically ambiguous words challenge speech comprehension, particularly when listeners must select a less frequent (subordinate) meaning at disambiguation. Using combined magnetoencephalography (MEG) and EEG, we measured neural responses associated with distinct cognitive operations during semantic ambiguity resolution in spoken sentences: (i) initial activation and selection of meanings in response to an ambiguous word and (ii) sentence reinterpretation in response to subsequent disambiguation to a subordinate meaning. Ambiguous words elicited an increased neural response approximately 400-800 msec after their acoustic offset compared with unambiguous control words in left frontotemporal MEG sensors, corresponding to sources in bilateral frontotemporal brain regions. This response may reflect increased demands on processes by which multiple alternative meanings are activated and maintained until later selection. Disambiguating words heard after an ambiguous word were associated with marginally increased neural activity over bilateral temporal MEG sensors and a central cluster of EEG electrodes, which localized to similar bilateral frontal and left temporal regions. This later neural response may reflect effortful semantic integration or elicitation of prediction errors that guide reinterpretation of previously selected word meanings. Across participants, the amplitude of the ambiguity response showed a marginal positive correlation with comprehension scores, suggesting that sentence comprehension benefits from additional processing around the time of an ambiguous word. Better comprehenders may have increased availability of subordinate meanings, perhaps due to higher quality lexical representations and reflected in a positive correlation between vocabulary size and comprehension success.
Collapse
Affiliation(s)
| | - Jennifer M. Rodd
- Department of Experimental Psychology, University College London
| | | | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge
| | - Ediz Sohoglu
- MRC Cognition and Brain Sciences Unit, University of Cambridge
| | | |
Collapse
|
125
|
Shain C, Blank IA, van Schijndel M, Schuler W, Fedorenko E. fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. Neuropsychologia 2020; 138:107307. [PMID: 31874149 PMCID: PMC7140726 DOI: 10.1016/j.neuropsychologia.2019.107307] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Much research in cognitive neuroscience supports prediction as a canonical computation of cognition across domains. Is such predictive coding implemented by feedback from higher-order domain-general circuits, or is it locally implemented in domain-specific circuits? What information sources are used to generate these predictions? This study addresses these two questions in the context of language processing. We present fMRI evidence from a naturalistic comprehension paradigm (1) that predictive coding in the brain's response to language is domain-specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and to hierarchical structure. Using a recently developed continuous-time deconvolutional regression technique that supports data-driven hemodynamic response function discovery from continuous BOLD signal fluctuations in response to naturalistic stimuli, we found effects of prediction measures in the language network but not in the domain-general multiple-demand network, which supports executive control processes and has been previously implicated in language comprehension. Moreover, within the language network, surface-level and structural prediction effects were separable. The predictability effects in the language network were substantial, with the model capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence processing mechanisms generate predictions about upcoming words using cognitive processes that are sensitive to hierarchical structure and specialized for language processing, rather than via feedback from high-level executive control mechanisms.
Collapse
Affiliation(s)
| | - Idan Asher Blank
- University of California Los Angeles, 90024, USA; Massachusetts Institute of Technology, 02139, USA.
| | | | - William Schuler
- The Ohio State University, 43210, USA; Massachusetts General Hospital, Program in Speech and Hearing Bioscience and Technology, 02115, USA.
| | - Evelina Fedorenko
- Massachusetts General Hospital, Program in Speech and Hearing Bioscience and Technology, 02115, USA.
| |
Collapse
|
126
|
Hagoort P. The meaning-making mechanism(s) behind the eyes and between the ears. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190301. [PMID: 31840590 PMCID: PMC6939349 DOI: 10.1098/rstb.2019.0301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/10/2019] [Indexed: 11/12/2022] Open
Abstract
In this contribution, the following four questions are discussed: (i) where is meaning?; (ii) what is meaning?; (iii) what is the meaning of mechanism?; (iv) what are the mechanisms of meaning? I will argue that meanings are in the head. Meanings have multiple facets, but minimally one needs to make a distinction between single word meanings (lexical meaning) and the meanings of multi-word utterances. The latter ones cannot be retrieved from memory, but need to be constructed on the fly. A mechanistic account of the meaning-making mind requires an analysis at both a functional and a neural level, the reason being that these levels are causally interdependent. I will show that an analysis exclusively focusing on patterns of brain activation lacks explanatory power. Finally, I shall present an initial sketch of how the dynamic interaction between temporo-parietal areas and inferior frontal cortex might instantiate the interpretation of linguistic utterances in the context of a multimodal setting and ongoing discourse information. This article is part of the theme issue 'Towards mechanistic models of meaning composition'.
Collapse
Affiliation(s)
- Peter Hagoort
- Max Planck Institute for Psycholinguistics, PO Box 310, 6500 AH Nijmegen, The Netherlands
| |
Collapse
|
127
|
Niesen M, Vander Ghinst M, Bourguignon M, Wens V, Bertels J, Goldman S, Choufani G, Hassid S, De Tiège X. Tracking the Effects of Top-Down Attention on Word Discrimination Using Frequency-tagged Neuromagnetic Responses. J Cogn Neurosci 2020; 32:877-888. [PMID: 31933439 DOI: 10.1162/jocn_a_01522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Discrimination of words from nonspeech sounds is essential in communication. Still, how selective attention can influence this early step of speech processing remains elusive. To answer that question, brain activity was recorded with magnetoencephalography in 12 healthy adults while they listened to two sequences of auditory stimuli presented at 2.17 Hz, consisting of successions of one randomized word (tagging frequency = 0.54 Hz) and three acoustically matched nonverbal stimuli. Participants were instructed to focus their attention on the occurrence of a predefined word in the verbal attention condition and on a nonverbal stimulus in the nonverbal attention condition. Steady-state neuromagnetic responses were identified with spectral analysis at sensor and source levels. Significant sensor responses peaked at 0.54 and 2.17 Hz in both conditions. Sources at 0.54 Hz were reconstructed in supratemporal auditory cortex, left superior temporal gyrus (STG), left middle temporal gyrus, and left inferior frontal gyrus. Sources at 2.17 Hz were reconstructed in supratemporal auditory cortex and STG. Crucially, source strength in the left STG at 0.54 Hz was significantly higher in verbal attention than in nonverbal attention condition. This study demonstrates speech-sensitive responses at primary auditory and speech-related neocortical areas. Critically, it highlights that, during word discrimination, top-down attention modulates activity within the left STG. This area therefore appears to play a crucial role in selective verbal attentional processes for this early step of speech processing.
Collapse
|
128
|
Luzzatti C, Mauri I, Castiglioni S, Zuffi M, Spartà C, Somalvico F, Franceschi M. Evaluating Semantic Knowledge Through a Semantic Association Task in Individuals With Dementia. Am J Alzheimers Dis Other Demen 2020; 35:1533317520917294. [PMID: 32308008 PMCID: PMC10623912 DOI: 10.1177/1533317520917294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Conceptual knowledge is supported by multiple semantic systems that are specialized for the analysis of different properties associated with object concepts. Various types of semantic association between concrete concepts-categorical (CA), encyclopedic (EA), functional (FA), and visual-encyclopedic (VEA) associations-were tested through a new picture-to-picture matching task (semantic association task, SAT). Forty individuals with Alzheimer's disease (AD), 13 with behavioral variant of frontotemporal dementia (bv-FTD), 6 with primary progressive aphasia (PPA), and 37 healthy participants were tested with the SAT. Within-group comparisons highlighted a global impairment of all types of semantic association in bv-FTD individuals but a disproportionate impairment of EA and FA, with relative sparing of CA and VEA, in AD individuals. Single-case analyses detected dissociations in all dementia groups. Conceptual knowledge can be selectively impaired in various types of neurodegenerative disease on the basis of the specific cognitive process that is disrupted.
Collapse
Affiliation(s)
- Claudio Luzzatti
- Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | - Ilaria Mauri
- Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | | | - Marta Zuffi
- Department of Neurology, MultiMedica Hospital, Castellanza, Italy
| | - Chiara Spartà
- Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | | | | |
Collapse
|
129
|
Charbonnier L, Raemaekers MAH, Cornelisse PA, Verwoert M, Braun KPJ, Ramsey NF, Vansteensel MJ. A Functional Magnetic Resonance Imaging Approach for Language Laterality Assessment in Young Children. Front Pediatr 2020; 8:587593. [PMID: 33313027 PMCID: PMC7707083 DOI: 10.3389/fped.2020.587593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a usable technique to determine hemispheric dominance of language function, but high-quality fMRI images are difficult to acquire in young children. Here we aimed to develop and validate an fMRI approach to reliably determine hemispheric language dominance in young children. We designed two new tasks (story, SR; Letter picture matching, LPM) that aimed to match the interests and the levels of cognitive development of young children. We studied 32 healthy children (6-10 years old, median age 8.7 years) and seven children with epilepsy (7-11 years old, median age 8.6 years) and compared the lateralization index of the new tasks with those of a well-validated task (verb generation, VG) and with clinical measures of hemispheric language dominance. A conclusive assessment of hemispheric dominance (lateralization index ≤-0.2 or ≥0.2) was obtained for 94% of the healthy participants who performed both new tasks. At least one new task provided conclusive language laterality assessment in six out of seven participants with epilepsy. The new tasks may contribute to assessing language laterality in young and preliterate children and may benefit children who are scheduled for surgical treatment of disorders such as epilepsy.
Collapse
Affiliation(s)
- Lisette Charbonnier
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mathijs A H Raemaekers
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Philippe A Cornelisse
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maxime Verwoert
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kees P J Braun
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
130
|
Chen L, Wassermann D, Abrams DA, Kochalka J, Gallardo-Diez G, Menon V. The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun 2019; 10:5601. [PMID: 31811149 PMCID: PMC6898452 DOI: 10.1038/s41467-019-13634-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
While predominant models of visual word form area (VWFA) function argue for its specific role in decoding written language, other accounts propose a more general role of VWFA in complex visual processing. However, a comprehensive examination of structural and functional VWFA circuits and their relationship to behavior has been missing. Here, using high-resolution multimodal imaging data from a large Human Connectome Project cohort (N = 313), we demonstrate robust patterns of VWFA connectivity with both canonical language and attentional networks. Brain-behavior relationships revealed a striking pattern of double dissociation: structural connectivity of VWFA with lateral temporal language network predicted language, but not visuo-spatial attention abilities, while VWFA connectivity with dorsal fronto-parietal attention network predicted visuo-spatial attention, but not language abilities. Our findings support a multiplex model of VWFA function characterized by distinct circuits for integrating language and attention, and point to connectivity-constrained cognition as a key principle of human brain organization.
Collapse
Affiliation(s)
- Lang Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA.
- Department of Psychology, Santa Clara University, Santa Clara, CA, 95053, USA.
- Neuroscience Program, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Demian Wassermann
- Parietal, Inria Saclay Île-de-France, CEA, Université Paris-Sud, 1 Rue Honoré d'Estienne d'Orves, 91120, Palaiseau, France
| | - Daniel A Abrams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA
| | - John Kochalka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA
| | - Guillermo Gallardo-Diez
- Athena Project Team, INRIA Sophia Antipolis-Méditerranée, 06902, Sophia Antipolis CEDEX, France
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94394, USA.
- Stanford Neuroscience Institute, Stanford University, Stanford, CA, 94394, USA.
| |
Collapse
|
131
|
Renoult L, Irish M, Moscovitch M, Rugg MD. From Knowing to Remembering: The Semantic–Episodic Distinction. Trends Cogn Sci 2019; 23:1041-1057. [DOI: 10.1016/j.tics.2019.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023]
|
132
|
Griffiths BJ, Mayhew SD, Mullinger KJ, Jorge J, Charest I, Wimber M, Hanslmayr S. Alpha/beta power decreases track the fidelity of stimulus-specific information. eLife 2019; 8:e49562. [PMID: 31782730 PMCID: PMC6904219 DOI: 10.7554/elife.49562] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Massed synchronised neuronal firing is detrimental to information processing. When networks of task-irrelevant neurons fire in unison, they mask the signal generated by task-critical neurons. On a macroscopic level, such synchronisation can contribute to alpha/beta (8-30 Hz) oscillations. Reducing the amplitude of these oscillations, therefore, may enhance information processing. Here, we test this hypothesis. Twenty-one participants completed an associative memory task while undergoing simultaneous EEG-fMRI recordings. Using representational similarity analysis, we quantified the amount of stimulus-specific information represented within the BOLD signal on every trial. When correlating this metric with concurrently-recorded alpha/beta power, we found a significant negative correlation which indicated that as post-stimulus alpha/beta power decreased, stimulus-specific information increased. Critically, we found this effect in three unique tasks: visual perception, auditory perception, and visual memory retrieval, indicating that this phenomenon transcends both stimulus modality and cognitive task. These results indicate that alpha/beta power decreases parametrically track the fidelity of both externally-presented and internally-generated stimulus-specific information represented within the cortex.
Collapse
Affiliation(s)
- Benjamin James Griffiths
- School of PsychologyUniversity of BirminghamBirminghamUnited Kingdom
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUnited Kingdom
| | - Stephen D Mayhew
- School of PsychologyUniversity of BirminghamBirminghamUnited Kingdom
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUnited Kingdom
| | - Karen J Mullinger
- School of PsychologyUniversity of BirminghamBirminghamUnited Kingdom
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUnited Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUnited Kingdom
| | - João Jorge
- Laboratory for Functional and Metabolic ImagingÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Ian Charest
- School of PsychologyUniversity of BirminghamBirminghamUnited Kingdom
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUnited Kingdom
| | - Maria Wimber
- School of PsychologyUniversity of BirminghamBirminghamUnited Kingdom
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUnited Kingdom
| | - Simon Hanslmayr
- School of PsychologyUniversity of BirminghamBirminghamUnited Kingdom
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
133
|
Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G. Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 2019; 225:85-119. [PMID: 31773331 DOI: 10.1007/s00429-019-01987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Τhe middle longitudinal fasciculus (MdLF) was initially identified in humans as a discrete subcortical pathway connecting the superior temporal gyrus (STG) to the angular gyrus (AG). Further anatomo-imaging studies, however, proposed more sophisticated but conflicting connectivity patterns and have created a vague perception on its functional anatomy. Our aim was, therefore, to investigate the ambiguous structural architecture of this tract through focused cadaveric dissections augmented by a tailored DTI protocol in healthy participants from the Human Connectome dataset. Three segments and connectivity patterns were consistently recorded: the MdLF-I, connecting the dorsolateral Temporal Pole (TP) and STG to the Superior Parietal Lobule/Precuneus, through the Heschl's gyrus; the MdLF-II, connecting the dorsolateral TP and the STG with the Parieto-occipital area through the posterior transverse gyri and the MdLF-III connecting the most anterior part of the TP to the posterior border of the occipital lobe through the AG. The lack of an established termination pattern to the AG and the fact that no significant leftward asymmetry is disclosed tend to shift the paradigm away from language function. Conversely, the theory of "where" and "what" auditory pathways, the essential relationship of the MdLF with the auditory cortex and the functional role of the cortical areas implicated in its connectivity tend to shift the paradigm towards auditory function. Allegedly, the MdLF-I and MdLF-II segments could underpin the perception of auditory representations; whereas, the MdLF-III could potentially subserve the integration of auditory and visual information.
Collapse
Affiliation(s)
- Aristotelis Kalyvas
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece. .,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece. .,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios P Skandalakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Liouta
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| | - Olympia Papakonstantinou
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| |
Collapse
|
134
|
Roncero C, Service E, De Caro M, Popov A, Thiel A, Probst S, Chertkow H. Maximizing the Treatment Benefit of tDCS in Neurodegenerative Anomia. Front Neurosci 2019; 13:1231. [PMID: 31824242 PMCID: PMC6882938 DOI: 10.3389/fnins.2019.01231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
We evaluated whether transcranial direct current stimulation (tDCS) in two different montages could improve picture naming abilities in participants with anomic Alzheimer Disease or Frontotemporal dementia.
Collapse
Affiliation(s)
- Carlos Roncero
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Erik Service
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Marco De Caro
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Aleksandar Popov
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Stephan Probst
- Department of Nuclear Medicine, McGill University, Montreal, QC, Canada
| | - Howard Chertkow
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
135
|
Raykov PP, Keidel JL, Oakhill J, Bird CM. The brain regions supporting schema-related processing of people’s identities. Cogn Neuropsychol 2019; 37:8-24. [DOI: 10.1080/02643294.2019.1685958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Jane Oakhill
- School of Psychology, University of Sussex, Falmer, UK
| | - Chris M. Bird
- School of Psychology, University of Sussex, Falmer, UK
| |
Collapse
|
136
|
Zhang M, Savill N, Margulies DS, Smallwood J, Jefferies E. Distinct individual differences in default mode network connectivity relate to off-task thought and text memory during reading. Sci Rep 2019; 9:16220. [PMID: 31700143 PMCID: PMC6838089 DOI: 10.1038/s41598-019-52674-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
Often, as we read, we find ourselves thinking about something other than the text; this tendency to mind-wander is linked to poor comprehension and reduced subsequent memory for texts. Contemporary accounts argue that periods of off-task thought are related to the tendency for attention to be decoupled from external input. We used fMRI to understand the neural processes that underpin this phenomenon. First, we found that individuals with poorer text-based memory tend to show reduced recruitment of left middle temporal gyrus in response to orthographic input, within a region located at the intersection of default mode, dorsal attention and frontoparietal networks. Voxels within these networks were taken as seeds in a subsequent resting-state study. The default mode network region (i) had greater connectivity with medial prefrontal cortex, falling within the same network, for individuals with better text-based memory, and (ii) was more decoupled from medial visual regions in participants who mind-wandered more frequently. These findings suggest that stronger intrinsic connectivity within the default mode network is linked to better text processing, while reductions in default mode network coupling to the visual system may underpin individual variation in the tendency for our attention to become disengaged from what we are reading.
Collapse
Affiliation(s)
- Meichao Zhang
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.
| | - Nicola Savill
- School of Psychological and Social Sciences, York St John University, York, YO31 7EX, UK
| | - Daniel S Margulies
- Frontlab, Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France
| | - Jonathan Smallwood
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
137
|
Bajada CJ, Trujillo-Barreto NJ, Parker GJM, Cloutman LL, Lambon Ralph MA. A structural connectivity convergence zone in the ventral and anterior temporal lobes: Data-driven evidence from structural imaging. Cortex 2019; 120:298-307. [PMID: 31377672 PMCID: PMC6838667 DOI: 10.1016/j.cortex.2019.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 01/12/2023]
Abstract
The hub-and-spoke model of semantic cognition seeks to reconcile embodied views of a fully distributed semantic network with patient evidence, primarily from semantic dementia, who demonstrate modality-independent conceptual deficits associated with atrophy centred on the ventrolateral anterior temporal lobe. The proponents of this model have recently suggested that the temporal cortex is a graded representational space where concepts become less linked to a specific modality as they are processed farther away from primary and secondary sensory cortices and towards the ventral anterior temporal lobe. To explore whether there is evidence that the connectivity patterns of the temporal lobe converge in its ventral anterior end the current study uses three dimensional Laplacian eigenmapping, a technique that allows visualisation of similarity in a low dimensional space. In this space similarity is encoded in terms of distances between data points. We found that the ventral and anterior temporal lobe is in a unique position of being at the centre of mass of the data points within the connective similarity space. This can be interpreted as the area where the connectivity profiles of all other temporal cortex voxels converge. This study is the first to explicitly investigate the pattern of connectivity and thus provides the missing link in the evidence that the ventral anterior temporal lobe can be considered a multi-modal graded hub.
Collapse
Affiliation(s)
- Claude J Bajada
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, The University of Manchester, UK; Faculty of Medicine and Surgery, University of Malta, Malta.
| | - Nelson J Trujillo-Barreto
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, The University of Manchester, UK
| | - Geoff J M Parker
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, The University of Manchester, UK; Bioxydyn Limited, Manchester, UK; Centre for Medical Image Computing, Department of Computer Science, and Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, UK; Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Lauren L Cloutman
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, The University of Manchester, UK
| | - Matthew A Lambon Ralph
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, The University of Manchester, UK; MRC, Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge, UK.
| |
Collapse
|
138
|
Murphy C, Rueschemeyer SA, Smallwood J, Jefferies E. Imagining Sounds and Images: Decoding the Contribution of Unimodal and Transmodal Brain Regions to Semantic Retrieval in the Absence of Meaningful Input. J Cogn Neurosci 2019; 31:1599-1616. [DOI: 10.1162/jocn_a_01330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the absence of sensory information, we can generate meaningful images and sounds from representations in memory. However, it remains unclear which neural systems underpin this process and whether tasks requiring the top–down generation of different kinds of features recruit similar or different neural networks. We asked people to internally generate the visual and auditory features of objects, either in isolation (car, dog) or in specific and complex meaning-based contexts (car/dog race). Using an fMRI decoding approach, in conjunction with functional connectivity analysis, we examined the role of auditory/visual cortex and transmodal brain regions. Conceptual retrieval in the absence of external input recruited sensory and transmodal cortex. The response in transmodal regions—including anterior middle temporal gyrus—was of equal magnitude for visual and auditory features yet nevertheless captured modality information in the pattern of response across voxels. In contrast, sensory regions showed greater activation for modality-relevant features in imagination (even when external inputs did not differ). These data are consistent with the view that transmodal regions support internally generated experiences and that they play a role in integrating perceptual features encoded in memory.
Collapse
|
139
|
Ueno T, Meteyard L, Hoffman P, Murayama K. The Ventral Anterior Temporal Lobe has a Necessary Role in Exception Word Reading. Cereb Cortex 2019; 28:3035-3045. [PMID: 29878073 PMCID: PMC6041960 DOI: 10.1093/cercor/bhy131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/13/2018] [Indexed: 11/14/2022] Open
Abstract
An influential account of reading holds that words with exceptional spelling-to-sound correspondences (e.g., PINT) are read via activation of their lexical-semantic representations, supported by the anterior temporal lobe (ATL). This account has been inconclusive because it is based on neuropsychological evidence, in which lesion-deficit relationships are difficult to localize precisely, and functional neuroimaging data, which is spatially precise but cannot demonstrate whether the ATL activity is necessary for exception word reading. To address these issues, we used a technique with good spatial specificity-repetitive transcranial magnetic stimulation (rTMS)-to demonstrate a necessary role of ATL in exception word reading. Following rTMS to left ventral ATL, healthy Japanese adults made more regularization errors in reading Japanese exception words. We successfully simulated these results in a computational model in which exception word reading was underpinned by semantic activations. The ATL is critically and selectively involved in reading exception words.
Collapse
Affiliation(s)
- Taiji Ueno
- School of Psychology & Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK.,Faculty of Human Sciences, Takachiho University, Tokyo, Japan.,Faculty of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Lotte Meteyard
- School of Psychology & Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK
| | - Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kou Murayama
- School of Psychology & Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK.,Kochi University of Technology, Kami, Japan.,Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
140
|
Directional coupling of slow and fast hippocampal gamma with neocortical alpha/beta oscillations in human episodic memory. Proc Natl Acad Sci U S A 2019; 116:21834-21842. [PMID: 31597741 PMCID: PMC6815125 DOI: 10.1073/pnas.1914180116] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Episodic memories hinge upon our ability to process a wide range of multisensory information and bind this information into a coherent, memorable representation. On a neural level, these 2 processes are thought to be supported by neocortical alpha/beta desynchronization and hippocampal theta/gamma synchronization, respectively. Intuitively, these 2 processes should couple to successfully create and retrieve episodic memories, yet this hypothesis has not been tested empirically. We address this by analyzing human intracranial electroencephalogram data recorded during 2 associative memory tasks. We find that neocortical alpha/beta (8 to 20 Hz) power decreases reliably precede and predict hippocampal "fast" gamma (60 to 80 Hz) power increases during episodic memory formation; during episodic memory retrieval, however, hippocampal "slow" gamma (40 to 50 Hz) power increases reliably precede and predict later neocortical alpha/beta power decreases. We speculate that this coupling reflects the flow of information from the neocortex to the hippocampus during memory formation, and hippocampal pattern completion inducing information reinstatement in the neocortex during memory retrieval.
Collapse
|
141
|
Mattheiss SR, Levinson H, Graves WW. Duality of Function: Activation for Meaningless Nonwords and Semantic Codes in the Same Brain Areas. Cereb Cortex 2019; 28:2516-2524. [PMID: 29901789 PMCID: PMC5998986 DOI: 10.1093/cercor/bhy053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/16/2018] [Indexed: 11/29/2022] Open
Abstract
Studies of the neural substrates of semantic (word meaning) processing have typically focused on semantic manipulations, with less consideration for potential differences in difficulty across conditions. While the idea that particular brain regions can support multiple functions is widely accepted, studies of specific cognitive domains rarely test for co-location with other functions. Here we start with standard univariate analyses comparing words to meaningless nonwords, replicating our recent finding that this contrast can activate task-positive regions for words, and default-mode regions in the putative semantic network for nonwords, pointing to difficulty effects. Critically, this was followed up with a multivariate analysis to test whether the same areas activated for meaningless nonwords contained semantic information sufficient to distinguish high- from low-imageability words. Indeed, this classification was performed reliably better than chance at 75% accuracy. This is compatible with two non-exclusive interpretations. Numerous areas in the default-mode network are task-negative in the sense of activating for less demanding conditions, and the same areas contain information supporting semantic cognition. Therefore, while areas of the default mode network have been hypothesized to support semantic cognition, we offer evidence that these areas can respond to both domain-general difficulty effects, and to specific aspects of semantics.
Collapse
Affiliation(s)
- Samantha R Mattheiss
- Department of Psychology, Smith Hall, Room 301, Rutgers University - Newark, 101 Warren Street, Newark, NJ, USA
| | - Hillary Levinson
- Department of Psychology, Smith Hall, Room 301, Rutgers University - Newark, 101 Warren Street, Newark, NJ, USA
| | - William W Graves
- Department of Psychology, Smith Hall, Room 301, Rutgers University - Newark, 101 Warren Street, Newark, NJ, USA
| |
Collapse
|
142
|
Neudorf J, Ekstrand C, Kress S, Borowsky R. FMRI of shared-stream priming of lexical identification by object semantics along the ventral visual processing stream. Neuropsychologia 2019; 133:107185. [DOI: 10.1016/j.neuropsychologia.2019.107185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
|
143
|
De Stefani E, De Marco D. Language, Gesture, and Emotional Communication: An Embodied View of Social Interaction. Front Psychol 2019; 10:2063. [PMID: 31607974 PMCID: PMC6769117 DOI: 10.3389/fpsyg.2019.02063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Spoken language is an innate ability of the human being and represents the most widespread mode of social communication. The ability to share concepts, intentions and feelings, and also to respond to what others are feeling/saying is crucial during social interactions. A growing body of evidence suggests that language evolved from manual gestures, gradually incorporating motor acts with vocal elements. In this evolutionary context, the human mirror mechanism (MM) would permit the passage from “doing something” to “communicating it to someone else.” In this perspective, the MM would mediate semantic processes being involved in both the execution and in the understanding of messages expressed by words or gestures. Thus, the recognition of action related words would activate somatosensory regions, reflecting the semantic grounding of these symbols in action information. Here, the role of the sensorimotor cortex and in general of the human MM on both language perception and understanding is addressed, focusing on recent studies on the integration between symbolic gestures and speech. We conclude documenting some evidence about MM in coding also the emotional aspects conveyed by manual, facial and body signals during communication, and how they act in concert with language to modulate other’s message comprehension and behavior, in line with an “embodied” and integrated view of social interaction.
Collapse
Affiliation(s)
| | - Doriana De Marco
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| |
Collapse
|
144
|
Hoffman P. Divergent effects of healthy ageing on semantic knowledge and control: Evidence from novel comparisons with semantically impaired patients. J Neuropsychol 2019; 13:462-484. [PMID: 29667366 PMCID: PMC6766984 DOI: 10.1111/jnp.12159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2018] [Indexed: 11/26/2022]
Abstract
Effective use of semantic knowledge requires a set of conceptual representations and control processes which ensure that currently relevant aspects of this knowledge are retrieved and selected. It is well-established that levels of semantic knowledge increase across the lifespan. However, the effects of ageing on semantic control processes have not been assessed. I addressed this issue by comparing the performance profiles of young and older people on a verbal comprehension test. Two sets of variables were used to predict accuracy and RT in each group: (1) the psycholinguistic properties of words probed in each trial and (2) the performance on each trial by two groups of semantically impaired neuropsychological patients. Young people demonstrated poor performance for low-frequency and abstract words, suggesting that they had difficulty processing words with intrinsically weak semantic representations. Indeed, performance in this group was strongly predicted by the performance of patients with semantic dementia, who suffer from degradation of semantic knowledge. In contrast, older adults performed poorly on trials where the target semantic relationship was weak and distractor relationships strong - conditions which require high levels of controlled processing. Their performance was not predicted by the performance of semantic dementia patients, but was predicted by the performance of patients with semantic control deficits. These findings indicate that the effects of ageing on semantic cognition are more complex than has previously been assumed. While older people have larger stores of knowledge than young people, they appear to be less skilled at exercising control over the activation of this knowledge.
Collapse
Affiliation(s)
- Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE)Department of PsychologyUniversity of EdinburghUK
| |
Collapse
|
145
|
Lanzoni L, Thompson H, Beintari D, Berwick K, Demnitz-King H, Raspin H, Taha M, Stampacchia S, Smallwood J, Jefferies E. Emotion and location cues bias conceptual retrieval in people with deficient semantic control. Neuropsychologia 2019; 131:294-305. [PMID: 31163176 PMCID: PMC6667741 DOI: 10.1016/j.neuropsychologia.2019.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 02/02/2023]
Abstract
Visuo-spatial context and emotional valence are powerful cues to episodic retrieval, but the contribution of these inputs to semantic cognition has not been widely investigated. We examined the impact of visuo-spatial, facial emotion and prosody cues and miscues on the retrieval of dominant and subordinate meanings of ambiguous words. Cue photographs provided relevant visuo-spatial or emotional information, consistent with the interpretation of the ambiguous word being probed, while miscues were consistent with an alternative interpretation. We compared the impact of these cues in healthy controls and semantic aphasia patients with deficient control over semantic retrieval following left-hemisphere stroke. Patients showed greater deficits in retrieving the subordinate meanings of ambiguous words, and stronger effects of cueing and miscuing relative to healthy controls. These findings suggest that contextual cues that guide retrieval to the appropriate semantic information reduce the need to constrain semantic retrieval internally, while miscues that are not aligned with the task increase the need for semantic control. Moreover, both valence and visuo-spatial context can prime particular semantic interpretations, in line with theoretical frameworks that argue meaning is computed through the integration of these features. In semantic aphasia, residual comprehension relies heavily on facial expressions and visuospatial cues. This has important implications for patients, their families and clinicians when developing new or more effective modes of communication.
Collapse
Affiliation(s)
| | | | | | | | - Harriet Demnitz-King
- Department of Psychology, University of York, UK; Faculty of Brain Sciences, University College London, UK
| | | | - Maria Taha
- Department of Psychology, University of York, UK
| | | | | | | |
Collapse
|
146
|
Roxbury T, McMahon K, Wong A, Farrell A, Burfein P, Taubert S, O'Brien K, Read S, Coulthard A, Copland D. Brain activity during spoken word recognition in subacute aphasia. BRAIN AND LANGUAGE 2019; 195:104630. [PMID: 31220584 DOI: 10.1016/j.bandl.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/01/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Tracy Roxbury
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Katie McMahon
- School of Clinical Science and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Herston Imaging Research Facility, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| | - Andrew Wong
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Anna Farrell
- Department of Speech Pathology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| | - Penni Burfein
- Department of Speech Pathology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| | - Shana Taubert
- Department of Speech Pathology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| | - Kate O'Brien
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Stephen Read
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Alan Coulthard
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - David Copland
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Queensland, Australia; School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
147
|
Language Processing. Cognition 2019. [DOI: 10.1017/9781316271988.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
148
|
Methods of Cognitive Psychology. Cognition 2019. [DOI: 10.1017/9781316271988.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
149
|
Cognitive Psychologists’ Approach to Research. Cognition 2019. [DOI: 10.1017/9781316271988.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
150
|
Visual Imagery. Cognition 2019. [DOI: 10.1017/9781316271988.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|