101
|
Choi EY, Park YW, Lee M, Kim M, Lee CS, Ahn SS, Kim J, Lee SK. Magnetic Resonance Imaging-Visible Perivascular Spaces in the Basal Ganglia Are Associated With the Diabetic Retinopathy Stage and Cognitive Decline in Patients With Type 2 Diabetes. Front Aging Neurosci 2021; 13:666495. [PMID: 34867262 PMCID: PMC8633948 DOI: 10.3389/fnagi.2021.666495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/13/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose: The aim of this study was to evaluate whether perivascular space (PVS) severity and retinal ganglion cell layer (GCL) thickness differed based on the stage of diabetic retinopathy (DR) and the cognitive status in patients with DR. Methods: A total of 81 patients with DR (51 in the non-proliferative group and 30 in the proliferative group) were included in this retrospective, cross-sectional study. PVS severity was assessed in the basal ganglia (BG) and centrum semiovale using MRI. The total cerebral small vessel disease (SVD) score was determined based on the numbers of lacunes and microbleeds and the severity of white matter hyperintensity. Optical coherence tomography was used to measure foveal and perifoveal GCL thicknesses. Cerebral SVD markers and cognitive function were compared between the groups, and correlations between the BG-PVS severity and the Mini-Mental Status Examination (MMSE) scores and GCL parameters were evaluated. Results: Patients with proliferative DR had higher BG-PVS severity (P = 0.012), higher total cerebral SVD scores (P = 0.035), reduced GCL thicknesses in the inferior (P = 0.027), superior (P = 0.046), and temporal (P = 0.038) subfields compared to patients with non-proliferative DR. In addition, the BG-PVS severity was negatively correlated with the MMSE score (P = 0.007), and the GCL thickness was negatively correlated with the BG-PVS severity (P-values < 0.05 for inferior, superior, and temporal subfields). Conclusion: BG-PVS severity and retinal GCL thickness may represent novel imaging biomarkers reflecting the stage of DR and cognitive decline in diabetic patients. Furthermore, these results suggest a possible link between cerebral and retinal neurodegeneration at the clinical level.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yae Won Park
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Minyoung Lee
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Kim
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Sung Soo Ahn
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinna Kim
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
102
|
Klostranec JM, Vucevic D, Bhatia KD, Kortman HGJ, Krings T, Murphy KP, terBrugge KG, Mikulis DJ. Current Concepts in Intracranial Interstitial Fluid Transport and the Glymphatic System: Part II-Imaging Techniques and Clinical Applications. Radiology 2021; 301:516-532. [PMID: 34698564 DOI: 10.1148/radiol.2021204088] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The glymphatic system is a recently discovered network unique to the central nervous system that allows for dynamic exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF). As detailed in part I, ISF and CSF transport along paravascular channels of the penetrating arteries and possibly veins allow essential clearance of neurotoxic solutes from the interstitium to the CSF efflux pathways. Imaging tests to investigate this neurophysiologic function, although challenging, are being developed and are reviewed herein. These include direct visualization of CSF transport using postcontrast imaging techniques following intravenous or intrathecal administration of contrast material and indirect glymphatic assessment with detection of enlarged perivascular spaces. Application of MRI techniques, including intravoxel incoherent motion, diffusion tensor imaging, and chemical exchange saturation transfer, is also discussed, as are methods for imaging dural lymphatic channels involved with CSF efflux. Subsequently, glymphatic function is considered in the context of proteinopathies associated with neurodegenerative diseases and traumatic brain injury, cytotoxic edema following acute ischemic stroke, and chronic hydrocephalus after subarachnoid hemorrhage. These examples highlight the substantial role of the glymphatic system in neurophysiology and the development of certain neuropathologic abnormalities, stressing the importance of its consideration when interpreting neuroimaging investigations. © RSNA, 2021.
Collapse
Affiliation(s)
- Jesse M Klostranec
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Diana Vucevic
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Kartik D Bhatia
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Hans G J Kortman
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Timo Krings
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Kieran P Murphy
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Karel G terBrugge
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - David J Mikulis
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| |
Collapse
|
103
|
Huang P, Zhang R, Jiaerken Y, Wang S, Yu W, Hong H, Lian C, Li K, Zeng Q, Luo X, Yu X, Xu X, Wu X, Zhang M. Deep white matter hyperintensity is associated with the dilation of perivascular space. J Cereb Blood Flow Metab 2021; 41:2370-2380. [PMID: 33757317 PMCID: PMC8393291 DOI: 10.1177/0271678x211002279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Understanding the pathophysiology of white matter hyperintensity (WMH) is necessary to reduce its harmfulness. Dilated perivascular space (PVS) had been found related to WMH. In the present study, we aimed to examine the topological connections between WMH and PVS, and to investigate whether increased interstitial fluid mediates the correlation between PVS and WMH volumes. One hundred and thirty-six healthy elder subjects were retrospectively included from a prospectively collected community cohort. Sub-millimeter T2 weighted and FLAIR images were acquired for assessing the association between PVS and WMH. Diffusion tensor imaging and free-water (FW) analytical methods were used to quantify white matter free water content, and to explore whether it mediates the PVS-WMH association. We found that most (89%) of the deep WMH lesions were spatially connected with PVS, exhibiting several interesting topological types. PVS and WMH volumes were also significantly correlated (r = 0.222, p < 0.001). FW mediated this association in the whole sample (β = 0.069, p = 0.037) and in subjects with relatively high WMH load (β = 0.118, p = 0.006). These findings suggest a tight association between PVS dilation and WMH formation, which might be linked by the impaired glymphatic drainage function and accumulated local interstitial fluid.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunfeng Lian
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
104
|
Piantino J, Schwartz DL, Luther M, Newgard C, Silbert L, Raskind M, Pagulayan K, Kleinhans N, Iliff J, Peskind E. Link between Mild Traumatic Brain Injury, Poor Sleep, and Magnetic Resonance Imaging: Visible Perivascular Spaces in Veterans. J Neurotrauma 2021; 38:2391-2399. [PMID: 33599176 PMCID: PMC8390772 DOI: 10.1089/neu.2020.7447] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Impaired clearance of perivascular waste in the brain may play a critical role in morbidity after mild traumatic brain injury (mTBI). We aimed to determine the effect of mTBI on the burden of magnetic resonance imaging (MRI)-visible perivascular spaces (PVSs) in a cohort of U.S. military veterans and whether sleep modulates this effect. We also investigated the correlation between PVS burden and severity of persistent post-concussive symptoms. Fifty-six Iraq/Afghanistan veterans received 3 Tesla MRI as part of a prospective cohort study on military blast mTBI. White matter PVS burden (i.e., number and volume) was calculated using an established automated segmentation algorithm. Multi-variate regression was used to establish the association between mTBIs sustained in the military and PVS burden. Covariates included age, blood pressure, number of impact mTBIs outside the military, and blast exposures. Correlation coefficients were calculated between PVS burden and severity of persistent post-concussive symptoms. There was a significant positive relationship between the number of mTBIs sustained in the military and both PVS number and volume (p = 0.04). A significant interaction was found between mTBI and poor sleep on PVS volume (p = 0.04). A correlation was found between PVS number and volume, as well as severity of postconcussive symptoms (p = 0.03). Further analysis revealed a moderate correlation between PVS number and volume, as well as balance problems (p < 0.001). In Iraq/Afghanistan veterans, mTBI is associated with an increase in PVS burden. Further, an interaction exists between mTBI and poor sleep on PVS burden. Increased PVS burden, which may indicate waste clearance dysfunction, is associated with persistent post-concussive symptom severity.
Collapse
Affiliation(s)
- Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel L. Schwartz
- Layton Aging and Alzheimer's Disease Center, Neurology, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Advanced Imaging Research Center, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Madison Luther
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Craig Newgard
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Lisa Silbert
- Layton Aging and Alzheimer's Disease Center, Neurology, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Portland Veterans Affairs Medical Center, Neurology, Portland, Oregon, USA
| | - Murray Raskind
- Veterans Affairs Northwest Network Mental Illness, Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kathleen Pagulayan
- Veterans Affairs Northwest Network Mental Illness, Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Natalia Kleinhans
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeffrey Iliff
- Veterans Affairs Northwest Network Mental Illness, Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elaine Peskind
- Veterans Affairs Northwest Network Mental Illness, Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
105
|
Düzel E, Costagli M, Donatelli G, Speck O, Cosottini M. Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance. Eur Radiol Exp 2021; 5:36. [PMID: 34435242 PMCID: PMC8387546 DOI: 10.1186/s41747-021-00221-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Ultra-high-field (UHF) magnetic resonance (MR) scanners, that is, equipment operating at static magnetic field of 7 tesla (7 T) and above, enable the acquisition of data with greatly improved signal-to-noise ratio with respect to conventional MR systems (e.g., scanners operating at 1.5 T and 3 T). The change in tissue relaxation times at UHF offers the opportunity to improve tissue contrast and depict features that were previously inaccessible. These potential advantages come, however, at a cost: in the majority of UHF-MR clinical protocols, potential drawbacks may include signal inhomogeneity, geometrical distortions, artifacts introduced by patient respiration, cardiac cycle, and motion. This article reviews the 7 T MR literature reporting the recent studies on the most widespread neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Emrah Düzel
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,University College London, London, UK.
| | - Mauro Costagli
- IRCCS Stella Maris, Pisa, Italy.,University of Genoa, Genova, Italy
| | - Graziella Donatelli
- Fondazione Imago 7, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Oliver Speck
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Mirco Cosottini
- Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.,University of Pisa, Pisa, Italy
| |
Collapse
|
106
|
Song Q, Cheng Y, Wang Y, Liu J, Wei C, Liu M. Enlarged perivascular spaces and hemorrhagic transformation after acute ischemic stroke. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1126. [PMID: 34430567 PMCID: PMC8350705 DOI: 10.21037/atm-21-1276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023]
Abstract
Background Enlarged perivascular spaces (EPVS) are considered to be neuroimaging markers of cerebral small vessel disease (CSVD). It remains unknown whether EPVS are associated with hemorrhagic transformation (HT) after acute ischemic stroke (AIS). We performed this retrospective cohort study to explore the associations of EPVS with clinical risk factors and other CSVD imaging features, and to investigate the relationship between EPVS and HT in patients with AIS. Methods AIS patients admitted within 24 hours of stroke onset between January 2016 and December 2017 were consecutively enrolled. EPVS, lacunes, and white matter hyperintensities (WMH) were rated with validated rating scales on magnetic resonance images after the stroke. HT was defined as hemorrhage determined by follow-up brain imaging during the patients' hospital stay. Logistic regression was used to determine the risk factors and associations with other CSVD markers of EPVS in the basal ganglia (BG) and centrum semiovale (CS) regions, and the impact of EPVS on HT was further explored. Results Among 494 included patients (mean age 66.4 years, 58.1% male), 81 (16.4%) experienced HT. In the multivariate logistic analyses, increasing age [odd ratio (OR) 1.041, 95% confidence interval (CI), 1.017-1.066], hypertension (OR 2.174, 95% CI, 1.338-3.532), lacunar stroke (OR 1.968, 95% CI, 1.169-3.314), CS-EPVS (OR 2.474, 95% CI, 1.796-3.407), and periventricular WMH (OR 2.140, 95% CI, 1.441-3.176) were significantly associated with BG-EPVS; whereas only BG-EPVS (OR 4.349, 95% CI, 2.281-8.291) were independently related to CS-EPVS. After adjustment for potential variables, neither BG-EPVS (OR 0.674, 95% CI, 0.336-1.350) nor CS-EPVS (OR 0.792, 95% CI, 0.334-1.879) was significantly associated with the occurrence of HT. Conclusions Our data showed that EPVS in the BG and CS regions were interrelated and had different risk factors in ischemic stroke patients. EPVS (particularly that in BG) were independently related to other CSVD markers. The presence or burden of EPVS was not significantly associated with HT after AIS.
Collapse
Affiliation(s)
- Quhong Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yajun Cheng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenchen Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
107
|
Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer's continuum. ALZHEIMERS RESEARCH & THERAPY 2021; 13:135. [PMID: 34353353 PMCID: PMC8340485 DOI: 10.1186/s13195-021-00878-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Background Perivascular spaces (PVS) have an important role in the elimination of metabolic waste from the brain. It has been hypothesized that the enlargement of PVS (ePVS) could be affected by pathophysiological mechanisms involved in Alzheimer’s disease (AD), such as abnormal levels of CSF biomarkers. However, the relationship between ePVS and these pathophysiological mechanisms remains unknown. Objective We aimed to investigate the association between ePVS and CSF biomarkers of several pathophysiological mechanisms for AD. We hypothesized that ePVS will be associated to CSF biomarkers early in the AD continuum (i.e., amyloid positive cognitively unimpaired individuals). Besides, we explored associations between ePVS and demographic and cardiovascular risk factors. Methods The study included 322 middle-aged cognitively unimpaired participants from the ALFA + study, many within the Alzheimer’s continuum. NeuroToolKit and Elecsys® immunoassays were used to measure CSF Aβ42, Aβ40, p-tau and t-tau, NfL, neurogranin, TREM2, YKL40, GFAP, IL6, S100, and α-synuclein. PVS in the basal ganglia (BG) and centrum semiovale (CS) were assessed based on a validated 4-point visual rating scale. Odds ratios were calculated for associations of cardiovascular and AD risk factors with ePVS using logistic and multinomial models adjusted for relevant confounders. Models were stratified by Aβ status (positivity defined as Aβ42/40 < 0.071). Results The degree of PVS significantly increased with age in both, BG and CS regions independently of cardiovascular risk factors. Higher levels of p-tau, t-tau, and neurogranin were significantly associated with ePVS in the CS of Aβ positive individuals, after accounting for relevant confounders. No associations were detected in the BG neither in Aβ negative participants. Conclusions Our results support that ePVS in the CS are specifically associated with tau pathophysiology, neurodegeneration, and synaptic dysfunction in asymptomatic stages of the Alzheimer’s continuum. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00878-5.
Collapse
|
108
|
Zhang Y, Zhang R, Ye Y, Wang S, Jiaerken Y, Hong H, Li K, Zeng Q, Luo X, Xu X, Yu X, Wu X, Yu W, Zhang M, Huang P. The Influence of Demographics and Vascular Risk Factors on Glymphatic Function Measured by Diffusion Along Perivascular Space. Front Aging Neurosci 2021; 13:693787. [PMID: 34349635 PMCID: PMC8328397 DOI: 10.3389/fnagi.2021.693787] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Assessing glymphatic function using in-vivo imaging method is of great value for understanding its contribution to major brain diseases. In the present study, we aim to validate the association between a variety of risk factors and a potential index of glymphatic function-Diffusion Tensor Image Analysis Along the Perivascular Space (ALPS index). We enrolled 142 subjects from communities and performed multi-modality magnetic resonance imaging scans. The ALPS index was calculated from diffusion tensor imaging data, and its associations with demographic factors, vascular factors were investigated using regression analyses. We found that the ALPS index was negatively associated with age (β = -0.284, p < 0.001). Compared to males, females had significantly higher ALPS index (β = -0.243, p = 0.001). Hypertensive subjects had significantly lower ALPS index compared to non-hypertensive subjects (β = -0.189, p = 0.013). Furthermore, venous disruption could decrease ALPS index (β = -0.215, p = 0.003). In general, our results are in consistent with previous conceptions and results from animal studies about the pathophysiology of glymphatic dysfunction. Future studies utilizing this method should consider introducing the above-mentioned factors as important covariates.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
109
|
Kim HJ, Cho H, Park M, Kim JW, Ahn SJ, Lyoo CH, Suh SH, Ryu YH. MRI-Visible Perivascular Spaces in the Centrum Semiovale Are Associated with Brain Amyloid Deposition in Patients with Alzheimer Disease-Related Cognitive Impairment. AJNR Am J Neuroradiol 2021; 42:1231-1238. [PMID: 33985952 DOI: 10.3174/ajnr.a7155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The association of perivascular spaces in the centrum semiovale with amyloid accumulation among patients with Alzheimer disease-related cognitive impairment is unknown. We evaluated this association in patients with Alzheimer disease-related cognitive impairment and β-amyloid deposition, assessed with [18F] florbetaben PET/CT. MATERIALS AND METHODS MR imaging and [18F] florbetaben PET/CT images of 144 patients with Alzheimer disease-related cognitive impairment were retrospectively evaluated. MR imaging-visible perivascular spaces were rated on a 4-point visual scale: a score of ≥3 or <3 indicated a high or low degree of MR imaging-visible perivascular spaces, respectively. Amyloid deposition was evaluated using the brain β-amyloid plaque load scoring system. RESULTS Compared with patients negative for β-amyloid, those positive for it were older and more likely to have lower cognitive function, a diagnosis of Alzheimer disease, white matter hyperintensity, the Apolipoprotein E ε4 allele, and a high degree of MR imaging-visible perivascular spaces in the centrum semiovale. Multivariable analysis, adjusted for age and Apolipoprotein E status, revealed that a high degree of MR imaging-visible perivascular spaces in the centrum semiovale was independently associated with β-amyloid positivity (odds ratio, 2.307; 95% CI, 1.036-5.136; P = .041). CONCLUSIONS A high degree of MR imaging-visible perivascular spaces in the centrum semiovale independently predicted β-amyloid positivity in patients with Alzheimer disease-related cognitive impairment. Thus, MR imaging-visible perivascular spaces in the centrum semiovale are associated with amyloid pathology of the brain and could be an indirect imaging marker of amyloid burden in patients with Alzheimer disease-related cognitive impairment.
Collapse
Affiliation(s)
- H J Kim
- From the Department of Nuclear Medicine (H.J.K., Y.H.R.)
- Department of Nuclear Medicine (H.J.K.), Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, South Korea
| | | | - M Park
- Radiology (M.P., J.W.K., S.J.A., S.H.S.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - J W Kim
- Radiology (M.P., J.W.K., S.J.A., S.H.S.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - S J Ahn
- Radiology (M.P., J.W.K., S.J.A., S.H.S.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - S H Suh
- Radiology (M.P., J.W.K., S.J.A., S.H.S.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Y H Ryu
- From the Department of Nuclear Medicine (H.J.K., Y.H.R.)
| |
Collapse
|
110
|
Boutinaud P, Tsuchida A, Laurent A, Adonias F, Hanifehlou Z, Nozais V, Verrecchia V, Lampe L, Zhang J, Zhu YC, Tzourio C, Mazoyer B, Joliot M. 3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network. Front Neuroinform 2021; 15:641600. [PMID: 34262443 PMCID: PMC8273917 DOI: 10.3389/fninf.2021.641600] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all "visible" PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm3 and 0.95 for PVSs larger than 15 mm3. We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.
Collapse
Affiliation(s)
| | - Ami Tsuchida
- UMR 5293, GIN, IMN, Univ. Bordeaux, Bordeaux, France
- UMR 5293, GIN, IMN, CNRS, Bordeaux, France
- UMR 5293, GIN, IMN, CEA, Bordeaux, France
| | - Alexandre Laurent
- UMR 5293, GIN, IMN, Univ. Bordeaux, Bordeaux, France
- UMR 5293, GIN, IMN, CNRS, Bordeaux, France
- UMR 5293, GIN, IMN, CEA, Bordeaux, France
| | - Filipa Adonias
- UMR 5293, GIN, IMN, Univ. Bordeaux, Bordeaux, France
- UMR 5293, GIN, IMN, CNRS, Bordeaux, France
- UMR 5293, GIN, IMN, CEA, Bordeaux, France
| | - Zahra Hanifehlou
- Genesislab, Bordeaux, France
- Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
| | - Victor Nozais
- Genesislab, Bordeaux, France
- UMR 5293, GIN, IMN, Univ. Bordeaux, Bordeaux, France
- UMR 5293, GIN, IMN, CNRS, Bordeaux, France
- UMR 5293, GIN, IMN, CEA, Bordeaux, France
| | - Violaine Verrecchia
- Genesislab, Bordeaux, France
- UMR 5293, GIN, IMN, Univ. Bordeaux, Bordeaux, France
- UMR 5293, GIN, IMN, CNRS, Bordeaux, France
- UMR 5293, GIN, IMN, CEA, Bordeaux, France
| | - Leonie Lampe
- Integrative Model-based Cognitive Neuroscience Research Unit Universiteit van Amsterdam, Amsterdam, Netherlands & Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Junyi Zhang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Christophe Tzourio
- U1219, INSERM, Bordeaux Population Health, University Bordeaux, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Bernard Mazoyer
- Genesislab, Bordeaux, France
- UMR 5293, GIN, IMN, Univ. Bordeaux, Bordeaux, France
- UMR 5293, GIN, IMN, CNRS, Bordeaux, France
- UMR 5293, GIN, IMN, CEA, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marc Joliot
- Genesislab, Bordeaux, France
- UMR 5293, GIN, IMN, Univ. Bordeaux, Bordeaux, France
- UMR 5293, GIN, IMN, CNRS, Bordeaux, France
- UMR 5293, GIN, IMN, CEA, Bordeaux, France
| |
Collapse
|
111
|
Verdelho A, Biessels GJ, Chabriat H, Charidimou A, Duering M, Godefroy O, Pantoni L, Pavlovic A, Wardlaw J. Cerebrovascular disease in patients with cognitive impairment: A white paper from the ESO dementia committee - A practical point of view with suggestions for the management of cerebrovascular diseases in memory clinics. Eur Stroke J 2021; 6:111-119. [PMID: 34414285 PMCID: PMC8370070 DOI: 10.1177/2396987321994294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Practical suggestions on clinical decisions about vascular disease management in patients with cognitive impairment are proposed. METHODS The document was produced by the Dementia Committee of the European Stroke Organisation (ESO) based on the evidence from the literature where available and on the clinical experience of the Committee members. This paper was endorsed by the ESO. FINDINGS Vascular risk factors and cerebrovascular disease are frequent in patients with cognitive impairment. While acute stroke treatment has evolved substantially in last decades, evidence of management of cerebrovascular pathology beyond stroke in patients with cognitive impairment and dementia is quite limited. Additionally, trials to test some daily-life clinical decisions are likely to be complex, difficult to undertake and take many years to provide sufficient evidence to produce recommendations. This document was conceived to provide some suggestions until data from field trials are available. It was conceived for the use of clinicians from memory clinics or involved specifically in cognitive disorders, addressing practical aspects on diagnostic tools, vascular risk management and suggestions on some therapeutic options. DISCUSSION AND CONCLUSIONS The authors did not aim to do an exhaustive or systematic review or to cover all current evidence. The document approach in a very practical way frequent issues concerning cerebrovascular disease in patients with known cognitive impairment.
Collapse
Affiliation(s)
- Ana Verdelho
- Department of Neurosciences and Mental Health, CHLN-Hospital de Santa Maria, Instituto de Medicina Molecular – IMM e Instituto de Saude Ambiental-ISAMB, Faculdade de Medicina. University of Lisbon, Lisbon, Portugal
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hugues Chabriat
- Department of Neurology, FHU NeuroVasc, Hôpital Lariboisiere, University of Paris and INSERM U1141, Paris, France
| | - Andreas Charidimou
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Godefroy
- Departments of Neurology, Amiens University Hospital, and Laboratory of Functional Neurosciences1,6 (UR UPJV 4559), Jules Verne Picardy University, Amiens, France
| | - Leonardo Pantoni
- Stroke and Dementia Lab, “Luigi Sacco” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Aleksandra Pavlovic
- Faculty for Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
112
|
Wang S, Huang P, Zhang R, Hong H, Jiaerken Y, Lian C, Yu X, Luo X, Li K, Zeng Q, Xu X, Yu W, Wu X, Zhang M. Quantity and Morphology of Perivascular Spaces: Associations With Vascular Risk Factors and Cerebral Small Vessel Disease. J Magn Reson Imaging 2021; 54:1326-1336. [PMID: 33998738 DOI: 10.1002/jmri.27702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Perivascular spaces (PVSs) are important component of the brain glymphatic system. While visual rating has been widely used to assess PVS, computational measures may have higher sensitivity for capturing PVS characteristics under disease conditions. PURPOSE To compute quantitative and morphological PVS features and to assess their associations with vascular risk factors and cerebral small vessel disease (CSVD). STUDY TYPE Prospective. POPULATION One hundred sixty-one middle-aged/later middle-aged subjects (age = 60.4 ± 7.3). SEQUENCE 3D T1-weighted, T2-weighted and T2-FLAIR sequences, and susceptibility-weighted multiecho gradient-echo sequence on a 3 T scanner. ASSESSMENT Automated PVS segmentation was performed on sub-millimeter T2-weighted images. Quantitative and morphological PVS features were calculated in white matter (WM) and basal ganglia (BG) regions, including volume, count, size, length (Lmaj ), width (Lmin ), and linearity. Visual PVS scores were also acquired for comparison. STATISTICAL TESTS Simple and multiple linear regression analyses were used to explore the associations among variables. RESULTS WM-PVS visual score and count were associated with hypertension (β = 0.161, P < 0.05; β = 0.193, P < 0.05), as were BG-PVS rating score, volume, count and Lmin (β = 0.197, P < 0.05; β = 0.170, P < 0.05; β = 0.200, P < 0.05; β = 0.172, P < 0.05). WM-PVS size was associated with diabetes (β = 0.165, P < 0.05). WM-PVS and BG-PVS were associated with CSVD markers, especially white matter hyperintensities (WMHs) (P < 0.05). Multiple regression analysis showed that WM/BG-PVS quantitative measures were widely associated with vascular risk factors and CSVD markers (P < 0.05). Morphological measures were associated with WMH severity in WM region and also associated with lacunes and microbleeds (P < 0.05) in BG region. DATA CONCLUSION These novel PVS measures may capture mild PVS alterations driven by different pathologies. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
113
|
Valdés Hernández MDC, Ballerini L, Glatz A, Muñoz Maniega S, Gow AJ, Bastin ME, Starr JM, Deary IJ, Wardlaw JM. Perivascular spaces in the centrum semiovale at the beginning of the 8th decade of life: effect on cognition and associations with mineral deposition. Brain Imaging Behav 2021; 14:1865-1875. [PMID: 31250262 PMCID: PMC7572330 DOI: 10.1007/s11682-019-00128-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brain iron deposits (IDs) are indicative of microvessel dysfunction which may predispose to small vessel disease (SVD) brain damage and worsen cognition later in life. Visible perivascular spaces in the centrum semiovale (CSO-PVS) are SVD features linked with microvessel dysfunction. We examined possible associations of CSO-PVS volume and count with brain IDs and cognitive abilities in 700 community-dwelling individuals from the Lothian Birth Cohort 1936 who underwent detailed cognitive testing and multimodal brain MRI at mean age 72.7 years. Brain IDs were assessed automatically followed by manual editing. PVS were automatically assessed in the centrum semiovale and deep corona radiata supraventricular. General factors of overall cognitive function (g), processing speed (g-speed) and memory (g-memory) were used in the analyses. Median (IQR) volumes of IDs and CSO-PVS expressed as a percentage of intracranial volume were 0.0021 (0.011) and 0.22 (0.13)% respectively. Median count of CSO-PVS was 410 (IQR = 201). Total volumes of CSO-PVS and ID, adjusted for head size, were correlated (Spearman ρ = 0.13, p < 0.001). CSO-PVS volume, despite being correlated with all three cognitive measures, was only associated with g-memory (B = -114.5, SE = 48.35, p = 0.018) in general linear models, adjusting for age, sex, vascular risk factors, childhood intelligence and white matter hyperintensity volume. The interaction of CSO-PVS count with diabetes (B = -0.0019, SE = 0.00093, p = 0.041) and volume with age (B = 1.57, SE = 0.67, p = 0.019) were also associated with g-memory. Linear regression models did not replicate these associations. Therefore, it does not seem that CSO-PVS burden is directly associated with general cognitive ability in older age.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK. .,Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Chancellor's Building FU-427, Edinburgh, EH16 4SB, UK. .,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK. .,Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh Campus, David Brewster Building (Room 2.63A), Edinburgh, EH14 4AS, UK.
| | - Lucia Ballerini
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.,Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Chancellor's Building FU-427, Edinburgh, EH16 4SB, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Andreas Glatz
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Susana Muñoz Maniega
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.,Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Chancellor's Building FU-427, Edinburgh, EH16 4SB, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Alan J Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh Campus, David Brewster Building (Room 2.63A), Edinburgh, EH14 4AS, UK
| | - Mark E Bastin
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Alzheimer Scotland Dementia Research Centre, Department of Psychology (Room G24), University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Joanna M Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.,Dementia Research Institute, University of Edinburgh, 49 Little France Crescent, Chancellor's Building FU-427, Edinburgh, EH16 4SB, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Row Fogo Centre for Ageing and the Brain, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| |
Collapse
|
114
|
Huang P, Zhu Z, Zhang R, Wu X, Jiaerken Y, Wang S, Yu W, Hong H, Lian C, Li K, Zeng Q, Luo X, Xu X, Yu X, Yang Y, Zhang M. Factors Associated With the Dilation of Perivascular Space in Healthy Elderly Subjects. Front Aging Neurosci 2021; 13:624732. [PMID: 33841126 PMCID: PMC8032856 DOI: 10.3389/fnagi.2021.624732] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The dilation of perivascular space (PVS) has been widely used to reflect brain degeneration in clinical brain imaging studies. However, PVS characteristics exhibit large differences in healthy subjects. Such variations need to be better addressed before PVS can be used to reflect pathological changes. In the present study, we aim to investigate the potential influence of several related factors on PVS dilation in healthy elderly subjects. Methods: One-hundred and three subjects (mean age = 59.5) were retrospectively included from a prospectively collected community cohort. Multi-modal high-resolution magnetic resonance imaging and cognitive assessments were performed on each subject. Machine-learning based segmentation methods were employed to quantify PVS volume and white matter hyperintensity (WMH) volume. Multiple regression analysis was performed to reveal the influence of demographic factors, vascular risk factors, intracranial volume (ICV), major brain artery diameters, and brain atrophy on PVS dilation. Results: Multiple regression analysis showed that age was positively associated with the basal ganglia (BG) (standardized beta = 0.227, p = 0.027) and deep white matter (standardized beta = 0.220, p = 0.029) PVS volume. Hypertension was positively associated with deep white matter PVS volume (standardized beta = 0.234, p = 0.017). Furthermore, we found that ICV was strongly associated with the deep white matter PVS volume (standardized beta = 0.354, p < 0.001) while the intracranial artery diameter was negatively associated with the deep white matter PVS volume (standardized beta = -0.213, p = 0.032). Conclusions: Intracranial volume has significant influence on deep white matter PVS volume. Future studies on PVS dilation should include ICV as an important covariate.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zili Zhu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunfeng Lian
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
115
|
Chung SJ, Yoo HS, Shin NY, Park YW, Lee HS, Hong JM, Kim YJ, Lee SK, Lee PH, Sohn YH. Perivascular Spaces in the Basal Ganglia and Long-term Motor Prognosis in Newly Diagnosed Parkinson Disease. Neurology 2021; 96:e2121-e2131. [PMID: 33653906 DOI: 10.1212/wnl.0000000000011797] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/25/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the association between enlarged perivascular spaces (PVS) in the basal ganglia (BG-PVS) and long-term motor outcomes in Parkinson disease (PD). METHODS We reviewed the medical records of 248 patients with drug-naive early-stage PD (follow-up >3 years, mean age 67.44 ± 8.46 years, 130 female) who underwent brain MRI and dopamine transporter (DAT) scans at initial assessment. The number of baseline enlarged BG-PVS was counted on axial T2-weighted images. Then, patients were divided into 2 groups: a PD group with a low number (0-10) of enlarged PVS (PD-EPVS-; n = 156) and a PD group with a high number (>10) of enlarged PVS (PD-EPVS+; n = 92). We used Cox regression models to compare the levodopa-induced dyskinesia (LID)-, wearing-off-, and freezing of gait (FOG)-free times between groups. We also compared longitudinal increases in levodopa-equivalent dose per body weight between groups using a linear mixed model. RESULTS Patients in the PD-EPVS+ group were older (72.28 ± 6.07 years) and had greater small vessel disease burden than those in the PD-EPVS- group (64.58 ± 8.38 years). The PD-EPVS+ group exhibited more severely decreased DAT availability in all striatal subregions except the ventral striatum. The risk of FOG was higher in the PD-EPVS+ group, but the risk of LID or wearing-off was comparable between groups. The PD-EPVS+ group required higher doses of dopaminergic medications for effective symptom control compared to the PD-EPVS- group. CONCLUSION This study suggests that baseline enlarged BG-PVS can be an indicator of the progression of motor disability in PD.
Collapse
Affiliation(s)
- Seok Jong Chung
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han Soo Yoo
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Na-Young Shin
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yae Won Park
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hye Sun Lee
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Man Hong
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yun Joong Kim
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Koo Lee
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Phil Hyu Lee
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young H Sohn
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
116
|
Kulesh AA, Emelin AY, Bogolepova AN, Doronina OB, Zakharov VV, Kolokolov OV, Kotov SV, Korsunskaya LL, Kutlubaev MA, Laskov VB, Levin OS, Parfenov VA. Clinical manifestations and issues of diagnosis of chronic cerebrovascular disease (chronic cerebral ischemia) at an early (pre-dementia) stage. ACTA ACUST UNITED AC 2021. [DOI: 10.14412/2074-2711-2021-1-4-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The paper presents experts' opinion on the clinical manifestations and diagnosis of chronic cerebrovascular disease (CVD) (chronic cerebral ischemia (CCI) and dyscirculatory encephalopathy (DEP)) at the pre-dementia stage. It is noted that DEP/CCI is a common diagnosis in Russian neurological practice, the criteria for which have not been updated for a long time. DEP/CCI most often develops in the presence of cerebral small artery (CSA) disease (cerebral microangiopathy (CMA)), the severity of which can be quantified by magnetic resonance imaging. The main clinical manifestation of DEP/CCI is cognitive impairment that may be subjective or moderate at the pre-dementia stage. Emotional disorders (apathy, depression, anxiety) and instability are considered as possible manifestations of CSA disease. It is noted that headache and vestibular vertigo are not caused by chronic CVD; while in patients with CMA, they are usually associated with other diseases (primary headache, peripheral vestibular vertigo, and vestibular migraine). The diagnosis of DEP/CCI should be based on the presence of cognitive impairment, reliable neuroimaging signs of CVD, and the exclusion of another cause of cognitive impairment.
Collapse
Affiliation(s)
- A. A. Kulesh
- Academician E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - A. Yu. Emelin
- S.M. Kirov Military Medical Academy, Ministry of Defense of Russia
| | - A. N. Bogolepova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - O. B. Doronina
- Novosibirsk State Medical University, Ministry of Health of Russia
| | - V. V. Zakharov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | - O. V. Kolokolov
- V.I. Razumovsky Saratov State Medical University, Ministry of Health of Russia
| | - S. V. Kotov
- M.F. Vladimirsky Moscow Regional Research Clinical Institute
| | - L. L. Korsunskaya
- S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
| | - M. A. Kutlubaev
- Bashkir State Medical University, Ministry of Health of Russia
| | - V. B. Laskov
- Kursk State Medical University, Ministry of Health of Russia
| | - O. S. Levin
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | - V. A. Parfenov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|
117
|
Paradise M, Crawford JD, Lam BCP, Wen W, Kochan NA, Makkar S, Dawes L, Trollor J, Draper B, Brodaty H, Sachdev PS. Association of Dilated Perivascular Spaces With Cognitive Decline and Incident Dementia. Neurology 2021; 96:e1501-e1511. [PMID: 33504642 DOI: 10.1212/wnl.0000000000011537] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To determine whether severe perivascular space (PVS) dilation is associated with longitudinal cognitive decline and incident dementia over 4 and 8 years, respectively, we analyzed data from a prospective cohort study. METHODS A total of 414 community-dwelling older adults aged 72-92 years were assessed at baseline and biennially for up to 8 years, with cognitive assessments, consensus dementia diagnoses, and 3T MRI. The numbers of PVS in 2 representative slices in the basal ganglia (BG) and centrum semiovale (CSO) were counted and severe PVS pathology defined as the top quartile. The effects of severe PVS pathology in either region or both regions and those with severe BG PVS and severe CSO PVS were examined. White matter hyperintensity volume, cerebral microbleed number, and lacune number were calculated. RESULTS Participants with severe PVS pathology in both regions or in the CSO alone had greater decline in global cognition over 4 years, even after adjustment for the presence of other small vessel disease neuroimaging markers. The presence of severe PVS pathology in both regions was an independent predictor of dementia across 8 years (odds ratio 2.91, 95% confidence interval 1.43-5.95, p = 0.003). The presence of severe PVS pathology in all groups examined was associated with greater dementia risk at either year 4 or 6. CONCLUSIONS Severe PVS pathology is a marker for increased risk of cognitive decline and dementia, independent of other small vessel disease markers. The differential cognitive associations for BG and CSO PVS may represent differences in their underlying pathology.
Collapse
Affiliation(s)
- Matthew Paradise
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia.
| | - John D Crawford
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Ben C P Lam
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Wei Wen
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Nicole A Kochan
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Steve Makkar
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Laughlin Dawes
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Julian Trollor
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Brian Draper
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Henry Brodaty
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| | - Perminder S Sachdev
- From the Centre for Healthy Brain Ageing (CHeBA) (M.P., J.D.C., B.C.P.L., W.W., N.A.K., S.M., J.T., B.D., H.B., P.S.S.), School of Psychiatry, UNSW Medicine, University of New South Wales; Neuropsychiatric Institute (P.S.S.), The Prince of Wales Hospital (L.D., B.D., H.B.) ; and Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), UNSW Sydney, Australia
| |
Collapse
|
118
|
Agarwal N, Carare RO. Cerebral Vessels: An Overview of Anatomy, Physiology, and Role in the Drainage of Fluids and Solutes. Front Neurol 2021; 11:611485. [PMID: 33519691 PMCID: PMC7838613 DOI: 10.3389/fneur.2020.611485] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
The cerebral vasculature is made up of highly specialized structures that assure constant brain perfusion necessary to meet the very high demand for oxygen and glucose by neurons and glial cells. A dense, redundant network of arteries is spread over the entire pial surface from which penetrating arteries dive into the cortex to reach the neurovascular units. Besides providing blood to the brain parenchyma, cerebral arteries are key in the drainage of interstitial fluid (ISF) and solutes such as amyloid-beta. This occurs along the basement membranes surrounding vascular smooth muscle cells, toward leptomeningeal arteries and deep cervical lymph nodes. The dense microvasculature is made up of fine capillaries. Capillary walls contain pericytes that have contractile properties and are lined by a highly specialized blood-brain barrier that regulates the entry of solutes and ions and maintains the integrity of the composition of ISF. They are also important for the production of ISF. Capillaries drain into venules that course centrifugally toward the cortex to reach cortical veins and empty into dural venous sinuses. The walls of the venous sinuses are also home to meningeal lymphatic vessels that support the drainage of cerebrospinal fluid, although such pathways are still poorly understood. Damage to macro- and microvasculature will compromise cerebral perfusion, hamper the highly synchronized movement of neurofluids, and affect the drainage of waste products leading to neuronal and glial degeneration. This review will present vascular anatomy, their role in fluid dynamics, and a summary of how their dysfunction can lead to neurodegeneration.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Hospital S. Maria del Carmine, Azienda Provinciale per i Servizi Sanitari, Rovereto, Italy.,Laboratory of Functional Neuroimaging, Center for Mind/Brain Sciences, University of Trento, Trento, Italy.,Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
119
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
120
|
Wang ML, Yu MM, Wei XE, Li WB, Li YH. Association of enlarged perivascular spaces with Aβ and tau deposition in cognitively normal older population. Neurobiol Aging 2020; 100:32-38. [PMID: 33477009 DOI: 10.1016/j.neurobiolaging.2020.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023]
Abstract
The relationship between magnetic resonance imaging (MRI)-visible enlarged perivascular spaces (EPVS) and Aβ and tau deposition is poorly investigated in cognitively normal older population. In our study, a total of 106 cognitively normal older subjects from the Alzheimer's Disease Neuroimaging Initiative database were included. All the subjects underwent brain MRI, florbetapir positron emission tomography (PET), and flortaucipir PET examinations. EPVS were rated on MRI using a 5-point scale in the basal ganglia (BG-EPVS) and the centrum semiovale (CSO-EPVS). Our study revealed that 43 subjects had high-degree BG-EPVS (degree >1) and 58 subjects had high-degree CSO-EPVS (degree >1). In logistic regression, high degree of BG-EPVS was associated with age (odds ratio [OR]: 1.08, 95% confidence interval [CI]: 1.01-1.16) and severe deep white matter hyperintensity (OR: 2.67, 95% CI: 1.12-6.35). High degree of CSO-EPVS was associated with flortaucipir PET positivity (OR: 2.24, 95% CI: 1.02-4.93). In conclusion, high degree of CSO-EPVS was associated with tau deposition in the brain, whereas high degree of BG-EPVS was associated with age and severe deep white matter hyperintensity, a marker of small vessel disease.
Collapse
Affiliation(s)
- Ming-Liang Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Meng Yu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Er Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Bin Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | -
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
121
|
Volumetric distribution of perivascular space in relation to mild cognitive impairment. Neurobiol Aging 2020; 99:28-43. [PMID: 33422892 DOI: 10.1016/j.neurobiolaging.2020.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Vascular contributions to early cognitive decline are increasingly recognized, prompting further investigation into the nature of related changes in perivascular spaces (PVS). Using magnetic resonance imaging, we show that, compared to a cognitively normal sample, individuals with early cognitive dysfunction have altered PVS presence and distribution, irrespective of Amyloid-β. Surprisingly, we noted lower PVS presence in the anterosuperior medial temporal lobe (asMTL) (1.29 times lower PVS volume fraction in cognitively impaired individuals, p < 0.0001), which was associated with entorhinal neurofibrillary tau tangle deposition (beta (standard error) = -0.98 (0.4); p = 0.014), one of the hallmarks of early Alzheimer's disease pathology. We also observed higher PVS volume fraction in centrum semi-ovale of the white matter, but only in female participants (1.47 times higher PVS volume fraction in cognitively impaired individuals, p = 0.0011). We also observed PVS changes in participants with history of hypertension (higher in the white matter and lower in the asMTL). Our results suggest that anatomically specific alteration of the PVS is an early neuroimaging feature of cognitive impairment in aging adults, which is differentially manifested in female.
Collapse
|
122
|
Fang Y, Gu LY, Tian J, Dai SB, Chen Y, Zheng R, Si XL, Jin CY, Song Z, Yan YP, Yin XZ, Pu JL, Zhang BR. MRI-visible perivascular spaces are associated with cerebrospinal fluid biomarkers in Parkinson's disease. Aging (Albany NY) 2020; 12:25805-25818. [PMID: 33234732 PMCID: PMC7803484 DOI: 10.18632/aging.104200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/29/2020] [Indexed: 12/25/2022]
Abstract
Perivascular spaces in the brain have been known to communicate with cerebrospinal fluid and contribute to waste clearance in animal models. In this study, we sought to determine the association between MRI-visible enlarged perivascular spaces (EPVS) and disease markers in Parkinson's disease (PD). We obtained longitudinal data from 245 patients with PD and 98 healthy controls from the Parkinson's Progression Marker Initiative. Two trained neurologists performed visual ratings on T2-weighted images to characterize EPVS in the centrum semiovale (CSO), the basal ganglia (BG) and the midbrain. We found that a greater proportion of patients with PD had low grade BG-EPVS relative to healthy controls. In patients with PD, lower grade of BG-EPVS and CSO-EPVS predicted lower CSF α-synuclein and t-tau. Lower grade of BG-EPVS were also associated with accelerated Hoehn &Yahr stage progression in patients with baseline stage 1. BG-EPVS might be a valuable predictor of disease progression.
Collapse
Affiliation(s)
- Yi Fang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Lu-Yan Gu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Shao-Bing Dai
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Ying Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xiao-Li Si
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.,Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Chong-Yao Jin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Ya-Ping Yan
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xin-Zhen Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
123
|
Ramirez J, Holmes MF, Scott CJM, Ozzoude M, Adamo S, Szilagyi GM, Goubran M, Gao F, Arnott SR, Lawrence-Dewar JM, Beaton D, Strother SC, Munoz DP, Masellis M, Swartz RH, Bartha R, Symons S, Black SE. Ontario Neurodegenerative Disease Research Initiative (ONDRI): Structural MRI Methods and Outcome Measures. Front Neurol 2020; 11:847. [PMID: 32849254 PMCID: PMC7431907 DOI: 10.3389/fneur.2020.00847] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/07/2020] [Indexed: 01/18/2023] Open
Abstract
The Ontario Neurodegenerative Research Initiative (ONDRI) is a 3 years multi-site prospective cohort study that has acquired comprehensive multiple assessment platform data, including 3T structural MRI, from neurodegenerative patients with Alzheimer's disease, mild cognitive impairment, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and cerebrovascular disease. This heterogeneous cross-section of patients with complex neurodegenerative and neurovascular pathologies pose significant challenges for standard neuroimaging tools. To effectively quantify regional measures of normal and pathological brain tissue volumes, the ONDRI neuroimaging platform implemented a semi-automated MRI processing pipeline that was able to address many of the challenges resulting from this heterogeneity. The purpose of this paper is to serve as a reference and conceptual overview of the comprehensive neuroimaging pipeline used to generate regional brain tissue volumes and neurovascular marker data that will be made publicly available online.
Collapse
Affiliation(s)
- Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Melissa F Holmes
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Christopher J M Scott
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Miracle Ozzoude
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sabrina Adamo
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Gregory M Szilagyi
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Maged Goubran
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | | | | | - Derek Beaton
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Stephen C Strother
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Sean Symons
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
124
|
Guisset F, Lolli V, Bugli C, Perrotta G, Absil J, Dachy B, Pot C, Théaudin M, Pasi M, van Pesch V, Maggi P. The central vein sign in multiple sclerosis patients with vascular comorbidities. Mult Scler 2020; 27:1057-1065. [DOI: 10.1177/1352458520943785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The central vein sign (CVS) is an imaging biomarker able to differentiate multiple sclerosis (MS) from other conditions causing similar appearance lesions on magnetic resonance imaging (MRI), including cerebral small vessel disease (CSVD). However, the impact of vascular risk factors (VRFs) for CSVD on the percentage of CVS positive (CVS+) lesions in MS has never been evaluated. Objective: To investigate the association between different VRFs and the percentage of CVS+ lesions in MS. Methods: In 50 MS patients, 3T brain MRIs (including high-resolution 3-dimensional T2*-weighted images) were analyzed for the presence of the CVS and MRI markers of CSVD. A backward stepwise regression model was used to predict the combined predictive effect of VRF (i.e. age, hypertension, diabetes, obesity, ever-smoking, and hypercholesterolemia) and MRI markers of CSVD on the CVS. Results: The median frequency of CVS+ lesions was 71% (range: 35%–100%). In univariate analysis, age ( p < 0.0001), hypertension ( p < 0.001), diabetes ( p < 0.01), obesity ( p < 0.01), smoking ( p < 0.05), and the presence of enlarged-perivascular-spaces on MRI ( p < 0.005) were all associated with a lower percentage of CVS+ lesions. The stepwise regression model showed that age and arterial hypertension were both associated with the percentage of CVS+ lesions in MS (adjusted R2 = 0.46; p < 0.0001 and p = 0.01, respectively). Conclusion: The proportion of CVS+ lesions significantly decreases in older and hypertensive MS patients. Although this study was conducted in patients with an already established MS diagnosis, the diagnostic yield of the previously proposed 35% CVS proportion-based diagnostic threshold appears to be not affected. Overall these results suggest that the presence of VRF for CSVD should be taken into account during the CVS assessment.
Collapse
Affiliation(s)
- François Guisset
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium/Department of Neurology, Hôpital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université Catholique de Louvain, Brussels, Belgium
| | - Gaetano Perrotta
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Bernard Dachy
- Department of Neurology, Hôpital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline Pot
- Department of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Théaudin
- Department of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marco Pasi
- University of Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neuroscience & Cognition, Lille, France
| | - Vincent van Pesch
- Department of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pietro Maggi
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium/Department of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland/Department of Neurology, Cliniques universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
125
|
Enlarged perivascular spaces in multiple sclerosis on magnetic resonance imaging: a systematic review and meta-analysis. J Neurol 2020; 267:3199-3212. [PMID: 32535680 PMCID: PMC7577911 DOI: 10.1007/s00415-020-09971-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Perivascular spaces can become detectable on magnetic resonance imaging (MRI) upon enlargement, referred to as enlarged perivascular spaces (EPVS) or Virchow-Robin spaces. EPVS have been linked to small vessel disease. Some studies have also indicated an association of EPVS to neuroinflammation and/or neurodegeneration. However, there is conflicting evidence with regards to their potential as a clinically relevant imaging biomarker in multiple sclerosis (MS). METHODS To perform a systematic review and meta-analysis of EPVS as visualized by MRI in MS. Nine out of 299 original studies addressing EPVS in humans using MRI were eligible for the systematic review and meta-analysis including a total of 457 MS patients and 352 control subjects. RESULTS In MS, EPVS have been associated with cognitive decline, contrast-enhancing MRI lesions, and brain atrophy. Yet, these associations were not consistent between studies. The meta-analysis revealed that MS patients have greater EPVS prevalence (odds ratio = 4.61, 95% CI = [1.84; 11.60], p = 0.001) as well as higher EPVS counts (standardized mean difference [SMD] = 0.46, 95% CI = [0.26; 0.67], p < 0.001) and larger volumes (SMD = 0.88, 95% CI = [0.19; 1.56], p = 0.01) compared to controls. CONCLUSIONS Available literature suggests a higher EPVS burden in MS patients compared to controls. The association of EPVS to neuroinflammatory or -degenerative pathology in MS remains inconsistent. Thus, there is currently insufficient evidence supporting EPVS as diagnostic and/or prognostic marker in MS. In order to benefit future comparisons of studies, we propose recommendations on EPVS assessment standardization in MS. PROSPERO No: CRD42019133946.
Collapse
|
126
|
Jie W, Lin G, Liu Z, Zhou H, Lin L, Liang G, Ou M, Lin M. The Relationship Between Enlarged Perivascular Spaces and Cognitive Function: A Meta-Analysis of Observational Studies. Front Pharmacol 2020; 11:715. [PMID: 32499704 PMCID: PMC7243265 DOI: 10.3389/fphar.2020.00715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/30/2020] [Indexed: 01/11/2023] Open
Abstract
Enlarged perivascular spaces (ePVS), visible on magnetic resonance imaging (MRI), are associated with aortic pulse wave changes produced by arterial stiffening. However, the relationship between ePVS and cognition is still unclear. We aimed to benchmark current knowledge of associations between ePVS and cognitive function using a meta-analysis of all available published data. We searched three databases for studies examining ePVS and cognition, identified seven studies involving 7,816 participants, plotted multivariate-adjusted odds ratio (OR) and 95% CI and generated summary OR with a fixed effects model. EPVS were related to the risk of impaired cognition (OR = 1.387, 95% CI = 1.198–1.606, z=4.38, P<0.001) with low heterogeneity. There was publication bias, which could be corrected by trimming and supplementation (OR=1.297, 95% CI= 1.130–1.490). EPVS were associated with impaired cognition and may be a sign of cognitive impairment rather than particular diseases. More studies are required to validate ePVS as a measurable risk marker for cognition using consistent methods to determinea characteristic appearance of ePVS.
Collapse
Affiliation(s)
- Wanxin Jie
- Department of Neurology, Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guanghong Lin
- Medical Intensive Care Unit, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Zhou Liu
- Department of Neurology, Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Department of Neurology, Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lifeng Lin
- Department of Neurology, Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guocong Liang
- Department of Neurology, Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingqian Ou
- Department of Neurology, Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Meijun Lin
- Department of Neurology, Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
127
|
Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol 2020; 16:137-153. [PMID: 32094487 DOI: 10.1038/s41582-020-0312-z] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Perivascular spaces include a variety of passageways around arterioles, capillaries and venules in the brain, along which a range of substances can move. Although perivascular spaces were first identified over 150 years ago, they have come to prominence recently owing to advances in knowledge of their roles in clearance of interstitial fluid and waste from the brain, particularly during sleep, and in the pathogenesis of small vessel disease, Alzheimer disease and other neurodegenerative and inflammatory disorders. Experimental advances have facilitated in vivo studies of perivascular space function in intact rodent models during wakefulness and sleep, and MRI in humans has enabled perivascular space morphology to be related to cognitive function, vascular risk factors, vascular and neurodegenerative brain lesions, sleep patterns and cerebral haemodynamics. Many questions about perivascular spaces remain, but what is now clear is that normal perivascular space function is important for maintaining brain health. Here, we review perivascular space anatomy, physiology and pathology, particularly as seen with MRI in humans, and consider translation from models to humans to highlight knowns, unknowns, controversies and clinical relevance.
Collapse
|
128
|
Ballerini L, McGrory S, Valdés Hernández MDC, Lovreglio R, Pellegrini E, MacGillivray T, Muñoz Maniega S, Henderson R, Taylor A, Bastin ME, Doubal F, Trucco E, Deary IJ, Wardlaw J. Quantitative measurements of enlarged perivascular spaces in the brain are associated with retinal microvascular parameters in older community-dwelling subjects. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2020; 1:100002. [PMID: 33458712 PMCID: PMC7792660 DOI: 10.1016/j.cccb.2020.100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/05/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Perivascular Spaces (PVS) become increasingly visible with advancing age on brain MRI, yet their relationship to morphological changes in the underlying microvessels remains poorly understood. Retinal and cerebral microvessels share morphological and physiological properties. We compared computationally-derived PVS morphologies with retinal vessel morphologies in older people. METHODS We analysed data from community-dwelling individuals who underwent multimodal brain MRI and retinal fundus camera imaging at mean age 72.55 years (SD=0.71). We assessed centrum semiovale PVS computationally to determine PVS total volume and count, and mean per-subject individual PVS length, width and size. We analysed retinal images using the VAMPIRE software suite, obtaining the Central Retinal Artery and Vein Equivalents (CRVE and CRAE), Arteriole-to-Venule ratio (AVR), and fractal dimension (FD) of both eyes. We investigated associations using general linear models, adjusted for age, gender, and major vascular risk factors. RESULTS In 381 subjects with all measures, increasing total PVS volume and count were associated with decreased CRAE in the left eye (volume β=-0.170, count β=-0.184, p<0.001). No associations of PVS with CRVE were found. The PVS total volume, individual width and size increased with decreasing FD of the arterioles (a) and venules (v) of the left eye (total volume: FDa β=-0.137, FDv β=-0.139, p<0.01; width: FDa β=-0.144, FDv β=-0.158, p<0.01; size: FDa β=-0.157, FDv β=-0.162, p<0.01). CONCLUSIONS Increase in PVS number and size visible on MRI reflect arteriolar narrowing and lower retinal arteriole and venule branching complexity, both markers of impaired microvascular health. Computationally-derived PVS metrics may be an early indicator of failing vascular health and should be tested in longitudinal studies.
Collapse
Affiliation(s)
- Lucia Ballerini
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Sarah McGrory
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Maria del C. Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | | - Enrico Pellegrini
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Tom MacGillivray
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susana Muñoz Maniega
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ross Henderson
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Mark E. Bastin
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Fergus Doubal
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emanuele Trucco
- VAMPIRE Project, Computing (SSEN), University of Dundee, Dundee, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Joanna Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE Project, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
129
|
Ballerini L, Booth T, Valdés Hernández MDC, Wiseman S, Lovreglio R, Muñoz Maniega S, Morris Z, Pattie A, Corley J, Gow A, Bastin ME, Deary IJ, Wardlaw J. Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. Neuroimage Clin 2019; 25:102120. [PMID: 31887717 PMCID: PMC6939098 DOI: 10.1016/j.nicl.2019.102120] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/29/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Perivascular Spaces (PVS), also known as Virchow-Robin spaces, seen on structural brain MRI, are important fluid drainage conduits and are associated with small vessel disease (SVD). Computational quantification of visible PVS may enable efficient analyses in large datasets and increase sensitivity to detect associations with brain disorders. We assessed the associations of computationally-derived PVS parameters with vascular factors and white matter hyperintensities (WMH), a marker of SVD. PARTICIPANTS Community dwelling individuals (n = 700) from the Lothian Birth Cohort 1936 who had multimodal brain MRI at age 72.6 years (SD = 0.7). METHODS We assessed PVS computationally in the centrum semiovale and deep corona radiata on T2-weighted images. The computationally calculated measures were the total PVS volume and count per subject, and the mean individual PVS length, width and size, per subject. We assessed WMH by volume and visual Fazekas scores. We compared PVS visual rating to PVS computational metrics, and tested associations between each PVS measure and vascular risk factors (hypertension, diabetes, cholesterol), vascular history (cardiovascular disease and stroke), and WMH burden, using generalized linear models, which we compared using coefficients, confidence intervals and model fit. RESULTS In 533 subjects, the computational PVS measures correlated positively with visual PVS ratings (PVS count r = 0.59; PVS volume r = 0.61; PVS mean length r = 0.55; PVS mean width r = 0.52; PVS mean size r = 0.47). PVS size and width were associated with hypertension (OR 1.22, 95% CI [1.03 to 1.46] and 1.20, 95% CI [1.01 to 1.43], respectively), and stroke (OR 1.34, 95% CI [1.08 to 1.65] and 1.36, 95% CI [1.08 to 1.71], respectively). We found no association between other PVS measures and diabetes, hypercholesterolemia or cardiovascular disease history. Computational PVS volume, length, width and size were more strongly associated with WMH (PVS mean size versus WMH Fazekas score β = 0.66, 95% CI [0.59 to 0.74] and versus WMH volume β = 0.43, 95% CI [0.38 to 0.48]) than computational PVS count (WMH Fazekas score β = 0.21, 95% CI [0.11 to 0.3]; WMH volume β = 0.14, 95% CI [0.09 to 0.19]) or visual score. Individual PVS size showed the strongest association with WMH. CONCLUSIONS Computational measures reflecting individual PVS size, length and width were more strongly associated with WMH, stroke and hypertension than computational count or visual PVS score. Multidimensional computational PVS metrics may increase sensitivity to detect associations of PVS with risk exposures, brain lesions and neurological disease, provide greater anatomic detail and accelerate understanding of disorders of brain fluid and waste clearance.
Collapse
Affiliation(s)
- Lucia Ballerini
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| | - Tom Booth
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, UK
| | - Stewart Wiseman
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | | | - Susana Muñoz Maniega
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Zoe Morris
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Alan Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, Heriot-Watt University, Edinburgh, UK
| | - Mark E Bastin
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Joanna Wardlaw
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
130
|
Paradise MB, Beaudoin MS, Dawes L, Crawford JD, Wen W, Brodaty H, Sachdev PS. Development and validation of a rating scale for perivascular spaces on 3T MRI. J Neurol Sci 2019; 409:116621. [PMID: 31945583 DOI: 10.1016/j.jns.2019.116621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND PURPOSE To develop and validate a novel perivascular space rating scale, based on single axial slices in the basal ganglia and the centrum semiovale on T1-weighted and FLAIR images obtained on a 3T MRI scanner. METHODS 414 community dwelling older adults age 70-90 were assessed. The number of perivascular spaces in the slices 2 mm (basal ganglia) and 37 mm (centrum semiovale) above the anterior commissure were counted. The construct validity of the scale was tested by examining associations with age, sex, vascular risk factors and neuroimaging markers of small vessel disease; white matter hyperintensities, lacunes and cerebral microbleeds. Associations with cross sectional global and domain specific cognition were also examined. RESULTS The rating scale had excellent inter-rater reliability (intraclass correlation coefficient in basal ganglia 0.82 and centrum semiovale 0.96), good intra-rater reliability (ICC in basal ganglia 0.72 and centrum semiovale 0.87) and reasonable concurrent validity with an existing perivascular spaces scale (Spearman rho = 0.49, p < .001). There was a median of four basal ganglia and zero centrum semiovale perivascular spaces. Basal ganglia perivascular spaces were more common in men and associated with the other neuroimaging markers. Perivascular spaces in either location were not independently associated with global or domain specific cognitive impairment. CONCLUSION The new rating scale is easy to use, quick, has good psychometric properties and performs better than existing scales in a community dwelling older cohort. Further studies are needed to validate the scale in more diverse cohorts with greater cerebrovascular burden.
Collapse
Affiliation(s)
- Matthew B Paradise
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia.
| | | | | | - John D Crawford
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia; The Prince of Wales Hospital, Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
131
|
Duperron MG, Tzourio C, Schilling S, Zhu YC, Soumaré A, Mazoyer B, Debette S. High dilated perivascular space burden: a new MRI marker for risk of intracerebral hemorrhage. Neurobiol Aging 2019; 84:158-165. [PMID: 31629114 DOI: 10.1016/j.neurobiolaging.2019.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/24/2019] [Accepted: 08/31/2019] [Indexed: 01/27/2023]
Abstract
Commonly observed in older community persons, dilated perivascular spaces (dPVSs) are thought to represent an emerging MRI marker of cerebral small vessel disease, but their clinical significance is uncertain. We examined the longitudinal relationship of dPVS burden with risk of incident stroke, ischemic stroke, and intracerebral hemorrhage (ICH) in the 3C-Dijon population-based study (N = 1678 participants, mean age 72.7 ± 4.1 years) using Cox regression. dPVS burden was studied as a global score and according to dPVS location (basal ganglia, white matter, hippocampus, brainstem) at the baseline. During a mean follow-up of 9.1 ± 2.6 years, 66 participants suffered an incident stroke. Increasing global dPVS burden was associated with a higher risk of any incident stroke (hazard ratio [HR], 1.24; 95% CI, [1.06-1.45]) and of incident ICH (HR, 3.12 [1.78-5.47]), adjusting for sex and intracranial volume. Association with ICH remained significant after additionally adjusting for vascular risk factors and for other cerebral small vessel disease MRI markers. High dPVS burden in basal ganglia and hippocampus, but not in white matter or brainstem, were associated with higher risk of any stroke and ICH.
Collapse
Affiliation(s)
| | - Christophe Tzourio
- Univ. Bordeaux, Inserm U1219, Bordeaux Population Health Research Center, Bordeaux, France; CHU de Bordeaux, Pole de santé publique, Service d'information médicale, Bordeaux, France
| | - Sabrina Schilling
- Univ. Bordeaux, Inserm U1219, Bordeaux Population Health Research Center, Bordeaux, France
| | - Yi-Cheng Zhu
- Department of Neurology, Pekin Union Medical College Hospital, Beijing, China
| | - Aïcha Soumaré
- Univ. Bordeaux, Inserm U1219, Bordeaux Population Health Research Center, Bordeaux, France
| | - Bernard Mazoyer
- Univ. Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Stéphanie Debette
- Univ. Bordeaux, Inserm U1219, Bordeaux Population Health Research Center, Bordeaux, France; CHU de Bordeaux, Department of Neurology, Bordeaux, France.
| |
Collapse
|
132
|
Wang X, Feng H, Wang Y, Zhou J, Zhao X. Enlarged Perivascular Spaces and Cerebral Small Vessel Disease in Spontaneous Intracerebral Hemorrhage Patients. Front Neurol 2019; 10:881. [PMID: 31474932 PMCID: PMC6702269 DOI: 10.3389/fneur.2019.00881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/30/2019] [Indexed: 02/02/2023] Open
Abstract
Background: Cerebral small vessel disease (SVD) is associated with cognitive decline, depression, increased mortality, and disability in stroke patients. MRI-visible perivascular spaces (PVS) are a sensitive neuroimaging marker of SVD. We aimed to explore the risk factors and associations with other SVD markers of PVS in two topographical regions (in the basal ganglia [BG] and centrum semiovale [CS]) in a cohort of spontaneous intracerebral hemorrhage (ICH) patients. Method: We included 306 consecutive patients from a prospective spontaneous ICH cohort. We rated PVS, white matter hyperintensities (WMH), cerebral microbleeds (CMB), and lacunes with validated visual rating scale. We collected clinical information using standardized forms. We predefined severe PVS as score > 2 and examined associations between PVS in both BG and CS regions and clinical and imaging markers of SVD by logistic regression. Results: In the multivariable logistic regression, increasing age (OR = 1.075; 95% CI = 1.038–1.113, p < 0.001), high CS PVS degrees (OR = 6.906; 95% CI = 3.024–15.774, p < 0.001), extensive periventricular WMH (OR = 2.878; 95% CI = 1.298–6.379, p = 0.009), and the presence of CMB (OR = 4.073, 95% CI = 1.869–8.877, p < 0.001) were independently associated with BG PVS severity. Alcohol-drinking habit (OR = 2.805; 95% CI = 1.451–5.422, p = 0.002), hyperlipidemia history (OR = 3.782; 95% CI = 1.582–8.783, p = 0.003), high BG PVS degrees (OR = 6.293; 95% CI = 2.755–14.371, p < 0.001) and the presence of strictly lobar CMB (OR = 2.556, 95% CI = 1.285–5.085, p = 0.008) were independent predictors of increased CS PVS severity. Conclusion: MRI-visible PVS in BG and CS regions are inter-related and have different risk factors in spontaneous ICH patients. Further studies are needed to explore the mechanism and clinical importance of PVS, with possible implications for cerebrovascular disease prevention and effective treatments.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
133
|
Valdés Hernández MDC, Abu-Hussain J, Qiu X, Priller J, Parra Rodríguez M, Pino M, Báez S, Ibáñez A. Structural neuroimaging differentiates vulnerability from disease manifestation in colombian families with Huntington's disease. Brain Behav 2019; 9:e01343. [PMID: 31276317 PMCID: PMC6710228 DOI: 10.1002/brb3.1343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/29/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION The volume of the striatal structures has been associated with disease progression in individuals with Huntington's disease (HD) from North America, Europe, and Australia. However, it is not known whether the gray matter (GM) volume in the striatum is also sensitive in differentiating vulnerability from disease manifestation in HD families from a South-American region known to have high incidence of the disease. In addition, the association of enlarged brain perivascular spaces (PVS) with cognitive, behavioral, and motor symptoms of HD is unknown. MATERIALS AND METHODS We have analyzed neuroimaging indicators of global atrophy, PVS burden, and GM tissue volume in the basal ganglia and thalami, in relation to behavioral, motor, and cognitive scores, in 15 HD patients with overt disease manifestation and 14 first-degree relatives not genetically tested, which represent a vulnerable group, from the region of Magdalena, Colombia. RESULTS Poor fluid intelligence as per the Raven's Standard Progressive Matrices was associated with global brain atrophy (p = 0.002) and PVS burden (p ≤ 0.02) in HD patients, where the GM volume in all subcortical structures, with the exception of the right globus pallidus, was associated with motor or cognitive scores. Only the GM volume in the right putamen was associated with envy and MOCA scores (p = 0.008 and 0.015 respectively) in first-degree relatives. CONCLUSION Striatal GM volume, global brain atrophy and PVS burden may serve as differential indicators of disease manifestation in HD. The Raven's Standard Progressive Matrices could be a cognitive test worth to consider in the differentiation of vulnerability versus overt disease in HD.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Janna Abu-Hussain
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Xinyi Qiu
- Glan Clwyd Hospital, North Wales, UK
| | - Josef Priller
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Parra Rodríguez
- School of Psychological Sciences and Health, Strathclyde University, Glasgow, UK.,Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Mariana Pino
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Sandra Báez
- Department of Psychology, Universidad de Los Andes, Bogotá, Colombia
| | - Agustín Ibáñez
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, NSW, Australia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
134
|
Aribisala BS, Riha RL, Valdes Hernandez M, Muñoz Maniega S, Cox S, Radakovic R, Taylor A, Pattie A, Corley J, Redmond P, Bastin ME, Starr J, Deary I, Wardlaw JM. Sleep and brain morphological changes in the eighth decade of life. Sleep Med 2019; 65:152-158. [PMID: 31706897 DOI: 10.1016/j.sleep.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sleep is important for brain health. We analysed associations between usual sleep habits and magnetic resonance imaging (MRI) markers of neurodegeneration (brain atrophy), vascular damage (white matter hyperintensities, WMH) and waste clearance (perivascular spaces, PVS) in older community-dwelling adults. METHOD We collected self-reported usual sleep duration, quality and medical histories from the Lothian Birth Cohort 1936 (LBC1936) age 76 years and performed brain MRI. We calculated sleep efficiency, measured WMH and brain volumes, quantified PVS, and assessed associations between sleep measures and brain markers in multivariate models adjusted for demographic and medical history variables. RESULTS In 457 subjects (53% males, mean age 76 ± 0.65 years), we found: brain and white matter loss with increased weekend daytime sleep (β = -0.114, P = 0.03; β = -0.122, P = 0.007 respectively), white matter loss with less efficient sleep (β = 0.132, P = 0.011) and PVS increased with interrupted sleep (OR 1.84 95% CI, P = 0.025). CONCLUSION Cross-sectional associations of sleep parameters with brain atrophy and more PVS suggest adverse relationships between usual sleep habits and brain health in older people that should be evaluated longitudinally.
Collapse
Affiliation(s)
- Benjamin S Aribisala
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), UK; Department of Computer Science, Lagos State University, Lagos, Nigeria
| | - Renata L Riha
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Sleep Medicine, Royal Infirmary of Edinburgh, NHS Lothian, UK
| | - Maria Valdes Hernandez
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), UK
| | - Susana Muñoz Maniega
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), UK
| | - Simon Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ratko Radakovic
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK; Faculty of Health and Medical Sciences, University of East Anglia, Norwich, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Alison Pattie
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), UK
| | - John Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Ian Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), UK; UK Dementia Research Institute, University of Edinburgh, UK.
| |
Collapse
|
135
|
Gyanwali B, Vrooman H, Venketasubramanian N, Wong TY, Cheng CY, Chen C, Hilal S. Cerebral Small Vessel Disease and Enlarged Perivascular Spaces-Data From Memory Clinic and Population-Based Settings. Front Neurol 2019; 10:669. [PMID: 31293506 PMCID: PMC6603207 DOI: 10.3389/fneur.2019.00669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
Background: Enlarged perivascular spaces (ePVS) are common finding on magnetic resonance imaging (MRI) in elderly. ePVS are thought to be associated with cerebral small vessel disease (SVD) such as white matter hyperintensities (WMH), lacunes, and cerebral microbleeds (CMBs). However, the different location of SVD and its relationship to ePVS distribution requires further investigation. Objective: To study the association between location and severity of SVD with ePVS from memory clinic and population-based settings. Methods: This study includes patients from an ongoing memory clinic based case-control study and participants from the population-based: Epidemiology of Dementia in Singapore study (EDIS). All participants underwent a comprehensive standardized evaluation including physical, medical and neuropsychological assessment and a brain MRI. CMBs and lacune location were categorized into strictly lobar, strictly deep and mixed, and ePVS location into centrum semiovale and basal ganglia. WMH volume was automatically segmented and was classified into anterior and posterior distribution. Negative binomial regression models were constructed to analyse associations between SVD and ePVS and the rate ratios (RR) and 95% confidence intervals (CI) were reported. Results: Of 375 patients (median age = 73 years) from memory clinic and 583 participants (median age = 70 years) from EDIS, the median total ePVS count was 17.0 and 7.0, respectively. Increased severity of SVD was not associated with total ePVS counts in both memory clinic and EDIS study. Analysis with the location of SVD and ePVS also showed similar results. However, in EDIS study, presence of ≥2 lacunes [RR = 1.61, 95% CI = 1.3, 2.30, p = 0.009], presence of ≥2 CMBs [RR = 1.40, 95% CI = 1.08, 1.83, p = 0.012], and higher volume of WMH [RR = 1.41, 95% CI = 1.10, 1.81, p = 0.006] were associated with basal ganglia ePVS independent of age, gender and vascular risk factors. Conclusion: In this study, we found that the ePVS were not associated with the location and severity of SVD in the memory-clinic patients. However, only severity of SVD was associated with basal ganglia ePVS in the population-based setting. Our findings will need to be studied further in different cohorts so as to understand the mechanism underlying different SVD types in subclinical and clinical phases as well as for predicting cognitive decline.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Henri Vrooman
- Departments of Radiology and Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Tien Yin Wong
- Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore
| | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
136
|
Zhao Y, Ke Z, He W, Cai Z. Volume of white matter hyperintensities increases with blood pressure in patients with hypertension. J Int Med Res 2019; 47:3681-3689. [PMID: 31242795 PMCID: PMC6726811 DOI: 10.1177/0300060519858023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective Hypertension is a risk factor for development of white matter hyperintensities (WMHs). However, the relationship between hypertension and WMHs remains obscure. We sought to clarify this relationship using clinical data from different regions of China. Methods We analyzed the data of 333 patients with WMHs in this study. All included patients underwent conventional magnetic resonance imaging (MRI) examination. A primary diagnosis of WMHs was made according to MRI findings. The volume burden of WMHs was investigated using the Fazekas scale, which is widely used to rate the degree of WMHs. We conducted retrospective clinical analysis of the data in this study. Results Our findings showed that WMHs in patients with hypertension were associated with diabetes, cardiovascular diseases, history of cerebral infarct, and plasma glucose and triglyceride levels. Fazekas scale scores for WMHs increased with increased blood pressure values in patients with hypertension. Conclusion This analysis indicates that hypertension is an independent contributor to the prevalence and severity of WMHs.
Collapse
Affiliation(s)
- Yu Zhao
- 1 Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zunyu Ke
- 2 Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, China
| | - Wenbo He
- 2 Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, China
| | - Zhiyou Cai
- 3 Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China.,4 Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China
| |
Collapse
|