101
|
Boyden ED, Campos-Xavier AB, Kalamajski S, Cameron TL, Suarez P, Tanackovic G, Andria G, Ballhausen D, Briggs MD, Hartley C, Cohn DH, Davidson HR, Hall C, Ikegawa S, Jouk PS, König R, Megarbané A, Nishimura G, Lachman RS, Mortier G, Rimoin DL, Rogers RC, Rossi M, Sawada H, Scott R, Unger S, Valadares ER, Bateman JF, Warman ML, Superti-Furga A, Bonafé L. Recurrent dominant mutations affecting two adjacent residues in the motor domain of the monomeric kinesin KIF22 result in skeletal dysplasia and joint laxity. Am J Hum Genet 2011; 89:767-72. [PMID: 22152678 DOI: 10.1016/j.ajhg.2011.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type (lepto-SEMDJL, aka SEMDJL, Hall type), is an autosomal dominant skeletal disorder that, in spite of being relatively common among skeletal dysplasias, has eluded molecular elucidation so far. We used whole-exome sequencing of five unrelated individuals with lepto-SEMDJL to identify mutations in KIF22 as the cause of this skeletal condition. Missense mutations affecting one of two adjacent amino acids in the motor domain of KIF22 were present in 20 familial cases from eight families and in 12 other sporadic cases. The skeletal and connective tissue phenotype produced by these specific mutations point to functions of KIF22 beyond those previously ascribed functions involving chromosome segregation. Although we have found Kif22 to be strongly upregulated at the growth plate, the precise pathogenetic mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Eric D Boyden
- Children's Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 2011; 9:195-200. [PMID: 22138825 PMCID: PMC3272474 DOI: 10.1038/nmeth.1812] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 11/02/2011] [Indexed: 12/18/2022]
Abstract
We describe a localization microscopy analysis method that is able to extract results in live cells using standard fluorescent proteins and xenon arc lamp illumination. Our Bayesian analysis of the blinking and bleaching (3B analysis) method models the entire dataset simultaneously as being generated by a number of fluorophores that may or may not be emitting light at any given time. The resulting technique allows many overlapping fluorophores in each frame and unifies the analysis of the localization from blinking and bleaching events. By modeling the entire dataset, we were able to use each reappearance of a fluorophore to improve the localization accuracy. The high performance of this technique allowed us to reveal the nanoscale dynamics of podosome formation and dissociation throughout an entire cell with a resolution of 50 nm on a 4-s timescale.
Collapse
Affiliation(s)
- Susan Cox
- Randall Division, King's College London, Guy's Campus, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Labrousse AM, Meunier E, Record J, Labernadie A, Beduer A, Vieu C, Ben Safta T, Maridonneau-Parini I. Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages. Front Immunol 2011; 2:51. [PMID: 22566841 PMCID: PMC3341964 DOI: 10.3389/fimmu.2011.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/19/2011] [Indexed: 11/13/2022] Open
Abstract
Lysosome mobilization is a key cellular process in phagocytes for bactericidal activities and trans-matrix migration. The molecular mechanisms that regulate lysosome mobilization are still poorly known. Lysosomes are hard to track as they move toward phagosomes throughout the cell volume. In order to anticipate cell regions where lysosomes are recruited to, human and RAW264.7 macrophages were seeded on surfaces that were micro-patterned with immune complexes (ICs) as 4 μm-side squares. Distances between IC patterns were adapted to optimize cell spreading in order to constrain lysosome movements mostly in two dimensions. FcΓ receptors triggered local frustrated phagocytosis, frustrated phagosomes appeared as rings of F-actin dots around the IC patterns as early as 5 min after cells made contact with the substratum. Frustrated phagosomes recruited actin-associated proteins (vinculin, paxillin, and gelsolin). The fusion of lysosomes with frustrated phagosomes was shown by the release of beta-hexosaminidase and the recruitment of Lamp1 to frustrated phagosomes. Lysosomes of RAW264.7 macrophages were labeled with cathepsin-D-mCherry to visualize their movements toward frustrated phagosomes. Lysosomes saltatory movements were markedly slowed down compared to cells layered on non-opsonized patterns. In addition, the linearity of the trajectories and the frequency and duration of contacts of lysosomes with frustrated phagosomes were measured. Our experimental set-up is the first step toward deciphering molecular mechanisms which are involved in lysosome movements in the cytoplasm (speed, directionality, and interaction with phagosomes), and opens the door to approaches such as RNA interference, pharmacological inhibition, or mutant expression.
Collapse
Affiliation(s)
- Arnaud M Labrousse
- UMR5089, CNRS, Institut de Pharmacologie et de Biologie Structurale Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Vérollet C, Charrière GM, Labrousse A, Cougoule C, Le Cabec V, Maridonneau-Parini I. Extracellular proteolysis in macrophage migration: Losing grip for a breakthrough. Eur J Immunol 2011; 41:2805-13. [DOI: 10.1002/eji.201141538] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
105
|
Duangtum N, Junking M, Sawasdee N, Cheunsuchon B, Limjindaporn T, Yenchitsomanus PT. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B). Biochem Biophys Res Commun 2011; 413:69-74. [PMID: 21871436 DOI: 10.1016/j.bbrc.2011.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl(-)/HCO(3)(-) exchange and the failure of proton (H(+)) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.
Collapse
Affiliation(s)
- Natapol Duangtum
- Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | | | |
Collapse
|
106
|
Linder S, Wiesner C, Himmel M. Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 2011; 27:185-211. [PMID: 21801014 DOI: 10.1146/annurev-cellbio-092910-154216] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podosomes and invadopodia, collectively known as invadosomes, are cell-matrix contacts in a variety of cell types, such as monocytic cells or cancer cells, that have to cross tissue barriers. Both structures share an actin-rich core, which distinguishes them from other matrix contacts, and are regulated by a multitude of signaling pathways including RhoGTPases, kinases, actin-associated proteins, and microtubule-dependent transport. Invadosomes recruit and secrete proteinases and are thus able to lyse extracellular matrix components. They are therefore considered to be potential key structures in proteolytic cell invasion in both physiological and pathological settings. This review provides an overview of the field, with special focus on current developments such as intracellular transport processes, ultrastructural analysis, the possible involvement of invadosomes in disease, and the tentative identification of invadosomes in 3D environments and in vivo.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
107
|
The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011; 12:413-26. [PMID: 21697900 DOI: 10.1038/nrm3141] [Citation(s) in RCA: 815] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Podosomes and invadopodia are actin-based dynamic protrusions of the plasma membrane of metazoan cells that represent sites of attachment to - and degradation of - the extracellular matrix. The key proteins in these structures include the actin regulators cortactin and neural Wiskott-Aldrich syndrome protein (N-WASP), the adaptor proteins Tyr kinase substrate with four SH3 domains (TKS4) and Tyr kinase substrate with five SH3 domains (TKS5), and the metalloprotease membrane type 1 matrix metalloprotease (MT1MMP; also known as MMP14). Many cell types can produce these structures, including invasive cancer cells, vascular smooth muscle and endothelial cells, and immune cells such as macrophages and dendritic cells. Recently, progress has been made in our understanding of the regulatory and functional aspects of podosome and invadopodium biology and their role in human disease.
Collapse
|
108
|
Dovas A, Cox D. Signaling networks regulating leukocyte podosome dynamics and function. Cell Signal 2011; 23:1225-34. [PMID: 21342664 DOI: 10.1016/j.cellsig.2011.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 01/07/2023]
Abstract
Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and must to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes.
Collapse
Affiliation(s)
- Athanassios Dovas
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | | |
Collapse
|
109
|
Silver KE, Harrison RE. Kinesin 5B is necessary for delivery of membrane and receptors during FcγR-mediated phagocytosis. THE JOURNAL OF IMMUNOLOGY 2010; 186:816-25. [PMID: 21149599 DOI: 10.4049/jimmunol.1002161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FcγR-mediated phagocytosis is a cellular event that is evolutionary conserved to digest IgG-opsonized pathogens. Pseudopod formation during phagocytosis is a limiting step in managing the uptake of particles, and in this paper, we show that the conventional kinesin is involved in both receptor and membrane delivery to the phagocytic cup. Expression of a mutant kinesin isoform (GFP dominant negative mutant of kinesin H chain [EGFP-Kif5B-DN]) in RAW264.7 cells significantly reduced binding of IgG-sheep RBCs when macrophages were faced with multiple encounters with opsonized particles. Scanning electron microscopy analysis of EGFP-Kif5B-DN-expressing cells challenged with two rounds of IgG-sheep RBCs showed sparse, extremely thin pseudopods. We saw disrupted Rab11 trafficking to the phagocytic cup in EGFP-Kif5B-DN-transfected cells. Our particle overload assays also implicated phagosome membrane recycling in pseudopod formation. We observed reduced phagosome fission and trafficking in mutant kinesin-expressing cells, as well as reduced cell surface expression of FcγRs and Mac-1 receptors. In conclusion, anterograde trafficking via kinesin is essential for both receptor recycling from the phagosome and delivery of Rab11-containing membrane stores to effect broad and functional pseudopods during FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Kristen E Silver
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4 Canada
| | | |
Collapse
|
110
|
Cornfine S, Himmel M, Kopp P, El Azzouzi K, Wiesner C, Krüger M, Rudel T, Linder S. The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes. Mol Biol Cell 2010; 22:202-15. [PMID: 21119006 PMCID: PMC3020916 DOI: 10.1091/mbc.e10-05-0394] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Podosomes are actin-based matrix contacts in a variety of cell types. This study identifies the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and shows that their interaction through the unique C-terminal domain of KIF9 is critical for the matrix-degrading ability of these structures. Podosomes are actin-based matrix contacts in a variety of cell types, most notably monocytic cells, and are characterized by their ability to lyse extracellular matrix material. Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes. Here we describe a novel role for KIF9, a previously little-characterized member of the kinesin motor family, in the regulation of podosomes in primary human macrophages. We find that small interfering RNA (siRNA)/short-hairpin RNA–induced knockdown of KIF9 significantly affects both numbers and matrix degradation of podosomes. Overexpression and microinjection experiments reveal that the unique C-terminal region of KIF9 is crucial for these effects, presumably through binding of specific interactors. Indeed, we further identify reggie-1/flotillin-2, a signaling mediator between intracellular vesicles and the cell periphery, as an interactor of the KIF9 C-terminus. Reggie-1 dynamically colocalizes with KIF9 in living cells, and, consistent with KIF9-mediated effects, siRNA-induced knockdown of reggies/flotillins significantly impairs matrix degradation by podosomes. In sum, we identify the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and show that their interaction is critical for the matrix-degrading ability of these structures.
Collapse
Affiliation(s)
- Susanne Cornfine
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany Institute for Cardiovascular Diseases, 80336 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Kremerskothen J, Stölting M, Wiesner C, Korb-Pap A, van Vliet V, Linder S, Huber TB, Rottiers P, Reuzeau E, Genot E, Pavenstädt H. Zona occludens proteins modulate podosome formation and function. FASEB J 2010; 25:505-14. [PMID: 20930113 DOI: 10.1096/fj.10-155598] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Podosomes are highly dynamic structures that are involved in cell adhesion and extracellular matrix remodeling. They present as intracellular columns composed of an actin-rich core region and a surrounding ring-like structure containing focal adhesion proteins, actin binders as well as cell signaling molecules. A key player in podosome biogenesis is the scaffolding protein cortactin, which is thought to control actin assembly at the core region. We show that the zona occludens protein 1 (ZO-1), a pivotal tight junction protein and known binding partner of cortactin, is a component of podosomes. In the smooth muscle cell line A7r5, phorbol ester treatment induced a rapid relocation of ZO-1 from the cell cortex and cytosolic pools toward newly formed podosomes. Podosomal localization was also observed for the known ZO-1-binding proteins l-afadin, α-catenin, and phospho-connexin 43. Truncation studies revealed that the actin-binding domain but not the association with cortactin is necessary for ZO-1 recruitment to podosomes. Moreover, impaired ZO-1 expression leads to significantly reduced podosome formation and concomitant decreased matrix degradation at podosomes. Our findings demonstrate that besides their known function in tight junction assembly and intercellular communication, zona occludens proteins and their binding partners may play a novel role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling.
Collapse
Affiliation(s)
- Joachim Kremerskothen
- Department for Molecular Nephrology, Internal Medicine D, University Clinic Münster, Domagkstrasse 3a, Münster, Germany 48149.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|