101
|
Saunders DGO, Win J, Kamoun S, Raffaele S. Two-dimensional data binning for the analysis of genome architecture in filamentous plant pathogens and other eukaryotes. Methods Mol Biol 2014; 1127:29-51. [PMID: 24643550 DOI: 10.1007/978-1-62703-986-4_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genome architecture often reflects an organism's lifestyle and can therefore provide insights into gene function, regulation, and adaptation. In several lineages of plant pathogenic fungi and oomycetes, characteristic repeat-rich and gene-sparse regions harbor pathogenicity-related genes such as effectors. In these pathogens, analysis of genome architecture has assisted the mining for novel candidate effector genes and investigations into patterns of gene regulation and evolution at the whole genome level. Here we describe a two-dimensional data binning method in R with a heatmap-style graphical output to facilitate analysis and visualization of whole genome architecture. The method is flexible, combining whole genome architecture heatmaps with scatter plots of the genomic environment of selected gene sets. This enables analysis of specific values associated with genes such as gene expression and sequence polymorphisms, according to genome architecture. This method enables the investigation of whole genome architecture and reveals local properties of genomic neighborhoods in a clear and concise manner.
Collapse
|
102
|
Stam R, Mantelin S, McLellan H, Thilliez G. The role of effectors in nonhost resistance to filamentous plant pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:582. [PMID: 25426123 PMCID: PMC4224059 DOI: 10.3389/fpls.2014.00582] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
In nature, most plants are resistant to a wide range of phytopathogens. However, mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood. Besides constitutive defenses, plants have developed two layers of inducible defense systems. Plant innate immunity relies on recognition of conserved pathogen-associated molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules secreted by the invader can suppress host defense responses and facilitate the infection process. Additionally, plants have evolved pathogen-specific resistance mechanisms based on recognition of these effectors, which causes secondary defense responses. The current effector-driven hypothesis is that NHR in plants that are distantly related to the host plant is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen, whereas in more closely related species, nonhost recognition of effectors would play a crucial role. In this review we give an overview of current knowledge of the role of effector molecules in host and NHR and place these findings in the context of the model. We focus on examples from filamentous pathogens (fungi and oomycetes), discuss their implications for the field of plant-pathogen interactions and relevance in plant breeding strategies for development of durable resistance in crops.
Collapse
Affiliation(s)
- Remco Stam
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
- *Correspondence: Remco Stam, Division of Plant Sciences, University of Dundee – The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK e-mail:
| | - Sophie Mantelin
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
| | - Gaëtan Thilliez
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
103
|
A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 2013; 11:e1001732. [PMID: 24339748 PMCID: PMC3858237 DOI: 10.1371/journal.pbio.1001732] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022] Open
Abstract
HaRxL44, a secreted effector from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis, enhances disease susceptibility by interacting with and degrading Mediator subunit MED19a, thereby perturbing plant defense gene transcription. Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)–triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression. The highly conserved Mediator complex plays an essential role in transcriptional regulation by providing a molecular bridge between transcription factors and RNA polymerase II. Recent studies in Arabidopsis have revealed that it also performs an essential role in plant defence. However, it remains unknown how pathogens manipulate Mediator function in order to increase a plant's susceptibility to infection. In this article, we show that a secreted effector, HaRxL44, from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa), interacts with and degrades the Mediator subunit MED19a, resulting in the alteration of plant defence gene transcription. This effector-mediated interference with host transcriptional regulation perturbs the balance between jasmonic acid/ethylene (JA/ET) and salicylic acid (SA)–dependent defence. HaRxL44 interaction with MED19a results in reduced SA-regulated gene expression, indicating that this pathogen effector modulates host transcription to promote virulence. The resulting alteration in defence transcription patterns compromises the plant's ability to defend itself against pathogens, such as Hpa, that establish long-term parasitic interactions with living host cells via haustoria (a pathogen structure that creates an expanded host/parasite interface to extract nutrients) but not against necrotrophic pathogens that kill host cells. HaRxL44 is unlikely to be the sole effector that accomplishes this shift in hormonal balance, and other nuclear HaRxL proteins were reported by other researchers to interact with Mediator components, as well as with other regulators of the JA/ET signalling pathway. Functional analyses of these effectors should facilitate the discovery of new components of the plant immune system. These data show that pathogens can target fundamental mechanisms of host regulation in order to tip the balance of signalling pathways to suppress defence and favour parasitism.
Collapse
|
104
|
Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JDG. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 2013. [PMID: 24339748 DOI: 10.1371/journal.pbio] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)-triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.
Collapse
|
105
|
Adhikari BN, Hamilton JP, Zerillo MM, Tisserat N, Lévesque CA, Buell CR. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One 2013; 8:e75072. [PMID: 24124466 PMCID: PMC3790786 DOI: 10.1371/journal.pone.0075072] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022] Open
Abstract
The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over-representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H. arabidopsidis as compared to Phytophthora species, suggesting variation in virulence mechanisms within plant pathogenic oomycete species. Shared features between the oomycetes and diatoms revealed common mechanisms of intracellular signaling and transportation. Our analyses demonstrate the value of comparative genome analyses for exploring the evolution of pathogenesis and survival mechanisms in the oomycetes. The comparative analyses of seven Pythium species with the closely related oomycetes, Phytophthora species and H. arabidopsidis, and distantly related diatoms provide insight into genes that underlie virulence.
Collapse
Affiliation(s)
- Bishwo N. Adhikari
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Marcelo M. Zerillo
- Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado, United States of America
| | - Ned Tisserat
- Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado, United States of America
| | - C. André Lévesque
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
106
|
Sanna ML, Zara G, Zara S, Migheli Q, Budroni M, Mannazzu I. A putative phospholipase C is involved in Pichia fermentans dimorphic transition. Biochim Biophys Acta Gen Subj 2013; 1840:344-9. [PMID: 24076234 DOI: 10.1016/j.bbagen.2013.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Pichia fermentans DiSAABA 726 is a dimorphic yeast that reversibly shifts from yeast-like to pseudohyphal morphology. This yeast behaves as a promising antagonist of Monilia spp. in the yeast-like form, but becomes a destructive plant pathogen in the pseudohyphal form thus raising the problem of the biological risk associated with the use of dimorphic yeasts as microbial antagonists in the biocontrol of phytopathogenic fungi. METHODS Pichia fermentans DiSAABA 726 was grown in urea- and methionine-containing media in order to induce and separate yeast-like and pseudohyphal morphologies. Total RNA was extracted from yeast-like cells and pseudohyphae and retro-transcribed into cDNA. A rapid subtraction hybridization approach was utilized to obtain the cDNA sequences putatively over-expressed during growth on methionine-containing medium and involved in pseudohyphal transition. RESULTS Five genes that are over-expressed during yeast-like/pseudohyphal dimorphic transition were isolated. One of these, encoding a putative phospholipase C, is involved in P. fermentans filamentation. In fact, while the inhibition of phospholipase C, by means of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphorylcholine (Et-18), is accompanied by a significant reduction of pseudohyphae formation in P. fermentans, the addition of exogenous cAMP fully restores pseudohyphal growth also in the presence of Et-18. CONCLUSION Phospholipase C is part of a putative "methionine sensing machinery" that activates cAMP-PKA signal transduction pathway and controls P. fermentans yeast-like/pseudohyphal dimorphic transition. GENERAL SIGNIFICANCE Phospholipase C is a promising molecular target for further investigations into the link between pseudohyphae formation and pathogenicity in P. fermentans.
Collapse
Affiliation(s)
- Maria Lina Sanna
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | | | | | | | | | | |
Collapse
|
107
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
108
|
bZIP transcription factors in the oomycete phytophthora infestans with novel DNA-binding domains are involved in defense against oxidative stress. EUKARYOTIC CELL 2013; 12:1403-12. [PMID: 23975888 DOI: 10.1128/ec.00141-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.
Collapse
|
109
|
Meyer DF, Noroy C, Moumène A, Raffaele S, Albina E, Vachiéry N. Searching algorithm for type IV secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context. Nucleic Acids Res 2013; 41:9218-29. [PMID: 23945940 PMCID: PMC3814349 DOI: 10.1093/nar/gkt718] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type IV effectors (T4Es) are proteins produced by pathogenic bacteria to manipulate host cell gene expression and processes, divert the cell machinery for their own profit and circumvent the immune responses. T4Es have been characterized for some bacteria but many remain to be discovered. To help biologists identify putative T4Es from the complete genome of α- and γ-proteobacteria, we developed a Perl-based command line bioinformatics tool called S4TE (searching algorithm for type-IV secretion system effectors). The tool predicts and ranks T4E candidates by using a combination of 13 sequence characteristics, including homology to known effectors, homology to eukaryotic domains, presence of subcellular localization signals or secretion signals, etc. S4TE software is modular, and specific motif searches are run independently before ultimate combination of the outputs to generate a score and sort the strongest T4Es candidates. The user keeps the possibility to adjust various searching parameters such as the weight of each module, the selection threshold or the input databases. The algorithm also provides a GC% and local gene density analysis, which strengthen the selection of T4E candidates. S4TE is a unique predicting tool for T4Es, finding its utility upstream from experimental biology.
Collapse
Affiliation(s)
- Damien F Meyer
- CIRAD, UMR CMAEE, F-97170 Petit-Bourg, Guadeloupe, France, INRA, UMR1309 CMAEE, F-34398, Montpellier, France, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre cedex, Guadeloupe, France, INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
110
|
Vetukuri RR, Asman AK, Jahan SN, Avrova AO, Whisson SC, Dixelius C. Phenotypic diversification by gene silencing in Phytophthora plant pathogens. Commun Integr Biol 2013; 6:e25890. [PMID: 24563702 PMCID: PMC3917941 DOI: 10.4161/cib.25890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022] Open
Abstract
Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA. The genome of the oomycete plant pathogen, Phytophthora infestans, contains vast numbers of TE sequences. There are also hundreds of predicted disease-promoting effector proteins, predominantly located in TE-rich genomic regions. Expansion of effector gene families is also a genomic signature of related oomycetes such as P. sojae. Deep sequencing of small RNAs (sRNAs) from P. infestans has identified sRNAs derived from all families of transposons, highlighting the importance of RNA silencing for maintaining these genomic invaders in an inactive form. Small RNAs were also identified from specific effector encoding genes, possibly leading to RNA silencing of these genes and variation in pathogenicity and virulence toward plant resistance genes. Similar findings have also recently been made for the distantly related species, P. sojae. Small RNA “hotspots” originating from arrays of amplified gene sequences, or from genes displaying overlapping antisense transcription, were also identified in P. infestans. These findings suggest a major role for RNA silencing processes in the adaptability and diversification of these economically important plant pathogens. Here we review the latest progress and understanding of gene silencing in oomycetes with emphasis on transposable elements and sRNA-associated events.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Anna Km Asman
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Sultana N Jahan
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Anna O Avrova
- Cell and Molecular Sciences; The James Hutton Institute; Invergowrie; Dundee, UK
| | - Stephen C Whisson
- Cell and Molecular Sciences; The James Hutton Institute; Invergowrie; Dundee, UK
| | - Christina Dixelius
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| |
Collapse
|
111
|
Pais M, Win J, Yoshida K, Etherington GJ, Cano LM, Raffaele S, Banfield MJ, Jones A, Kamoun S, Saunders DGO. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biol 2013; 14:211. [PMID: 23809564 PMCID: PMC3706818 DOI: 10.1186/gb-2013-14-6-211] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent pathogenomic research on plant parasitic oomycete effector function and plant host responses has resulted in major conceptual advances in plant pathology, which has been possible thanks to the availability of genome sequences.
Collapse
|
112
|
Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, Thines M, Weigel D, Burbano HA. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2013; 2:e00731. [PMID: 23741619 PMCID: PMC3667578 DOI: 10.7554/elife.00731] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/10/2013] [Indexed: 12/19/2022] Open
Abstract
Phytophthora infestans, the cause of potato late blight, is infamous for having triggered the Irish Great Famine in the 1840s. Until the late 1970s, P. infestans diversity outside of its Mexican center of origin was low, and one scenario held that a single strain, US-1, had dominated the global population for 150 years; this was later challenged based on DNA analysis of historical herbarium specimens. We have compared the genomes of 11 herbarium and 15 modern strains. We conclude that the 19th century epidemic was caused by a unique genotype, HERB-1, that persisted for over 50 years. HERB-1 is distinct from all examined modern strains, but it is a close relative of US-1, which replaced it outside of Mexico in the 20th century. We propose that HERB-1 and US-1 emerged from a metapopulation that was established in the early 1800s outside of the species' center of diversity. DOI:http://dx.doi.org/10.7554/eLife.00731.001.
Collapse
|
113
|
Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, Thines M, Weigel D, Burbano HA. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2013. [PMID: 23741619 DOI: 10.7554/elife.00731.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Phytophthora infestans, the cause of potato late blight, is infamous for having triggered the Irish Great Famine in the 1840s. Until the late 1970s, P. infestans diversity outside of its Mexican center of origin was low, and one scenario held that a single strain, US-1, had dominated the global population for 150 years; this was later challenged based on DNA analysis of historical herbarium specimens. We have compared the genomes of 11 herbarium and 15 modern strains. We conclude that the 19th century epidemic was caused by a unique genotype, HERB-1, that persisted for over 50 years. HERB-1 is distinct from all examined modern strains, but it is a close relative of US-1, which replaced it outside of Mexico in the 20th century. We propose that HERB-1 and US-1 emerged from a metapopulation that was established in the early 1800s outside of the species' center of diversity. DOI:http://dx.doi.org/10.7554/eLife.00731.001.
Collapse
|
114
|
Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans. PLoS Pathog 2013; 9:e1003182. [PMID: 23516354 PMCID: PMC3597505 DOI: 10.1371/journal.ppat.1003182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/20/2012] [Indexed: 01/18/2023] Open
Abstract
Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures). Most of the putative stage-specific transcription factor binding sites (TFBSs) thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors. The genus Phytophthora includes over one hundred species of plant pathogens that have devastating effects worldwide in agriculture and natural environments. Its most notorious member is P. infestans, which causes the late blight diseases of potato and tomato. Their success as pathogens is dependent on the formation of specialized cells for plant-to-plant transmission and host infection, but little is known about how this is regulated. Recognizing that changes in gene expression drive the formation of these cell types, we used a computational approach to predict the sequences of about one hundred transcription factor binding sites associated with expression in either of five life stages, including several types of spores and infection structures. We then used a functional testing strategy to prove their biological activity by showing that the DNA motifs enabled the stage-specific expression of a transgene. Our work lays the groundwork for dissecting the molecular mechanisms that regulate life-stage transitions and pathogenesis in Phytophthora. A similar approach should be useful for other plant and animal pathogens.
Collapse
|
115
|
Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S, Chellappan B, Boeren S, Takken FLW, Rep M. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 2013; 14:119. [PMID: 23432788 PMCID: PMC3599309 DOI: 10.1186/1471-2164-14-119] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/11/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this pathogenicity chromosome confers virulence to a previously non-pathogenic recipient strain. We hypothesize that expression and evolution of effector genes is influenced by their genomic context. RESULTS To gain a better understanding of the genomic context of the effector genes, we manually curated the annotated genes on the pathogenicity chromosome and identified and classified transposable elements. Both retro- and DNA transposons are present with no particular overrepresented class. Retrotransposons appear evenly distributed over the chromosome, while DNA transposons tend to concentrate in large chromosomal subregions. In general, genes on the pathogenicity chromosome are dispersed within the repeat landscape. Effector genes are present within subregions enriched for DNA transposons. A miniature Impala (mimp) is always present in their promoters. Although promoter deletion studies of two effector gene loci did not reveal a direct function of the mimp for gene expression, we were able to use proximity to a mimp as a criterion to identify new effector gene candidates. Through xylem sap proteomics we confirmed that several of these candidates encode proteins secreted during plant infection. CONCLUSIONS Effector genes in Fol reside in characteristic subregions on a pathogenicity chromosome. Their genomic context allowed us to develop a method for the successful identification of novel effector genes. Since our approach is not based on effector gene similarity, but on unique genomic features, it can easily be extended to identify effector genes in Fo strains with different host specificities.
Collapse
Affiliation(s)
- Sarah M Schmidt
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Petra M Houterman
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Ines Schreiver
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
- Current address: Fachgebiet Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Lisong Ma
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Stefan Amyotte
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, 40546-0312, Lexington, KY, USA
| | - Biju Chellappan
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Sjef Boeren
- Laboratory for Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, the Netherlands
| | - Frank L W Takken
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Martijn Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
116
|
Roy S, Poidevin L, Jiang T, Judelson HS. Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis. BMC Genomics 2013; 14:106. [PMID: 23414203 PMCID: PMC3599244 DOI: 10.1186/1471-2164-14-106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/31/2013] [Indexed: 12/19/2022] Open
Abstract
Background The core promoter is the region flanking the transcription start site (TSS) that directs formation of the pre-initiation complex. Core promoters have been studied intensively in mammals and yeast, but not in more diverse eukaryotes. Here we investigate core promoters in oomycetes, a group within the Stramenopile kingdom that includes important plant and animal pathogens. Prior studies of a small collection of genes proposed that oomycete core promoters contain a 16 to 19 nt motif bearing an Initiator-like sequence (INR) flanked by a novel sequence named FPR, but this has not been extended to whole-genome analysis. Results We used expectation maximization to find over-represented motifs near TSSs of Phytophthora infestans, the potato blight pathogen. The motifs corresponded to INR, FPR, and a new element found about 25 nt downstream of the TSS called DPEP. TATA boxes were not detected. Assays of DPEP function by mutagenesis were consistent with its role as a core motif. Genome-wide searches found a well-conserved combined INR+FPR in only about 13% of genes after correcting for false discovery, which contradicted prior reports that INR and FPR are found together in most genes. INR or FPR were found alone near TSSs in 18% and 7% of genes, respectively. Promoters lacking the motifs had pyrimidine-rich regions near the TSS. The combined INR+FPR motif was linked to higher than average mRNA levels, developmentally-regulated transcription, and functions related to plant infection, while DPEP and FPR were over-represented in constitutively-expressed genes. The INR, FPR, and combined INR+FPR motifs were detected in other oomycetes including Hyaloperonospora arabidopsidis, Phytophthora sojae, Pythium ultimum, and Saprolegnia parasitica, while DPEP was found in all but S. parasitica. Only INR seemed present in a non-oomycete stramenopile. Conclusions The absence of a TATA box and presence of novel motifs show that the oomycete core promoter is diverged from that of model systems, and likely explains the lack of activity of non-oomycete promoters in Phytophthora transformants. The association of the INR+FPR motif with developmentally-regulated genes shows that oomycete core elements influence stage-specific transcription in addition to regulating formation of the pre-initiation complex.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Plant Pathology and Microbiology, University of California, 92521, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
117
|
Thakur K, Chawla V, Bhatti S, Swarnkar MK, Kaur J, Shankar R, Jha G. De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen. PLoS One 2013; 8:e53937. [PMID: 23349770 PMCID: PMC3547962 DOI: 10.1371/journal.pone.0053937] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022] Open
Abstract
Venturia inaequalis is the causal agent of apple scab, one of the most devastating diseases of apple. Due to several distinct features, it has emerged as a model fungal pathogen to study various aspects of hemibiotrophic plant pathogen interactions. The present study reports de novo assembling, annotation and characterization of the transcriptome of V. inaequalis. Venturia transcripts expressed during its growth on laboratory medium and that expressed during its biotrophic stage of infection on apple were sequenced using Illumina RNAseq technology. A total of 94,350,055 reads (50 bp read length) specific to Venturia were obtained after filtering. The reads were assembled into 62,061 contigs representing 24,571 unique genes. GO analysis suggested prevalence of genes associated with biological process categories like metabolism, transport and response to stimulus. Genes associated with molecular function like binding, catalytic activities and transferase activities were found in majority. EC and KEGG pathway analyses suggested prevalence of genes encoding kinases, proteases, glycoside hydrolases, cutinases, cytochrome P450 and transcription factors. The study has identified several putative pathogenicity determinants and candidate effectors in V. inaequalis. A large number of transcripts encoding membrane transporters were identified and comparative analysis revealed that the number of transporters encoded by Venturia is significantly more as compared to that encoded by several other important plant fungal pathogens. Phylogenomics analysis indicated that V. inaequalis is closely related to Pyrenophora tritici-repentis (the causal organism of tan spot of wheat). In conclusion, the findings from this study provide a better understanding of the biology of the apple scab pathogen and have identified candidate genes/functions required for its pathogenesis. This work lays the foundation for facilitating further research towards understanding this host-pathogen interaction.
Collapse
Affiliation(s)
- Karnika Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vandna Chawla
- Studio of Computational Biology & Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | - Shammi Bhatti
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | - Gopaljee Jha
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| |
Collapse
|
118
|
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B, Holman WH, Kodira CD, Martin J, Oliver RP, Robbertse B, Schackwitz W, Schwartz DC, Spatafora JW, Turgeon BG, Yandava C, Young S, Zhou S, Zeng Q, Grigoriev IV, Ma LJ, Ciuffetti LM. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (BETHESDA, MD.) 2013; 3:41-63. [PMID: 23316438 PMCID: PMC3538342 DOI: 10.1534/g3.112.004044] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/02/2012] [Indexed: 12/31/2022]
Abstract
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
Collapse
Affiliation(s)
- Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Iovanna Pandelova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Braham Dhillon
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Larry J. Wilhelm
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Carbone/Ferguson Laboratories, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon 97006
| | - Stephen B. Goodwin
- USDA–Agricultural Research Service, Purdue University, West Lafayette, Indiana 47907
| | | | - Melania Figueroa
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- USDA-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, Oregon 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - James K. Hane
- Commonwealth Scientific and Industrial Research Organization−Plant Industry, Centre for Environment and Life Sciences, Floreat, Western Australia 6014, Australia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | - Wade H. Holman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Chinnappa D. Kodira
- The Broad Institute, Cambridge, Massachusetts 02142
- Roche 454, Branford, Connecticut 06405
| | - Joel Martin
- US DOE Joint Genome Institute, Walnut Creek, California 94598
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6845, Australia
| | - Barbara Robbertse
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | | | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14850
| | | | - Sarah Young
- The Broad Institute, Cambridge, Massachusetts 02142
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | | | | | - Li-Jun Ma
- The Broad Institute, Cambridge, Massachusetts 02142
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
119
|
Vetukuri RR, Åsman AKM, Tellgren-Roth C, Jahan SN, Reimegård J, Fogelqvist J, Savenkov E, Söderbom F, Avrova AO, Whisson SC, Dixelius C. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS One 2012; 7:e51399. [PMID: 23272103 PMCID: PMC3522703 DOI: 10.1371/journal.pone.0051399] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 12/03/2022] Open
Abstract
Phytophthora infestans is the oomycete pathogen responsible for the devastating late blight disease on potato and tomato. There is presently an intense research focus on the role(s) of effectors in promoting late blight disease development. However, little is known about how they are regulated, or how diversity in their expression may be generated among different isolates. Here we present data from investigation of RNA silencing processes, characterized by non-coding small RNA molecules (sRNA) of 19-40 nt. From deep sequencing of sRNAs we have identified sRNAs matching numerous RxLR and Crinkler (CRN) effector protein genes in two isolates differing in pathogenicity. Effector gene-derived sRNAs were present in both isolates, but exhibited marked differences in abundance, especially for CRN effectors. Small RNAs in P. infestans grouped into three clear size classes of 21, 25/26 and 32 nt. Small RNAs from all size classes mapped to RxLR effector genes, but notably 21 nt sRNAs were the predominant size class mapping to CRN effector genes. Some effector genes, such as PiAvr3a, to which sRNAs were found, also exhibited differences in transcript accumulation between the two isolates. The P. infestans genome is rich in transposable elements, and the majority of sRNAs of all size classes mapped to these sequences, predominantly to long terminal repeat (LTR) retrotransposons. RNA silencing of Dicer and Argonaute genes provided evidence that generation of 21 nt sRNAs is Dicer-dependent, while accumulation of longer sRNAs was impacted by silencing of Argonaute genes. Additionally, we identified six microRNA (miRNA) candidates from our sequencing data, their precursor sequences from the genome sequence, and target mRNAs. These miRNA candidates have features characteristic of both plant and metazoan miRNAs.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Cooke DEL, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM, Grünwald NJ, Hein I, MacLean D, McNicol JW, Randall E, Oliva RF, Pel MA, Shaw DS, Squires JN, Taylor MC, Vleeshouwers VGAA, Birch PRJ, Lees AK, Kamoun S. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathog 2012; 8:e1002940. [PMID: 23055926 PMCID: PMC3464212 DOI: 10.1371/journal.ppat.1002940] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/17/2012] [Indexed: 12/17/2022] Open
Abstract
Pest and pathogen losses jeopardise global food security and ever since the 19th century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P. infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1, Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics. We have documented a dramatic shift in the population of the potato late blight pathogen Phytophthora infestans in northwest Europe in which an invasive and aggressive lineage called 13_A2 has emerged and rapidly displaced other genotypes. The genome of a 13_A2 isolate revealed a high rate of sequence polymorphism and a remarkable level of variation in gene expression during infection, particularly of effector genes with putative roles in pathogenicity. Collectively, these polymorphisms, in combination with an extended biotrophic phase, may explain the aggressiveness of 13_A2 and its ability to cause disease on previously resistant potato cultivars. The genome analysis identified conserved effectors that are sensed by potato resistance genes. These findings provide options for the strategic deployment of host resistance with a positive impact on crop yield and food security. This work stresses the benefits of a crop disease management strategy incorporating knowledge of the geographical structure, evolutionary dynamics, genome sequence diversity and in planta-induced effector complement of pathogen lineages.
Collapse
Affiliation(s)
- David E. L. Cooke
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- * E-mail: (DELC); (SK)
| | - Liliana M. Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sylvain Raffaele
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | - Louise R. Cooke
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | | | - Kenneth L. Deahl
- USDA-ARS/PSI-GIFVL, BARC-West, Beltsville, Maryland, United States of America
| | - Rhys A. Farrer
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | - Erica M. Goss
- Horticultural Crops Research Laboratory, USDA ARS, Corvallis, Oregon, United States of America
- Emerging Pathogens Institute & Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Niklaus J. Grünwald
- Horticultural Crops Research Laboratory, USDA ARS, Corvallis, Oregon, United States of America
| | - Ingo Hein
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Daniel MacLean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - James W. McNicol
- Biomathematics and Statistics Scotland, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Eva Randall
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Ricardo F. Oliva
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- Escuela Politecnica del Ejercito, Sangolquí, Ecuador
| | - Mathieu A. Pel
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | - David S. Shaw
- The Sarvari Research Trust, Henfaes Research Centre, Abergwyngregyn, Llanfairfechan, United Kingdom
| | | | - Moray C. Taylor
- Food and Environment Research Agency, Sand Hutton, York, United Kingdom
| | | | - Paul R. J. Birch
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Division of Plant Sciences, College of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Alison K. Lees
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (DELC); (SK)
| |
Collapse
|
121
|
Stassen JHM, Seidl MF, Vergeer PWJ, Nijman IJ, Snel B, Cuppen E, Van den Ackerveken G. Effector identification in the lettuce downy mildew Bremia lactucae by massively parallel transcriptome sequencing. MOLECULAR PLANT PATHOLOGY 2012; 13:719-31. [PMID: 22293108 PMCID: PMC6638827 DOI: 10.1111/j.1364-3703.2011.00780.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lettuce downy mildew (Bremia lactucae) is a rapidly adapting oomycete pathogen affecting commercial lettuce cultivation. Oomycetes are known to use a diverse arsenal of secreted proteins (effectors) to manipulate their hosts. Two classes of effector are known to be translocated by the host: the RXLRs and Crinklers. To gain insight into the repertoire of effectors used by B. lactucae to manipulate its host, we performed massively parallel sequencing of cDNA derived from B. lactucae spores and infected lettuce (Lactuca sativa) seedlings. From over 2.3 million 454 GS FLX reads, 59 618 contigs were assembled representing both plant and pathogen transcripts. Of these, 19 663 contigs were determined to be of B. lactucae origin as they matched pathogen genome sequences (SOLiD) that were obtained from >270 million reads of spore-derived genomic DNA. After correction of cDNA sequencing errors with SOLiD data, translation into protein models and filtering, 16 372 protein models remained, 1023 of which were predicted to be secreted. This secretome included elicitins, necrosis and ethylene-inducing peptide 1-like proteins, glucanase inhibitors and lectins, and was enriched in cysteine-rich proteins. Candidate host-translocated effectors included 78 protein models with RXLR effector features. In addition, we found indications for an unknown number of Crinkler-like sequences. Similarity clustering of secreted proteins revealed additional effector candidates. We provide a first look at the transcriptome of B. lactucae and its encoded effector arsenal.
Collapse
Affiliation(s)
- Joost H M Stassen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3508 CH Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
122
|
Dynamics and innovations within oomycete genomes: insights into biology, pathology, and evolution. EUKARYOTIC CELL 2012; 11:1304-12. [PMID: 22923046 DOI: 10.1128/ec.00155-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eukaryotic microbes known as oomycetes are common inhabitants of terrestrial and aquatic environments and include saprophytes and pathogens. Lifestyles of the pathogens extend from biotrophy to necrotrophy, obligate to facultative pathogenesis, and narrow to broad host ranges on plants or animals. Sequencing of several pathogens has revealed striking variation in genome size and content, a plastic set of genes related to pathogenesis, and adaptations associated with obligate biotrophy. Features of genome evolution include repeat-driven expansions, deletions, gene fusions, and horizontal gene transfer in a landscape organized into gene-dense and gene-sparse sectors and influenced by transposable elements. Gene expression profiles are also highly dynamic throughout oomycete life cycles, with transcriptional polymorphisms as well as differences in protein sequence contributing to variation. The genome projects have set the foundation for functional studies and should spur the sequencing of additional species, including more diverse pathogens and nonpathogens.
Collapse
|
123
|
Orłowska E, Basile A, Kandzia I, Llorente B, Kirk HG, Cvitanich C. Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4765-79. [PMID: 22844094 PMCID: PMC3428001 DOI: 10.1093/jxb/ers154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The defence responses of potato against Phytophthora infestans were studied using the highly resistant Sarpo Mira cultivar. The effects of plant integrity, meristems, and roots on the hypersensitive response (HR), plant resistance, and the regulation of PR genes were analysed. Sarpo Mira shoots and roots grafted with the susceptible Bintje cultivar as well as non-grafted different parts of Sarpo Mira plants were inoculated with P. infestans. The progress of the infection and the number of HR lesions were monitored, and the regulation of PR genes was compared in detached and attached leaves. Additionally, the antimicrobial activity of plant extracts was assessed. The presented data show that roots are needed to achieve full pathogen resistance, that the removal of meristems in detached leaves inhibits the formation of HR lesions, that PR genes are differentially regulated in detached leaves compared with leaves of whole plants, and that antimicrobial compounds accumulate in leaves and roots of Sarpo Mira plants challenged with P. infestans. While meristems are necessary for the formation of HR lesions, the roots of Sarpo Mira plants participate in the production of defence-associated compounds that increase systemic resistance. Based on the literature and on the presented results, a model is proposed for mechanisms involved in Sarpo Mira resistance that may apply to other resistant potato cultivars.
Collapse
Affiliation(s)
- Elzbieta Orłowska
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
124
|
Lahrmann U, Zuccaro A. Opprimo ergo sum--evasion and suppression in the root endophytic fungus Piriformospora indica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:727-37. [PMID: 22352718 DOI: 10.1094/mpmi-11-11-0291] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genetically tractable endophytic fungus Piriformospora indica is able to colonize the root cortex of a great variety of different plant species with beneficial effects to its hosts, and it represents a suitable model system to study symbiotic interactions. Recent cytological studies in barley and Arabidopsis showed that, upon penetration of the root, P. indica establishes a biotrophic interaction during which fungal cells are encased by the host plasma membrane. Large-scale transcriptional analyses of fungal and plant responses have shown that perturbance of plant hormone homeostasis and secretion of fungal lectins and other small proteins (effectors) may be involved in the evasion and suppression of host defenses at these early colonization steps. At later stages, P. indica is found more often in moribund host cells where it secretes a large variety of hydrolytic enzymes that degrade proteins. This strategy of colonizing plants is reminiscent of that of hemibiotrophic fungi, although a defined shift to necrotrophy with massive host cell death is missing. Instead, the association with the plant root leads to beneficial effects for the host such as growth promotion, increased resistance to root as well as leaf pathogens, and increased tolerance to abiotic stresses. This review describes current advances in understanding the components of the P. indica endophytic lifestyle from molecular and genomic analyses.
Collapse
Affiliation(s)
- Urs Lahrmann
- Max Planck Institute for Terrestrial Microbiology - Organismic Interations, Marburg, Germany
| | | |
Collapse
|
125
|
Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 2012; 10:417-30. [PMID: 22565130 DOI: 10.1038/nrmicro2790] [Citation(s) in RCA: 464] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many species of fungi and oomycetes are plant pathogens of great economic importance. Over the past 7 years, the genomes of more than 30 of these filamentous plant pathogens have been sequenced, revealing remarkable diversity in genome size and architecture. Whereas the genomes of many parasites and bacterial symbionts have been reduced over time, the genomes of several lineages of filamentous plant pathogens have been shaped by repeat-driven expansions. In these lineages, the genes encoding proteins involved in host interactions are frequently polymorphic and reside within repeat-rich regions of the genome. Here, we review the properties of these adaptable genome regions and the mechanisms underlying their plasticity, and we illustrate cases in which genome plasticity has contributed to the emergence of new virulence traits. We also discuss how genome expansions may have had an impact on the co-evolutionary conflict between these filamentous plant pathogens and their hosts.
Collapse
Affiliation(s)
- Sylvain Raffaele
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | |
Collapse
|
126
|
Cui L, Yin W, Dong S, Wang Y. Analysis of polymorphism and transcription of the effector gene Avr1b in Phytophthora sojae isolates from China virulent to Rps1b. MOLECULAR PLANT PATHOLOGY 2012; 13:114-22. [PMID: 21726400 PMCID: PMC6638858 DOI: 10.1111/j.1364-3703.2011.00733.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The effector gene Avr1b-1 of Phytophthora sojae determines the efficacy of the resistance gene Rps1b in soybean. The sequences of the Avr1b-1 locus in 34 Chinese isolates of P. sojae were obtained and analysed by polymerase chain reaction (PCR) and inverse PCR. Four different alleles and a complete deletion mutation of the Avr1b-1 gene were identified. Molecular analysis of the deletion breakpoints in the Avr1b-1 locus revealed that an 8-kb DNA sequence containing Avr1b-1 was deleted and a 12.7-kb DNA sequence was inserted at the same locus. A truncated transposase gene was found and five transposable elements were predicted in the inserted sequence, suggesting that the deletion of Avr1b-1 might be attributed to transposon movement. The transcription of Avr1b-1 was analysed in virulent isolates containing four alleles of Avr1b-1 by real-time reverse transcription-PCR. In all virulent isolates, only those isolates containing the second allele transcripted Avr1b-1.
Collapse
Affiliation(s)
- Linkai Cui
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | | | | | | |
Collapse
|
127
|
Saunders DGO, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One 2012; 7:e29847. [PMID: 22238666 PMCID: PMC3253089 DOI: 10.1371/journal.pone.0029847] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/05/2011] [Indexed: 11/22/2022] Open
Abstract
Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.
Collapse
Affiliation(s)
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Liliana M. Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Les J. Szabo
- Cereal Disease Laboratory, Agricultural Research Service, U.S. Department of Agriculture, St. Paul, Minnesota, United States of America
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sylvain Raffaele
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
128
|
Nowicki M, Foolad MR, Nowakowska M, Kozik EU. Potato and Tomato Late Blight Caused by Phytophthora infestans: An Overview of Pathology and Resistance Breeding. PLANT DISEASE 2012; 96:4-17. [PMID: 30731850 DOI: 10.1094/pdis-05-11-0458] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Marcin Nowicki
- Research Institute of Horticulture, Department of Genetics, Breeding and Biotechnology of Vegetable Plants, Skierniewice, Poland
| | - Majid R Foolad
- Department of Horticulture and The Intercollege Graduate Degree Programs in Plant Biology and Genetics, The Pennsylvania State University, University Park
| | - Marzena Nowakowska
- Research Institute of Horticulture, Department of Genetics, Breeding and Biotechnology of Vegetable Plants, Skierniewice, Poland
| | - Elznieta U Kozik
- Research Institute of Horticulture, Department of Genetics, Breeding and Biotechnology of Vegetable Plants, Skierniewice, Poland
| |
Collapse
|
129
|
Orsomando G, Brunetti L, Pucci K, Ruggeri B, Ruggieri S. Comparative structural and functional characterization of putative protein effectors belonging to the PcF toxin family from Phytophthora spp. Protein Sci 2011; 20:2047-59. [PMID: 21936011 PMCID: PMC3302648 DOI: 10.1002/pro.742] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 11/07/2022]
Abstract
The PcF Toxin Family (Pfam 09461) includes the characterized phytotoxic protein PcF from Phytophthora cactorum, as well as several predicted protein effectors from other Phytophthora species recently identified by comparative genomics. Here we provide first evidence that such 'putatives', recombinantly expressed in bacteria and purified to homogeneity, similarly to PcF, can trigger defense-related responses on tomato, that is leaf withering and phenylalanine ammonia lyase induction, although with various degrees of effectiveness. In addition, structural prediction by computer-aided homology modeling and subsequent structural/functional comparison after rational engineering of the disulfide-structured protein fold by site-directed mutagenesis, highlighted the surface-exposed conserved amino acid stretch SK(E/C)C as a possible structural determinant responsible for the differential phytotoxicity within this family of cognate protein effectors.
Collapse
Affiliation(s)
| | | | | | | | - Silverio Ruggieri
- Dipartimento Patologia Molecolare e Terapie Innovative, Sezione Biochimica, Università Politecnica delle MarcheVia Ranieri 67, Ancona 60131, Italy
| |
Collapse
|
130
|
Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol 2011; 115:1225-33. [DOI: 10.1016/j.funbio.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/31/2011] [Indexed: 11/25/2022]
|
131
|
Links MG, Holub E, Jiang RHY, Sharpe AG, Hegedus D, Beynon E, Sillito D, Clarke WE, Uzuhashi S, Borhan MH. De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. BMC Genomics 2011; 12:503. [PMID: 21995639 PMCID: PMC3206522 DOI: 10.1186/1471-2164-12-503] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022] Open
Abstract
Background Albugo candida is a biotrophic oomycete that parasitizes various species of Brassicaceae, causing a disease (white blister rust) with remarkable convergence in behaviour to unrelated rusts of basidiomycete fungi. Results A recent genome analysis of the oomycete Hyaloperonospora arabidopsidis suggests that a reduction in the number of genes encoding secreted pathogenicity proteins, enzymes for assimilation of inorganic nitrogen and sulphur represent a genomic signature for the evolution of obligate biotrophy. Here, we report a draft reference genome of a major crop pathogen Albugo candida (another obligate biotrophic oomycete) with an estimated genome of 45.3 Mb. This is very similar to the genome size of a necrotrophic oomycete Pythium ultimum (43 Mb) but less than half that of H. arabidopsidis (99 Mb). Sequencing of A. candida transcripts from infected host tissue and zoosporangia combined with genome-wide annotation revealed 15,824 predicted genes. Most of the predicted genes lack significant similarity with sequences from other oomycetes. Most intriguingly, A. candida appears to have a much smaller repertoire of pathogenicity-related proteins than H. arabidopsidis including genes that encode RXLR effector proteins, CRINKLER-like genes, and elicitins. Necrosis and Ethylene inducing Peptides were not detected in the genome of A. candida. Putative orthologs of tat-C, a component of the twin arginine translocase system, were identified from multiple oomycete genera along with proteins containing putative tat-secretion signal peptides. Conclusion Albugo candida has a comparatively small genome amongst oomycetes, retains motility of sporangial inoculum, and harbours a much smaller repertoire of candidate effectors than was recently reported for H. arabidopsidis. This minimal gene repertoire could indicate a lack of expansion, rather than a reduction, in the number of genes that signify the evolution of biotrophy in oomycetes.
Collapse
Affiliation(s)
- Matthew G Links
- Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2 Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 2011; 7:e1002290. [PMID: 22022265 PMCID: PMC3192844 DOI: 10.1371/journal.ppat.1002290] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/14/2011] [Indexed: 11/18/2022] Open
Abstract
Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP), including several lectin-like proteins and members of a P. indica-specific gene family (DELD) with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.
Collapse
Affiliation(s)
- Alga Zuccaro
- Department of Organismic Interactions, Max-Planck Institute (MPI) for Terrestrial Microbiology, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
de Jonge R, Bolton MD, Thomma BPHJ. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:400-6. [PMID: 21454120 DOI: 10.1016/j.pbi.2011.03.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/01/2011] [Accepted: 03/07/2011] [Indexed: 05/23/2023]
Abstract
Research on effectors secreted by pathogens during host attack has dominated the field of molecular plant-microbe interactions over recent years. Functional analysis of type III secreted effectors injected by pathogenic bacteria into host cells has significantly advanced the field and demonstrated that many function to suppress host defense. Fungal and oomycete effectors are delivered outside the host plasma membrane, and although research has lagged behind on bacterial effectors, we are gradually learning more and more about the functions of these effectors. While some function outside the host cell to disarm defense, others exploit host cellular uptake mechanisms to suppress defense or liberate nutrients intracellularly. Comparative genomics suggests that the organization of effector genes drives effector evolution in many pathogen genomes.
Collapse
Affiliation(s)
- Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | |
Collapse
|
134
|
Stassen JHM, Van den Ackerveken G. How do oomycete effectors interfere with plant life? CURRENT OPINION IN PLANT BIOLOGY 2011; 14:407-14. [PMID: 21641854 DOI: 10.1016/j.pbi.2011.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/20/2011] [Accepted: 05/06/2011] [Indexed: 05/20/2023]
Abstract
Oomycete genomes have yielded a large number of predicted effector proteins that collectively interfere with plant life in order to create a favourable environment for pathogen infection. Oomycetes secrete effectors that can be active in the host's extracellular environment, for example inhibiting host defence enzymes, or inside host cells where they can interfere with plant processes, in particular suppression of defence. Two classes of effectors are known to be host-translocated: the RXLRs and Crinklers. Many effectors show defence-suppressive activity that is important for pathogen virulence. A striking example is AVR3a of Phytophthora infestans that targets an ubiquitin ligase, the stabilisation of which may prevent host cell death. The quest for other effector targets and mechanisms is in full swing.
Collapse
Affiliation(s)
- Joost H M Stassen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
135
|
Seidl MF, Van den Ackerveken G, Govers F, Snel B. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. PLANT PHYSIOLOGY 2011; 155:628-644. [PMID: 21119047 PMCID: PMC3032455 DOI: 10.1104/pp.110.167841] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/24/2010] [Indexed: 05/29/2023]
Abstract
Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.
Collapse
Affiliation(s)
- Michael F Seidl
- Theoretical Biology and Bioinformatics , Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
136
|
Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S. Understanding and exploiting late blight resistance in the age of effectors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:507-31. [PMID: 21663437 DOI: 10.1146/annurev-phyto-072910-095326] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Potato (Solanum tuberosum) is the world's third-largest food crop. It severely suffers from late blight, a devastating disease caused by Phytophthora infestans. This oomycete pathogen secretes host-translocated RXLR effectors that include avirulence (AVR) proteins, which are targeted by resistance (R) proteins from wild Solanum species. Most Solanum R genes appear to have coevolved with P. infestans at its center of origin in central Mexico. Various R and Avr genes were recently cloned, and here we catalog characterized R-AVR pairs. We describe the mechanisms that P. infestans employs for evading R protein recognition and discuss partial resistance and partial virulence phenotypes in the context of our knowledge of effector diversity and activity. Genome-wide catalogs of P. infestans effectors are available, enabling effectoromics approaches that accelerate R gene cloning and specificity profiling. Engineering R genes with expanded pathogen recognition has also become possible. Importantly, monitoring effector allelic diversity in pathogen populations can assist in R gene deployment in agriculture.
Collapse
|