101
|
Abstract
The last decade has witnessed an increase in the number of moderate to large-scale nonpharmacologic stroke recovery trials. While a majority, having tested the superiority of a particular evidence-based intervention, returned negative findings, the rehabilitation research community has gained an important perspective for future efforts. We offer our interpretation first, on why most of the past decade’s trials failed in the sense of not supporting the primary superiority hypothesis, and, second, we provide our perspective on how to solve this problem and thereby inform the next generation of neurorehabilitation clinical trials. The first large-scale randomized controlled trial (RCT) ever conducted in neurorehabilitation was the Extremity Constraint Induced Movement Therapy Evaluation (EXCITE) trial. The majority of stroke recovery trials that followed were based on a prevailing, but as yet immature science of brain-behavior mechanisms for recovery and limited practical know-how about how to select the most meaningful outcomes. The research community had been seduced by a set of preclinical studies, ignited by the 1990’s revolution in neuroscience and an oversimplified premise that high doses of task-oriented training was the most important ingredient to foster recovery. Here, we highlight recent qualitative and quantitative evidence, both mechanistic and theory-driven, that integrates crucial social and personal factors to inform a more mature science better suited for the next generation of recovery-supportive rehabilitation clinical trials.
Collapse
|
102
|
Cramer SC. Treatments to Promote Neural Repair after Stroke. J Stroke 2018; 20:57-70. [PMID: 29402069 PMCID: PMC5836581 DOI: 10.5853/jos.2017.02796] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major cause of human disability worldwide. In parallel with advances in acute stroke interventions, new therapies are under development that target restorative processes. Such therapies have a treatment time window measured in days, weeks, or longer and so have the advantage that they may be accessible by a majority of patients. Several categories of restorative therapy have been studied and are reviewed herein, including drugs, growth factors, monoclonal antibodies, activity-related therapies including telerehabilitation, and a host of devices such as those related to brain stimulation or robotics. Many patients with stroke do not receive acute stroke therapies or receive them and do not derive benefit, often surviving for years thereafter. Therapies based on neural repair hold the promise of providing additional treatment options to a majority of patients with stroke.
Collapse
Affiliation(s)
- Steven C. Cramer
- Departments of Neurology, Anatomy & Neurobiology and Physical Medicine & Rehabilitation, University of California, Irvine, CA, USA
| |
Collapse
|
103
|
|
104
|
Winstein C. The ATTEND trial: An alternative explanation with implications for future recovery and rehabilitation clinical trials. Int J Stroke 2017; 13:112-116. [DOI: 10.1177/1747493017743061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past decade, ATTEND is one of only a handful of moderate to large-scale nonpharmacologic stroke recovery trials with a focus on rehabilitation. While unique in some respects, its test of superiority for the experimental intervention returned negative/neutral results, with no differences in outcome between the experimental intervention and an appropriate control group – a result not uncommon to the majority of moderate to large stroke rehabilitation intervention trials (i.e. six out of eight conducted in the past decade). The authors offer a number of potential explanations for the negative outcome, all of which have merit. We choose not to dwell on these possibilities, but rather offer a radically different explanation, one which has implications for future rehabilitation clinical trials. Our premise is that the process of neurorehabilitation is complex and multifaceted, but most importantly, for success, it requires a genuine collaboration between the patient and the clinician or caregiver to effect optimal recovery. This collaborative relationship must be defined by the unique perspective of each patient. By doing so, we acknowledge the importance of the individual patient’s values, goals, perspectives, and capacity. Rehabilitation scientists can design what arguably is a scientifically sound intervention that is evidence-based and even with preliminary data supporting its efficacy, but if the patient does not value the target outcome, does not fully engage in the therapy, or does not expect the intervention to succeed, the likelihood of success is poor. We offer this opinion, not to be critical, but to suggest a paradigm shift in the way in which we conduct stroke recovery and rehabilitation trials.
Collapse
Affiliation(s)
- Carolee Winstein
- Department of Biokinesiology and Physical Therapy and Department of Neurology, University of Southern California, Los Angeles, USA
| |
Collapse
|
105
|
Interhemispheric Pathways Are Important for Motor Outcome in Individuals with Chronic and Severe Upper Limb Impairment Post Stroke. Neural Plast 2017; 2017:4281532. [PMID: 29348943 PMCID: PMC5733869 DOI: 10.1155/2017/4281532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/27/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
Background Severity of arm impairment alone does not explain motor outcomes in people with severe impairment post stroke. Objective Define the contribution of brain biomarkers to upper limb motor outcomes in people with severe arm impairment post stroke. Methods Paretic arm impairment (Fugl-Meyer upper limb, FM-UL) and function (Wolf Motor Function Test rate, WMFT-rate) were measured in 15 individuals with severe (FM-UL ≤ 30/66) and 14 with mild–moderate (FM-UL > 40/66) impairment. Transcranial magnetic stimulation and diffusion weight imaging indexed structure and function of the corticospinal tract and corpus callosum. Separate models of the relationship between possible biomarkers and motor outcomes at a single chronic (≥6 months) time point post stroke were performed. Results Age (ΔR20.365, p = 0.017) and ipsilesional-transcallosal inhibition (ΔR20.182, p = 0.048) explained a 54.7% (p = 0.009) variance in paretic WMFT-rate. Prefrontal corpus callous fractional anisotropy (PF-CC FA) alone explained 49.3% (p = 0.007) variance in FM-UL outcome. The same models did not explain significant variance in mild–moderate stroke. In the severe group, k-means cluster analysis of PF-CC FA distinguished two subgroups, separated by a clinically meaningful and significant difference in motor impairment (p = 0.049) and function (p = 0.006) outcomes. Conclusion Corpus callosum function and structure were identified as possible biomarkers of motor outcome in people with chronic and severe arm impairment.
Collapse
|
106
|
Raffin E, Hummel FC. Restoring Motor Functions After Stroke: Multiple Approaches and Opportunities. Neuroscientist 2017; 24:400-416. [DOI: 10.1177/1073858417737486] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
More than 1.5 million people suffer a stroke in Europe per year and more than 70% of stroke survivors experience limited functional recovery of their upper limb, resulting in diminished quality of life. Therefore, interventions to address upper-limb impairment are a priority for stroke survivors and clinicians. While a significant body of evidence supports the use of conventional treatments, such as intensive motor training or constraint-induced movement therapy, the limited and heterogeneous improvements they allow are, for most patients, usually not sufficient to return to full autonomy. Various innovative neurorehabilitation strategies are emerging in order to enhance beneficial plasticity and improve motor recovery. Among them, robotic technologies, brain-computer interfaces, or noninvasive brain stimulation (NIBS) are showing encouraging results. These innovative interventions, such as NIBS, will only provide maximized effects, if the field moves away from the “one-fits all” approach toward a “patient-tailored” approach. After summarizing the most commonly used rehabilitation approaches, we will focus on NIBS and highlight the factors that limit its widespread use in clinical settings. Subsequently, we will propose potential biomarkers that might help to stratify stroke patients in order to identify the individualized optimal therapy. We will discuss future methodological developments, which could open new avenues for poststroke rehabilitation, toward more patient-tailored precision medicine approaches and pathophysiologically motivated strategies.
Collapse
Affiliation(s)
- Estelle Raffin
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
107
|
Stinear CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol 2017; 16:826-836. [DOI: 10.1016/s1474-4422(17)30283-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
|
108
|
Mishra AM, Pal A, Gupta D, Carmel JB. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses. J Physiol 2017; 595:6953-6968. [PMID: 28752624 PMCID: PMC5685837 DOI: 10.1113/jp274663] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/13/2017] [Indexed: 12/04/2022] Open
Abstract
Key points Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord.
Abstract Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord.
Collapse
Affiliation(s)
- Asht M Mishra
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York, 10605, USA
| | - Ajay Pal
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York, 10605, USA
| | - Disha Gupta
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York, 10605, USA.,Brain and Mind Research Institute and Departments of Neurology and Pediatrics, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Jason B Carmel
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York, 10605, USA.,Brain and Mind Research Institute and Departments of Neurology and Pediatrics, Weill Cornell Medical College, New York, NY, 10021, USA
| |
Collapse
|
109
|
Li S, Zhuang C, Niu CM, Bao Y, Xie Q, Lan N. Evaluation of Functional Correlation of Task-Specific Muscle Synergies with Motor Performance in Patients Poststroke. Front Neurol 2017; 8:337. [PMID: 28785238 PMCID: PMC5516096 DOI: 10.3389/fneur.2017.00337] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/28/2017] [Indexed: 12/02/2022] Open
Abstract
The central nervous system produces movements by activating specifically programmed muscle synergies that are also altered with injuries in the brain, such as stroke. In this study, we hypothesize that there exists a positive correlation between task-specific muscle synergy and motor functions at joint and task levels in patients following stroke. The purpose here is to define and evaluate neurophysiological metrics based on task-specific muscle synergy for assessing motor functions in patients. A patient group of 10 subjects suffering from stroke and a control group of nine age-matched healthy subjects were recruited to participate in this study. Electromyography (EMG) signals and movement kinematics were recorded in patients and control subjects while performing arm reaching tasks. Muscle synergies of individual patients were extracted off-line from EMG records of each patient, and a baseline pattern of muscle synergy was obtained from the pooled EMG data of all nine control subjects. Peak velocities and movement durations of each reaching movement were computed from measured kinematics. Similarity indices of matching components to those of the baseline synergy were defined by synergy vectors and time profiles, respectively, as well as by a combined similarity of vector and time profile. Results showed that pathological synergies of patients were altered from the characteristics of baseline synergy with missing components, or varied vector patterns and time profiles. The kinematic performance measured by peak velocities and movement durations was significantly poorer for the patient group than the control group. In patients, all three similarity indices were found to correlate significantly to the kinematics of movements for the reaching tasks. The correlation to the Fugl-Meyer score of arm was the highest with the vector index, the lowest with the time profile index, and in between with the combined index. These findings illustrate that the analysis of task-specific muscle synergy can provide valuable insights into motor deficits for patients following stroke, and the task-specific similarity indices are useful neurophysiological metrics to predict the function of neuromuscular control at the joint and task levels for patients.
Collapse
Affiliation(s)
- Si Li
- Institute of Rehabilitation Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Zhuang
- Institute of Rehabilitation Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanxin M. Niu
- Department of Rehabilitation, Ruijin Hospital of School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Bao
- Department of Rehabilitation, Ruijin Hospital of School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation, Ruijin Hospital of School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Lan
- Institute of Rehabilitation Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
110
|
Plow EB, Sankarasubramanian V, Potter-Baker KA, Lin YL. Reply to "Need for updating safety recommendations on repetitive transcranial magnetic stimulation in stroke patients". Clin Neurophysiol 2017; 128:1544-1545. [PMID: 28662931 DOI: 10.1016/j.clinph.2017.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Neuromodulation Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Louis Stokes Cleveland Department of Veteran's Affairs, Advanced Platform Technology Center, Cleveland, OH, USA
| | - Yin-Liang Lin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
111
|
Slutzky MW, Flint RD. Physiological properties of brain-machine interface input signals. J Neurophysiol 2017; 118:1329-1343. [PMID: 28615329 DOI: 10.1152/jn.00070.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability.
Collapse
Affiliation(s)
- Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, Illinois; .,Department of Physiology, Northwestern University, Chicago, Illinois; and.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Robert D Flint
- Department of Neurology, Northwestern University, Chicago, Illinois
| |
Collapse
|
112
|
De Ridder D, Perera S, Vanneste S. State of the Art: Novel Applications for Cortical Stimulation. Neuromodulation 2017; 20:206-214. [PMID: 28371170 DOI: 10.1111/ner.12593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/13/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Electrical stimulation via implanted electrodes that overlie the cortex of the brain is an upcoming neurosurgical technique that was hindered for a long time by insufficient knowledge of how the brain functions in a dynamic, physiological, and pathological way, as well as by technological limitations of the implantable stimulation devices. METHODS This paper provides an overview of cortex stimulation via implantable devices and introduces future possibilities to improve cortex stimulation. RESULTS Cortex stimulation was initially used preoperatively as a technique to localize functions in the brain and only later evolved into a treatment technique. It was first used for pain, but more recently a multitude of pathologies are being targeted by cortex stimulation. These disorders are being treated by stimulating different cortical areas of the brain. Risks and complications are essentially similar to those related to deep brain stimulation and predominantly include haemorrhage, seizures, infection, and hardware failures. For cortex stimulation to fully mature, further technological development is required to predict its outcomes and improve stimulation designs. This includes the development of network science-based functional connectivity approaches, genetic analyses, development of navigated high definition transcranial alternating current stimulation, and development of pseudorandom stimulation designs for preventing habituation. CONCLUSION In conclusion, cortex stimulation is a nascent but very promising approach to treating a variety of diseases, but requires further technological development for predicting outcomes, such as network science based functional connectivity approaches, genetic analyses, development of navigated transcranial electrical stimulation, and development of pseudorandom stimulation designs for preventing habituation.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | | | - Sven Vanneste
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand.,The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
113
|
Sankarasubramanian V, Machado AG, Conforto AB, Potter-Baker KA, Cunningham DA, Varnerin NM, Wang X, Sakaie K, Plow EB. Inhibition versus facilitation of contralesional motor cortices in stroke: Deriving a model to tailor brain stimulation. Clin Neurophysiol 2017; 128:892-902. [PMID: 28402865 DOI: 10.1016/j.clinph.2017.03.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The standard approach to brain stimulation in stroke is based on the premise that ipsilesional M1 (iM1) is important for motor function of the paretic upper limb, while contralesional cortices compete with iM1. Therefore, the approach typically advocates facilitating iM1 and/or inhibiting contralesional M1 (cM1). But, this approach fails to elicit much improvement in severely affected patients, who on account of extensive damage to ipsilesional pathways, cannot rely on iM1. These patients are believed to instead rely on the undamaged cortices, especially the contralesional dorsal premotor cortex (cPMd), for support of function of the paretic limb. Here, we tested for the first time whether facilitation of cPMd could improve paretic limb function in severely affected patients, and if a cut-off could be identified to separate responders to cPMd from responders to the standard approach to stimulation. METHODS In a randomized, sham-controlled crossover study, fifteen patients received the standard approach of stimulation involving inhibition of cM1 and a new approach involving facilitation of cPMd using repetitive transcranial magnetic stimulation (rTMS). Patients also received rTMS to control areas. At baseline, impairment [Upper Extremity Fugl-Meyer (UEFMPROXIMAL, max=36)] and damage to pathways [fractional anisotropy (FA)] was measured. We measured changes in time to perform proximal paretic limb reaching, and neurophysiology using TMS. RESULTS Facilitation of cPMd generated more improvement in severely affected patients, who had experienced greater damage and impairment than a cut-off value of FA (0.5) and UEFMPROXIMAL (26-28). The standard approach instead generated more improvement in mildly affected patients. Responders to cPMd showed alleviation of interhemispheric competition imposed on iM1, while responders to the standard approach showed gains in ipsilesional excitability in association with improvement. CONCLUSIONS A preliminary cut-off level of severity separated responders for standard approach vs. facilitation of cPMd. SIGNIFICANCE Cut-offs identified here could help select candidates for tailored stimulation in future studies so patients in all ranges of severity could potentially achieve maximum benefit in function of the paretic upper limb.
Collapse
Affiliation(s)
| | - Andre G Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Adriana B Conforto
- Neurology Clinical Division, Neurology Department, Hospital das Clinicas, São Paulo University, 05508-090 São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil
| | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Nicole M Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
114
|
Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimul 2017; 10:214-222. [DOI: 10.1016/j.brs.2017.01.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 12/10/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
|
115
|
Fins JJ, Kubu CS, Mayberg HS, Merkel R, Nuttin B, Schlaepfer TE. Being open minded about neuromodulation trials: Finding success in our “failures”. Brain Stimul 2017; 10:181-186. [DOI: 10.1016/j.brs.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 11/09/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022] Open
|
116
|
Abstract
Recent advancements in stem cell biology and neuromodulation have ushered in a battery of new neurorestorative therapies for ischemic stroke. While the understanding of stroke pathophysiology has matured, the ability to restore patients' quality of life remains inadequate. New therapeutic approaches, including cell transplantation and neurostimulation, focus on reestablishing the circuits disrupted by ischemia through multidimensional mechanisms to improve neuroplasticity and remodeling. The authors provide a broad overview of stroke pathophysiology and existing therapies to highlight the scientific and clinical implications of neurorestorative therapies for stroke.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Anand Veeravagu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
117
|
Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation. Int J Mol Sci 2017; 18:ijms18020335. [PMID: 28165427 PMCID: PMC5343870 DOI: 10.3390/ijms18020335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 11/30/2022] Open
Abstract
Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats’ unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5–20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.
Collapse
|
118
|
Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front Neurosci 2016; 10:584. [PMID: 28082858 PMCID: PMC5186786 DOI: 10.3389/fnins.2016.00584] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Marc W Slutzky
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical CenterDurham, NC, USA; Department of Neurobiology, Duke University Medical CenterDurham, NC, USA; Research and Surgery Services, Durham Veterans Affairs Medical CenterDurham, NC, USA
| |
Collapse
|
119
|
Fulk G, Martin R, Page SJ. Clinically Important Difference of the Arm Motor Ability Test in Stroke Survivors. Neurorehabil Neural Repair 2016; 31:272-279. [DOI: 10.1177/1545968316680486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
120
|
Cunningham DA, Varnerin N, Machado A, Bonnett C, Janini D, Roelle S, Potter-Baker K, Sankarasubramanian V, Wang X, Yue G, Plow EB. Stimulation targeting higher motor areas in stroke rehabilitation: A proof-of-concept, randomized, double-blinded placebo-controlled study of effectiveness and underlying mechanisms. Restor Neurol Neurosci 2016; 33:911-26. [PMID: 26484700 DOI: 10.3233/rnn-150574] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To demonstrate, in a proof-of-concept study, whether potentiating ipsilesional higher motor areas (premotor cortex and supplementary motor area) augments and accelerates recovery associated with constraint induced movement. METHODS In a randomized, double-blinded pilot clinical study, 12 patients with chronic stroke were assigned to receive anodal transcranial direct current stimulation (tDCS) (n = 6) or sham (n = 6) to the ipsilesional higher motor areas during constraint-induced movement therapy. We assessed functional and neurophysiologic outcomes before and after 5 weeks of therapy. RESULTS Only patients receiving tDCS demonstrated gains in function and dexterity. Gains were accompanied by an increase in excitability of the contralesional rather than the ipsilesional hemisphere. CONCLUSIONS Our proof-of-concept study provides early evidence that stimulating higher motor areas can help recruit the contralesional hemisphere in an adaptive role in cases of greater ipsilesional injury. Whether this early evidence of promise translates to remarkable gains in functional recovery compared to existing approaches of stimulation remains to be confirmed in large-scale clinical studies that can reasonably dissociate stimulation of higher motor areas from that of the traditional primary motor cortices.
Collapse
Affiliation(s)
- David A Cunningham
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Nicole Varnerin
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Andre Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Corin Bonnett
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Janini
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Roelle
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Kelsey Potter-Baker
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | | | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic, OH, USA
| | - Guang Yue
- Human Performance & Engineering Laboratory, Kessler Foundation Research Center, West Orange, NJ, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA.,Center for Neurological Restoration, Neurosurgery, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA.,Department of Physical Medicine & Rehab, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
121
|
Piscitelli D. Motor rehabilitation should be based on knowledge of motor control. Arch Physiother 2016; 6:5. [PMID: 29340187 PMCID: PMC5759910 DOI: 10.1186/s40945-016-0019-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
Neurorehabilitation is at a crossroads. Indeed, there is inconclusive, but promising evidence about clinical effectiveness of rehabilitation in the field of neurological impairments. Translating the new theories on motor control into clinical research may help to develop new treatment strategies and guide rehabilitation approaches. The concepts of synergy and the uncontrolled manifold hypothesis provide a strong theoretical framework to explain how the nervous system controls and coordinates movements, ensuring stability during daily actions. Moreover, this approach can increase the understanding of the neural control of action stability with implications for clinical practice and may help the development of new treatment strategies.
Collapse
Affiliation(s)
- Daniele Piscitelli
- School of Medicine and Surgery, PhD Program in Neuroscience, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
122
|
Potter-Baker KA, Varnerin NM, Cunningham DA, Roelle SM, Sankarasubramanian V, Bonnett CE, Machado AG, Conforto AB, Sakaie K, Plow EB. Influence of Corticospinal Tracts from Higher Order Motor Cortices on Recruitment Curve Properties in Stroke. Front Neurosci 2016; 10:79. [PMID: 27013942 PMCID: PMC4781847 DOI: 10.3389/fnins.2016.00079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/18/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recruitment curves (RCs) acquired using transcranial magnetic stimulation are commonly used in stroke to study physiologic functioning of corticospinal tracts (CST) from M1. However, it is unclear whether CSTs from higher motor cortices contribute as well. OBJECTIVE To explore whether integrity of CST from higher motor areas, besides M1, relates to CST functioning captured using RCs. METHODS RCs were acquired for a paretic hand muscle in patients with chronic stroke. Metrics describing gain and overall output of CST were collected. CST integrity was defined by diffusion tensor imaging. For CST emerging from M1 and higher motor areas, integrity (fractional anisotropy) was evaluated in the region of the posterior limb of the internal capsule, the length of CST and in the region of the stroke lesion. RESULTS We found that output and gain of RC was related to integrity along the length of CST emerging from higher motor cortices but not the M1. CONCLUSIONS Our results suggest that RC parameters in chronic stroke infer function primarily of CST descending from the higher motor areas but not M1. RCs may thus serve as a simple, in-expensive means to assess re-mapping of alternate areas that is generally studied with resource-intensive neuroimaging in stroke.
Collapse
Affiliation(s)
- Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Nicole M Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic FoundationCleveland, OH, USA; School of Biomedical Sciences, Department of Neuroscience, Kent State UniversityKent, OH, USA
| | - Sarah M Roelle
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | | | - Corin E Bonnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Andre G Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Adriana B Conforto
- Neurology Clinical Division, Neurology Department, Clinics Hospital, São Paulo UniversitySão Paulo, Brazil; Hospital Israelita Albert EinsteinSão Paulo, Brazil
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic FoundationCleveland, OH, USA; Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic FoundationCleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic FoundationCleveland, OH, USA
| |
Collapse
|
123
|
Models to Tailor Brain Stimulation Therapies in Stroke. Neural Plast 2016; 2016:4071620. [PMID: 27006833 PMCID: PMC4781989 DOI: 10.1155/2016/4071620] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.
Collapse
|
124
|
Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury. Brain Res 2016; 1640:130-138. [PMID: 26855256 DOI: 10.1016/j.brainres.2016.01.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 02/05/2023]
Abstract
There is growing evidence that electrical and magnetic brain stimulation can improve motor function and motor learning following brain damage. Rodent and primate studies have strongly demonstrated that combining cortical stimulation (CS) with skilled motor rehabilitative training enhances functional motor recovery following stroke. Brain stimulation following traumatic brain injury (TBI) is less well studied, but early pre-clinical and human pilot studies suggest that it is a promising treatment for TBI-induced motor impairments as well. This review will first discuss the evidence supporting brain stimulation efficacy derived from the stroke research field as proof of principle and then will review the few studies exploring neuromodulation in experimental TBI studies. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
125
|
Marrow-Derived Mesenchymal Stromal Cells in the Treatment of Stroke. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
126
|
Boychuk JA, Schwerin SC, Thomas N, Roger A, Silvera G, Liverpool M, Adkins DL, Kleim JA. Enhanced Motor Recovery After Stroke With Combined Cortical Stimulation and Rehabilitative Training Is Dependent on Infarct Location. Neurorehabil Neural Repair 2015; 30:173-81. [PMID: 26719353 DOI: 10.1177/1545968315624979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cortical electrical stimulation of the motor cortex in combination with rehabilitative training (CS/RT) has been shown to enhance motor recovery in animal models of focal cortical stroke, yet in clinical trials, the effects are much less robust. The variability of stroke location in human patient populations that include both cortical and subcortical brain regions may contribute to the failure to find consistent effects clinically. OBJECTIVE This study sought to determine whether infarct location influences the enhanced motor recovery previously observed in response to CS/RT. The efficacy of CS/RT to promote improvements in motor function was examined in 2 different rat models of stroke that varied the amount and location of cortical and subcortical damage. METHODS Ischemic infarctions were induced by injecting the vasoconstricting peptide endothelin-1 either (1) onto the middle cerebral artery (MCA) producing damage to the frontal cortex and lateral striatum or (2) into a subcortical region producing damage to the posterior thalamus and internal capsule (subcortical capsular ischemic injury [SCII]). Daily CS/RT or RT alone was then given for 20 days, during which time performance on a skilled reaching task was assessed. RESULTS Animals with MCA occlusion infarctions exhibited enhanced improvements on a skilled reaching task in response to CS/RT relative to RT alone. No such enhancement was observed in animals with SCII infarctions across the 20 days of treatment. CONCLUSIONS The efficacy of CS for enhancing motor recovery after stroke may depend in part on the extent and location of the ischemic infarct.
Collapse
Affiliation(s)
| | - Susan C Schwerin
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Cherney LR. Epidural Cortical Stimulation as Adjunctive Treatment for Nonfluent Aphasia. Neurorehabil Neural Repair 2015; 30:131-42. [PMID: 26704258 DOI: 10.1177/1545968315622574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. There is increasing interest in the application of cortical stimulation (CS) as an adjuvant strategy in aphasia rehabilitation. Epidural CS, although more invasive than other methods, can provide high-frequency ipsilesional stimulation with greater spatial specificity. Objective. We review methods and results of a phase 1 study of epidural CS in combination with rehabilitation therapy in aphasia and provide new objective and self-report data collected between 6 and 21 months after the end of treatment. Methods. Eight stroke survivors with nonfluent aphasia received intensive language therapy, 3 hours a day, for 6 weeks. Four participants also underwent surgical implantation of an epidural stimulation device that was activated only during therapy sessions. Behavioral data were collected before treatment, at the end of treatment, and at 6 and 12 weeks after the end of treatment. Of the 8 participants, 7 also participated in the longer-term follow-up visit. Results. Changes in objective scores from baseline were larger in investigational participants than controls at all assessments, including the longer-term follow-up visit. Satisfaction ratings and ratings of overall improvement by investigational participants and their companions were more varied than those of the controls, but all indicated that they would recommend the investigational treatment to others with aphasia. Conclusions. Improvements were generally maintained for at least 12 weeks posttreatment and possibly as long as 21 months posttreatment. Epidural CS is a potentially safe, feasible adjunctive intervention for persons with chronic nonfluent aphasia that spares the ventral premotor cortex and warrants further investigation.
Collapse
Affiliation(s)
- Leora R. Cherney
- Center for Aphasia Research and Treatment, Rehabilitation Institute of Chicago, Chicago, IL, USA
- Northwestern University, Chicago, IL, USA
| |
Collapse
|
128
|
Plautz EJ, Barbay S, Frost SB, Zoubina EV, Stowe AM, Dancause N, Eisner-Janowicz I, Bury SD, Taylor MD, Nudo RJ. Effects of Subdural Monopolar Cortical Stimulation Paired With Rehabilitative Training on Behavioral and Neurophysiological Recovery After Cortical Ischemic Stroke in Adult Squirrel Monkeys. Neurorehabil Neural Repair 2015; 30:159-72. [PMID: 26704255 DOI: 10.1177/1545968315619701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cortical stimulation (CS) combined with rehabilitative training (RT) has proven effective for enhancing poststroke functional recovery in rats, but human clinical trials have had mixed outcomes. OBJECTIVE To assess the efficacy of CS/RT versus RT in a nonhuman primate model of cortical ischemic stroke. METHODS Squirrel monkeys learned a pellet retrieval task, then received an infarct to the distal forelimb (DFL) representation of primary motor cortex. A subdural monopolar electrode was implanted over the spared DFL representation in dorsal premotor cortex (PMD). Seven weeks postinfarct, monkeys underwent 4 to 6 weeks of RT (n = 8) or CS/RT (n = 7; 100 Hz, cathodal current) therapy. Behavioral performance was assessed before and after infarct, prior to therapy, and 1 and 12 weeks posttherapy (follow-up). The primary outcome measure was motor performance at 1 week posttherapy. Secondary outcomes included follow-up performance at 12 weeks and treatment-related changes in neurophysiological maps of spared DFL representations. RESULTS While postinfarct performance deficits were found in all monkeys, both groups demonstrated similar recovery profiles, with no difference in motor recovery between the RT and CS/RT groups. Posttherapy, PMD DFL area was significantly expanded in the RT group but not the CS/RT group. A significant relationship was found between motor recovery and DFL expansion in premotor cortex. CONCLUSIONS Results suggest that the specific parameters utilized here were not optimal for promoting behavioral recovery in nonhuman primates. Though CS/RT has consistently shown efficacy in rat stroke models, the present finding has cautionary implications for translation of CS/RT therapy to clinical populations.
Collapse
Affiliation(s)
- Erik J Plautz
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott Barbay
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Shawn B Frost
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Ann M Stowe
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Scott D Bury
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
129
|
Jones TA, Adkins DL. Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection. Physiology (Bethesda) 2015; 30:358-70. [PMID: 26328881 PMCID: PMC4556825 DOI: 10.1152/physiol.00014.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke instigates regenerative responses that reorganize connectivity patterns among surviving neurons. The new connectivity patterns can be suboptimal for behavioral function. This review summarizes current knowledge on post-stroke motor system reorganization and emerging strategies for shaping it with manipulations of behavior and cortical activity to improve functional outcome.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department, Neuroscience Institute, University of Texas at Austin, Austin, Texas; and
| | - DeAnna L Adkins
- Neurosciences Department, and Health Sciences & Research Department, Colleges of Medicine & Health Professions, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
130
|
A game of hide and seek: Is it possible to recruit more patients for NIBS studies in stroke? J Neurol Sci 2015; 358:472-4. [PMID: 26320611 DOI: 10.1016/j.jns.2015.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/21/2023]
|
131
|
Cramer SC. Drugs to Enhance Motor Recovery After Stroke. Stroke 2015; 46:2998-3005. [PMID: 26265126 DOI: 10.1161/strokeaha.115.007433] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Steven C Cramer
- From the Deparments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California, Irvine, CA.
| |
Collapse
|