101
|
Najm J, Rath M, Schröder W, Felbor U. Diagnostic single gene analyses beyond Sanger. Hamostaseologie 2017; 38:158-165. [DOI: 10.5482/hamo-17-01-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
102
|
Léon C, Dupuis A, Gachet C, Lanza F. The contribution of mouse models to the understanding of constitutional thrombocytopenia. Haematologica 2017; 101:896-908. [PMID: 27478199 DOI: 10.3324/haematol.2015.139394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/04/2016] [Indexed: 11/09/2022] Open
Abstract
Constitutional thrombocytopenias result from platelet production abnormalities of hereditary origin. Long misdiagnosed and poorly studied, knowledge about these rare diseases has increased considerably over the last twenty years due to improved technology for the identification of mutations, as well as an improvement in obtaining megakaryocyte culture from patient hematopoietic stem cells. Simultaneously, the manipulation of mouse genes (transgenesis, total or conditional inactivation, introduction of point mutations, random chemical mutagenesis) have helped to generate disease models that have contributed greatly to deciphering patient clinical and laboratory features. Most of the thrombocytopenias for which the mutated genes have been identified now have a murine model counterpart. This review focuses on the contribution that these mouse models have brought to the understanding of hereditary thrombocytopenias with respect to what was known in humans. Animal models have either i) provided novel information on the molecular and cellular pathways that were missing from the patient studies; ii) improved our understanding of the mechanisms of thrombocytopoiesis; iii) been instrumental in structure-function studies of the mutated gene products; and iv) been an invaluable tool as preclinical models to test new drugs or develop gene therapies. At present, the genetic determinants of thrombocytopenia remain unknown in almost half of all cases. Currently available high-speed sequencing techniques will identify new candidate genes, which will in turn allow the generation of murine models to confirm and further study the abnormal phenotype. In a complementary manner, programs of random mutagenesis in mice should also identify new candidate genes involved in thrombocytopenia.
Collapse
Affiliation(s)
- Catherine Léon
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - Arnaud Dupuis
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - Christian Gachet
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - François Lanza
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| |
Collapse
|
103
|
Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15:1262-1272. [PMID: 28671349 DOI: 10.1111/jth.13681] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hereditary bleeding and platelet disorders (BPDs) are characterized by marked genetic heterogeneity, far greater than previously appreciated. The list of genes involved in the regulation of megakaryopoiesis, platelet formation, platelet function and bleeding has been growing rapidly since the introduction of high-throughput sequencing (HTS) approaches in research. Thanks to the gradual adoption of HTS in diagnostic practice, these discoveries are improving the diagnostic yield for BPD patients, who may or may not present with bleeding problems and often have other clinical symptoms unrelated to the blood system. However, it was previously found that screening for all known etiologies gives a diagnostic yield of over 90% when the phenotype closely matches a known BPD but drops to 10% when the phenotype is indicative of a novel disorder. Thus, further research is needed to identify currently unknown etiologies for BPDs. Novel genes are likely to be found to be implicated in BPDs. New modes of inheritance, including digenic inheritance, are likely to play a role in some cases. Additionally, identifying and interpreting pathogenic variants outside exons is a looming challenge that can only be tackled with an improved understanding of the regulatory landscape of relevant cell types and with the transition from targeted sequencing to whole-genome sequencing in the clinic.
Collapse
Affiliation(s)
- K Freson
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - E Turro
- Department of Haematology and MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
104
|
Dütting S, Gaits-Iacovoni F, Stegner D, Popp M, Antkowiak A, van Eeuwijk JMM, Nurden P, Stritt S, Heib T, Aurbach K, Angay O, Cherpokova D, Heinz N, Baig AA, Gorelashvili MG, Gerner F, Heinze KG, Ware J, Krohne G, Ruggeri ZM, Nurden AT, Schulze H, Modlich U, Pleines I, Brakebusch C, Nieswandt B. A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis. Nat Commun 2017. [PMID: 28643773 PMCID: PMC5481742 DOI: 10.1038/ncomms15838] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.
Collapse
Affiliation(s)
- Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Frederique Gaits-Iacovoni
- INSERM UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires-I2MC, UMR1048, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Michael Popp
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Adrien Antkowiak
- INSERM UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires-I2MC, UMR1048, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | - Judith M M van Eeuwijk
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Paquita Nurden
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Institut Hospitalo-Universitaire LIRYC, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33604 Pessac, France
| | - Simon Stritt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Tobias Heib
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Katja Aurbach
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Oguzhan Angay
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Deya Cherpokova
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Niels Heinz
- Research Group for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main and the Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Ayesha A Baig
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Maximilian G Gorelashvili
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Frank Gerner
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Jerry Ware
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansass 72205, USA
| | - Georg Krohne
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037, USA
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33604 Pessac, France
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main and the Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Cord Brakebusch
- BRIC, Biomedical Institute, University of Copenhagen, Nørregade 10, 1165 Copenhagen, Denmark
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
105
|
Sivapalaratnam S, Collins J, Gomez K. Diagnosis of inherited bleeding disorders in the genomic era. Br J Haematol 2017; 179:363-376. [PMID: 28612396 DOI: 10.1111/bjh.14796] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inherited bleeding disorders affect between 1 in 1000 individuals for the most common disorder, von Willebrand Disease, to only 8 reported cases worldwide of alpha-2-antiplasmin deficiency. Those with an identifiable abnormality can be divided into disorders of coagulation factors (87%), platelet count and function (8%) and the fibrinolytic system (3%). Of the patients registered in the UK with a bleeding disorder, the remaining 2% are unclassifiable. In addition to bleeding symptoms, patients with an inherited bleeding disorder can manifest other abnormalities, making an accurate and complete diagnosis that reflects the underlying molecular pathology important. Although some inherited bleeding disorders can still be easily diagnosed through a combination of careful clinical assessment and laboratory assays of varying degrees of complexity, there are many where conventional approaches are inadequate. Improvements in phenotyping assays have enhanced our diagnostic armoury but genotyping now offers the most accurate and complete diagnosis for some of these conditions. The advent of next generation sequencing technology has meant that many genes can now be analysed routinely in clinical practice. Here, we discuss the different diagnostic tools currently available for inherited bleeding disorders and suggest that genotyping should be incorporated at an early stage in the diagnostic pathway.
Collapse
Affiliation(s)
- Suthesh Sivapalaratnam
- Department of Haematology, University of Cambridge, Cambridge, UK.,The Royal London Haemophilia Centre, The Royal London Hospital, London, UK
| | - Janine Collins
- Department of Haematology, University of Cambridge, Cambridge, UK.,The Royal London Haemophilia Centre, The Royal London Hospital, London, UK
| | - Keith Gomez
- Katherine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
106
|
Melazzini F, Zaninetti C, Balduini CL. Bleeding is not the main clinical issue in many patients with inherited thrombocytopaenias. Haemophilia 2017; 23:673-681. [PMID: 28594466 DOI: 10.1111/hae.13255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 02/01/2023]
Abstract
Bleeding diathesis has been considered for a long time the main clinical issue impacting the lives of patients affected by inherited thrombocytopaenias. However, the number of known inherited thrombocytopaenias greatly increased in recent years, and careful evaluation of hundreds of patients affected by these 'new' disorders revealed that most of them are at risk of developing additional life-threatening disorders during childhood or adult life. These additional disorders are usually more serious and dangerous than low platelet count. For instance, it is known that mutations in RUNX1, ANKRD26 and ETV6 cause congenital thrombocytopaenia, but we now know that they also predispose to haematological malignancies. Similarly, MYH9 mutations result in congenital thrombocytopaenia and increase the risk of developing kidney failure, cataracts and hearing loss at a later stage, while MPL mutations cause a congenital thrombocytopaenia that almost always evolves into deadly bone marrow failure. Thus, identification of patients with these disorders is essential for evaluation of their prognosis, enabling effective genetic counselling, personalizing follow-up and giving appropriate treatments in case of development of additional diseases. Careful clinical evaluation and peripheral blood film examination are extremely useful tools in guiding the diagnostic process and identifying the candidate genes to be sequenced.
Collapse
Affiliation(s)
- F Melazzini
- IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - C Zaninetti
- IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - C L Balduini
- IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
107
|
Thomas SG, Poulter NS, Bem D, Finney B, Machesky LM, Watson SP. The actin binding proteins cortactin and HS1 are dispensable for platelet actin nodule and megakaryocyte podosome formation. Platelets 2017; 28:372-379. [PMID: 27778524 PMCID: PMC5274539 DOI: 10.1080/09537104.2016.1235688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022]
Abstract
A dynamic, properly organised actin cytoskeleton is critical for the production and haemostatic function of platelets. The Wiskott Aldrich Syndrome protein (WASp) and Actin-Related Proteins 2 & 3 Complex (Arp2/3 complex) are critical mediators of actin polymerisation and organisation in many cell types. In platelets and megakaryocytes, these proteins have been shown to be important for proper platelet production and function. The cortactin family of proteins (Cttn & HS1) are known to regulate WASp-Arp2/3-mediated actin polymerisation in other cell types and so here we address the role of these proteins in platelets using knockout mouse models. We generated mice lacking Cttn and HS1 in the megakaryocyte/platelet lineage. These mice had normal platelet production, with platelet number, size and surface receptor profile comparable to controls. Platelet function was also unaffected by loss of Cttn/HS1 with no differences observed in a range of platelet function assays including aggregation, secretion, spreading, clot retraction or tyrosine phosphorylation. No effect on tail bleeding time or in thrombosis models was observed. In addition, platelet actin nodules, and megakaryocyte podosomes, actin-based structures known to be dependent on WASp and the Arp2/3 complex, formed normally. We conclude that despite the importance of WASp and the Arp2/3 complex in regulating F-actin dynamics in many cells types, the role of cortactin in their regulation appears to be fulfilled by other proteins in platelets.
Collapse
Affiliation(s)
- Steven G. Thomas
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Danai Bem
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Brenda Finney
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Laura M. Machesky
- Cancer Research UK Beatson Institute, College of Medical. Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stephen P. Watson
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
108
|
Furness LM. Bridging the gap: the need for genomic and clinical -omics data integration and standardization in overcoming the bottleneck of variant interpretation. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1322897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
109
|
Köhler S, Robinson PN. [Diagnostics in human genetics : Integration of phenotypic and genomic data]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:542-549. [PMID: 28293716 DOI: 10.1007/s00103-017-2538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The development of reliable methods for annotation of clinical phenotypes and algorithms to calculate similarity values for clinical phenotype profiles will be a major challenge for genomic personalized medicine, since combined analysis of phenotypic features and genetic variants can increase diagnostic yield, especially with exome or genome sequencing. The Human Phenotype Ontology project (HPO; www.human-phenotype-ontology.org ) provides an ontology for capturing phenotypic abnormalities in human disease in a precise and comprehensive fashion. The HPO not only enables reliable integration of disease-relevant information from numerous databases, but it also allows for similarity between patients or between patients and disease descriptions to be calculated algorithmically. The HPO thereby represents a solid foundation for differential diagnostic applications as well as for translational research and prioritization of novel disease genes in exome or genome sequencing projects.
Collapse
Affiliation(s)
- Sebastian Köhler
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, 06032, Farmington, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, USA
| |
Collapse
|
110
|
Abstract
Genetic diagnosis in families with inherited platelet disorders (IPD) is not performed widely because of the genetic heterogeneity of this group of disorders and because in most cases, it is not possible to select single candidate genes for analysis using clinical and laboratory phenotypes. Next-generation sequencing (NGS) technology has revolutionized the scale and cost-effectiveness of genetic testing, and has emerged as a valuable tool for IPD. This review examines the potential utility of NGS as a diagnostic tool to streamline detection of causal variants in known IPD genes and as a vehicle for new gene discovery.
Collapse
Affiliation(s)
- S K Westbury
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - A D Mumford
- School of Clinical Sciences, University of Bristol, Bristol, UK.,Bristol Haemophilia Comprehensive Care Centre, Bristol, UK.,West of England Genomic Medicine Centre, Bristol, UK
| |
Collapse
|
111
|
Bariana TK, Ouwehand WH, Guerrero JA, Gomez K. Dawning of the age of genomics for platelet granule disorders: improving insight, diagnosis and management. Br J Haematol 2016; 176:705-720. [PMID: 27984638 DOI: 10.1111/bjh.14471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inherited disorders of platelet granules are clinically heterogeneous and their prevalence is underestimated because most patients do not undergo a complete diagnostic work-up. The lack of a genetic diagnosis limits the ability to tailor management, screen family members, aid with family planning, predict clinical progression and detect serious consequences, such as myelofibrosis, lung fibrosis and malignancy, in a timely manner. This is set to change with the introduction of high throughput sequencing (HTS) as a routine clinical diagnostic test. HTS diagnostic tests are now available, affordable and allow parallel screening of DNA samples for variants in all of the 80 known bleeding, thrombotic and platelet genes. Increased genetic diagnosis and curation of variants is, in turn, improving our understanding of the pathobiology and clinical course of inherited platelet disorders. Our understanding of the genetic causes of platelet granule disorders and the regulation of granule biogenesis is a work in progress and has been significantly enhanced by recent genomic discoveries from high-powered genome-wide association studies and genome sequencing projects. In the era of whole genome and epigenome sequencing, new strategies are required to integrate multiple sources of big data in the search for elusive, novel genes underlying granule disorders.
Collapse
Affiliation(s)
- Tadbir K Bariana
- Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK.,Department of Haematology, University College London Cancer Institute, London, UK.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK.,Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Jose A Guerrero
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Keith Gomez
- Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| | | |
Collapse
|
112
|
Neuhaus C, Lang-Roth R, Zimmermann U, Heller R, Eisenberger T, Weikert M, Markus S, Knipper M, Bolz H. Extension of the clinical and molecular phenotype of DIAPH1
-associated autosomal dominant hearing loss (DFNA1
). Clin Genet 2016; 91:892-901. [DOI: 10.1111/cge.12915] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- C. Neuhaus
- Bioscientia Center for Human Genetics; Ingelheim Germany
| | - R. Lang-Roth
- Department of Otorhinolaryngology, Head and Neck Surgery; University of Cologne; Cologne Germany
| | - U. Zimmermann
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology; University of Tübingen; Tübingen Germany
| | - R. Heller
- Institute of Human Genetics; University Hospital of Cologne; Cologne Germany
| | - T. Eisenberger
- Bioscientia Center for Human Genetics; Ingelheim Germany
| | - M. Weikert
- Gemeinschaftspraxis für Phoniatrie; Pädaudiologie und Hals-Nasen-Ohrenheilkunde; Regensburg Germany
| | - S. Markus
- Kompetenzzentrum für Humangenetik; Gynäkologie und Laboratoriumsmedizin; Regensburg Germany
| | - M. Knipper
- Department of Otorhinolaryngology, Head and Neck Surgery; University of Cologne; Cologne Germany
| | - H.J. Bolz
- Bioscientia Center for Human Genetics; Ingelheim Germany
- Institute of Human Genetics; University Hospital of Cologne; Cologne Germany
| |
Collapse
|
113
|
Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, Baynam G, Bello SM, Boerkoel CF, Boycott KM, Brudno M, Buske OJ, Chinnery PF, Cipriani V, Connell LE, Dawkins HJS, DeMare LE, Devereau AD, de Vries BBA, Firth HV, Freson K, Greene D, Hamosh A, Helbig I, Hum C, Jähn JA, James R, Krause R, F Laulederkind SJ, Lochmüller H, Lyon GJ, Ogishima S, Olry A, Ouwehand WH, Pontikos N, Rath A, Schaefer F, Scott RH, Segal M, Sergouniotis PI, Sever R, Smith CL, Straub V, Thompson R, Turner C, Turro E, Veltman MWM, Vulliamy T, Yu J, von Ziegenweidt J, Zankl A, Züchner S, Zemojtel T, Jacobsen JOB, Groza T, Smedley D, Mungall CJ, Haendel M, Robinson PN. The Human Phenotype Ontology in 2017. Nucleic Acids Res 2016; 45:D865-D876. [PMID: 27899602 PMCID: PMC5210535 DOI: 10.1093/nar/gkw1039] [Citation(s) in RCA: 524] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.
Collapse
Affiliation(s)
- Sebastian Köhler
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicole A Vasilevsky
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mark Engelstad
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erin Foster
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julie McMurry
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ségolène Aymé
- Institut du Cerveau et de la Moelle épinière-ICM, CNRS UMR 7225-Inserm U 1127-UPMC-P6 UMR S 1127, Hôpital Pitié-Salpêtrière, 47, bd de l'Hôpital, 75013 Paris, France
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, King Edward Memorial Hospital Department of Health, Government of Western Australia, Perth, WA 6008, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA 6008, Australia
| | - Susan M Bello
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA
| | - Cornelius F Boerkoel
- Imagenetics Research, Sanford Health, PO Box 5039, Route 5001, Sioux Falls, SD 57117-5039, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Brudno
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada Centre for Computational Medicine, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Orion J Buske
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada Centre for Computational Medicine, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,NIHR Rare Diseases Translational Research Collaboration, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Valentina Cipriani
- UCL Institute of Ophthalmology, Department of Ocular Biology and Therapeutics, 11-43 Bath Street, London EC1V 9EL, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | | - Hugh J S Dawkins
- Office of Population Health Genomics, Public Health Division, Health Department of Western Australia, 189 Royal Street, Perth, WA, 6004 Australia
| | - Laura E DeMare
- Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
| | - Andrew D Devereau
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University, University Medical Centre, Nijmegen, The Netherlands
| | - Helen V Firth
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Daniel Greene
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Long Road, Cambridge CB2 0PT, UK.,Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ingo Helbig
- Division of Neurology, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.,Department of Neuropediatrics, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Courtney Hum
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
| | - Johanna A Jähn
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Roger James
- NIHR Rare Diseases Translational Research Collaboration, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK
| | - Roland Krause
- LuxembourgCentre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | | | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, New York, NY 11797, USA
| | - Soichi Ogishima
- Dept of Bioclinical Informatics, Tohoku Medical Megabank Organization, Tohoku University, Tohoku Medical Megabank Organization Bldg 7F room #741,736, Seiryo 2-1, Aoba-ku, Sendai Miyagi 980-8573 Japan
| | - Annie Olry
- Orphanet-INSERM, US14, Plateforme Maladies Rares, 96 rue Didot, 75014 Paris, France
| | - Willem H Ouwehand
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, Department of Ocular Biology and Therapeutics, 11-43 Bath Street, London EC1V 9EL, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Ana Rath
- Orphanet-INSERM, US14, Plateforme Maladies Rares, 96 rue Didot, 75014 Paris, France
| | - Franz Schaefer
- Division of Pediatric Nephrology and KFH Children's Kidney Center, Center for Pediatrics and Adolescent Medicine, 69120 Heidelberg, Germany
| | - Richard H Scott
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael Segal
- SimulConsult Inc., 27 Crafts Road, Chestnut Hill, MA 02467, USA
| | | | - Richard Sever
- Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
| | - Cynthia L Smith
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Rachel Thompson
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Catherine Turner
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Ernest Turro
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Long Road, Cambridge CB2 0PT, UK.,Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK
| | - Marijcke W M Veltman
- NIHR Rare Diseases Translational Research Collaboration, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Tom Vulliamy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jing Yu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Julie von Ziegenweidt
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Long Road, Cambridge CB2 0PT, UK
| | - Andreas Zankl
- Discipline of Genetic Medicine, Sydney Medical School, The University of Sydney, Australia.,Academic Department of Medical Genetics, Sydney Childrens Hospitals Network (Westmead), Australia
| | - Stephan Züchner
- JD McDonald Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Tomasz Zemojtel
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Julius O B Jacobsen
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Tudor Groza
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia
| | - Damian Smedley
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Melissa Haendel
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA .,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| |
Collapse
|
114
|
Allele-specific DNA methylation reinforces PEAR1 enhancer activity. Blood 2016; 128:1003-12. [PMID: 27313330 DOI: 10.1182/blood-2015-11-682153] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/13/2016] [Indexed: 01/07/2023] Open
Abstract
Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation.
Collapse
|
115
|
|
116
|
Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127:2814-23. [PMID: 27095789 DOI: 10.1182/blood-2016-03-378588] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Variations in platelet number, volume, and function are largely genetically controlled, and many loci associated with platelet traits have been identified by genome-wide association studies (GWASs).(1) The genome also contains a large number of rare variants, of which a tiny fraction underlies the inherited diseases of humans. Research over the last 3 decades has led to the discovery of 51 genes harboring variants responsible for inherited platelet disorders (IPDs). However, the majority of patients with an IPD still do not receive a molecular diagnosis. Alongside the scientific interest, molecular or genetic diagnosis is important for patients. There is increasing recognition that a number of IPDs are associated with severe pathologies, including an increased risk of malignancy, and a definitive diagnosis can inform prognosis and care. In this review, we give an overview of these disorders grouped according to their effect on platelet biology and their clinical characteristics. We also discuss the challenge of identifying candidate genes and causal variants therein, how IPDs have been historically diagnosed, and how this is changing with the introduction of high-throughput sequencing. Finally, we describe how integration of large genomic, epigenomic, and phenotypic datasets, including whole genome sequencing data, GWASs, epigenomic profiling, protein-protein interaction networks, and standardized clinical phenotype coding, will drive the discovery of novel mechanisms of disease in the near future to improve patient diagnosis and management.
Collapse
|
117
|
Greene D, Richardson S, Turro E, Turro E. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases. Am J Hum Genet 2016; 98:490-499. [PMID: 26924528 PMCID: PMC4827100 DOI: 10.1016/j.ajhg.2016.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022] Open
Abstract
Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases.
Collapse
Affiliation(s)
| | | | | | - Ernest Turro
- Department of Haematology, University of Cambridge, NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK; Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK.
| |
Collapse
|