101
|
Zhao F, Wang C, Han J, Zhu X, Li X, Wang X, Fang J. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level. Funct Integr Genomics 2016; 17:213-235. [PMID: 27696076 DOI: 10.1007/s10142-016-0514-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.
Collapse
Affiliation(s)
- Fanggui Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
102
|
Hackenberg M, Rueda A, Gustafson P, Langridge P, Shi BJ. Generation of different sizes and classes of small RNAs in barley is locus, chromosome and/or cultivar-dependent. BMC Genomics 2016; 17:735. [PMID: 27633252 PMCID: PMC5025612 DOI: 10.1186/s12864-016-3023-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Various small RNA (sRNA) sizes and varieties have been identified, but their relationship as well as relationship with their origins and allocations have not been well understood or investigated. Results By comparing sRNAs generated from two barley cultivars, Golden Promise (GP) and Pallas, we identified that the generation of different sizes and types of sRNAs in barley was locus-, chromosome- and/or cultivar-dependent. 20-nt sRNAs mainly comprising miRNAs and chloroplast-derived sRNAs were significantly over-expressed in Pallas vs. GP on chromosomes 3H and 6H. MiRNAs-enriched 21-nt sRNAs were significantly over-expressed in Pallas vs. GP only on chromosome 4H. On chromosome 5H this size of sRNAs was significantly under-expressed in Pallas, so were 22-nt sRNAs mainly comprising miRNAs and repeat-derived sRNAs. 24-nt sRNAs mostly derived from repeats were evenly distributed in all chromosomes and expressed similarly between GP and Pallas. Unlike other sizes of sRNAs, 24-nt sRNAs were little conserved in other plant species. Abundant sRNAs were mostly generated from 3’ terminal regions of chromosome 1H and 5’ terminal regions of chromosome 5H. Over-expressed miRNAs in GP vs. Pallas primarily function in stress responses and iron-binding. Conclusions Our study indicates that 23−24-nt sRNAs may be linked to repressive chromatin modifications and function in genome stability while 20−21-nt sRNAs may be important for the cultivar specificity. This study provides a novel insight into the mechanism of sRNA expression and function in barley. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3023-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Hackenberg
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain
| | - Antonio Rueda
- Genomics and Bioinformatics Platform of Andalusia (GBPA), Edificio INSUR, Calle Albert Einstein, 41092, Seville, Spain
| | - Perry Gustafson
- USDA-ARS, 206 Curtis Hall, University of Missouri, Columbia, MO, 65211-7020, USA
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bu-Jun Shi
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
103
|
Lian S, Cho WK, Kim SM, Choi H, Kim KH. Time-Course Small RNA Profiling Reveals Rice miRNAs and Their Target Genes in Response to Rice Stripe Virus Infection. PLoS One 2016; 11:e0162319. [PMID: 27626631 PMCID: PMC5023111 DOI: 10.1371/journal.pone.0162319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
It has been known that many microRNAs (miRNAs) are involved in the regulation for the plant development and defense mechanism by regulating the expression of the target gene. Several previous studies has demonstrated functional roles of miRNAs in antiviral defense mechanisms. In this study, we employed high-throughput sequencing technology to identify rice miRNAs upon rice stripe virus (RSV) infection at three different time points. Six libraries from mock and RSV-infected samples were subjected for small RNA sequencing. Bioinformatic analyses revealed 374 known miRNAs and 19 novel miRNAs. Expression of most identified miRNAs was not dramatically changed at 3 days post infection (dpi) and 7 dpi by RSV infection. However, many numbers of miRNAs were up-regulated in mock and RSV-infected samples at 15 dpi by RSV infection. Moreover, expression profiles of identified miRNAs revealed that only few numbers of miRNAs were strongly regulated by RSV infection. In addition, 15 resistance genes were targets of six miRNAs suggesting that those identified miRNAs and 15 NBS-LRR resistance genes might be involved in RSV infection. Taken together, our results provide novel insight into the dynamic expression profiles of rice miRNAs upon RSV infection and clues for the understanding of the regulatory roles of miRNAs via time-course.
Collapse
Affiliation(s)
- Sen Lian
- College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Min Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
104
|
Chiang CP, Yim WC, Sun YH, Ohnishi M, Mimura T, Cushman JC, Yen HE. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:1143. [PMID: 27555850 PMCID: PMC4977306 DOI: 10.3389/fpls.2016.01143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/18/2016] [Indexed: 05/03/2023]
Abstract
The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na(+), we found that ice plant roots respond to an increased flux of Na(+) by either secreting or storing Na(+) in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na(+) distribution, ice plant likely responds to increased salinity by using Na(+) as an osmoticum for cell expansion and guard cell opening. Excessive Na(+) could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.
Collapse
Affiliation(s)
- Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing UniversityTaichung, Taiwan
| | - Miwa Ohnishi
- Graduate School of Science, Kobe UniversityKobe, Japan
| | | | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Hungchen E. Yen
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
105
|
Mutum RD, Kumar S, Balyan S, Kansal S, Mathur S, Raghuvanshi S. Identification of novel miRNAs from drought tolerant rice variety Nagina 22. Sci Rep 2016; 6:30786. [PMID: 27499088 PMCID: PMC4976344 DOI: 10.1038/srep30786] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs regulate a spectrum of developmental and biochemical processes in plants and animals. Thus, knowledge of the entire miRNome is essential to understand the complete regulatory schema of any organism. The current study attempts to unravel yet undiscovered miRNA genes in rice. Analysis of small RNA libraries from various tissues of drought-tolerant ‘aus’ rice variety Nagina 22 (N22) identified 71 novel miRNAs. These were validated based on precursor hairpin structure, small RNA mapping pattern, ‘star’ sequence, conservation and identification of targets based on degradome data. While some novel miRNAs were conserved in other monocots and dicots, most appear to be lineage-specific. They were segregated into two different classes based on the closeness to the classical miRNA definition. Interestingly, evidence of a miRNA-like cleavage was found even for miRNAs that lie beyond the classical definition. Several novel miRNAs displayed tissue-enriched and/or drought responsive expression. Generation and analysis of the degradome data from N22 along with publicly available degradome identified several high confidence targets implicated in regulation of fundamental processes such as flowering and stress response. Thus, discovery of these novel miRNAs considerably expands the dimension of the miRNA-mediated regulation in rice.
Collapse
Affiliation(s)
- Roseeta Devi Mutum
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| | - Sonia Balyan
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| |
Collapse
|
106
|
Nongpiur RC, Singla-Pareek SL, Pareek A. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Curr Genomics 2016; 17:343-57. [PMID: 27499683 PMCID: PMC4955028 DOI: 10.2174/1389202917666160331202517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067,India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| |
Collapse
|
107
|
Yang Y, Zhu K, Wu J, Liu L, Sun G, He Y, Chen F, Yu D. Identification and characterization of a novel NAC-like gene in chrysanthemum (Dendranthema lavandulifolium). PLANT CELL REPORTS 2016; 35:1783-98. [PMID: 27233639 DOI: 10.1007/s00299-016-1996-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/12/2016] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE A NAC -like gene named DlNAC1 was identified in chrysanthemum and characterized; it may be involved in regulation of response to abiotic stressors, especially in tolerance to drought and salinity. NAC transcription factors in plants play crucial roles in tolerance to abiotic stressors, and overexpression of the NAC gene in Arabidopsis has been demonstrated to lead to improved drought tolerance. Functions of the NAC genes in chrysanthemum, however, remain poorly understood. In this study, a NAC-like gene named DlNAC1 was identified in chrysanthemum (Dendranthema lavandulifolium) and characterized. Phylogenetic analysis indicated that DlNAC1 contains a typical NAC domain and belongs to the ONAC022 subgroup. According to the subcellular localization and yeast one-hybrid assay, the DlNAC1 protein is localized to nuclei and has a transcription activation ability. Moreover, quantitative real-time PCR analyses showed that DlNAC1 was induced by low-temperature, high-salinity, and drought conditions (separately), but not by abscisic acid (ABA) and heat shock. In these experiments, the downstream genes of NAC transcription factors were found to be up-regulated, including stress-responsive genes KIN1 and AMY1. To further explore the effects of DlNAC1 in response to abiotic stressors, DlNAC1 was overexpressed in tobacco, and these transgenic plants showed significantly enhanced tolerance to drought and salinity. This study suggests that in chrysanthemum, the DlNAC1 gene is involved in regulation of the response to abiotic stressors, especially in tolerance to drought and salinity.
Collapse
Affiliation(s)
- Yanfang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Zhu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liqing Liu
- Fujian Provincial Key Lab of Subtropic Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361009, China
| | - Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yanbiao He
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
108
|
Identification of Known and Novel microRNAs and Their Targets in Peach (Prunus persica) Fruit by High-Throughput Sequencing. PLoS One 2016; 11:e0159253. [PMID: 27466805 PMCID: PMC4965121 DOI: 10.1371/journal.pone.0159253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/29/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that have functions in post-transcriptional gene regulation in plants. Although the most important economic component of peach trees (Prunus persica) is the fruit, not much is known about miRNAs in this organ. In this study, miRNAs and their targets were identified and characterized from libraries of small RNAs of peach fruit through Solexa based-sequencing and bioinformatics approaches. A total of 557 known peach miRNAs belonging to 34 miRNA families were identified, and some of these miRNAs were found to be highly conserved in at least four other plant species. Using the most current criteria for miRNA annotation, 275 putative novel miRNAs were predicted, and the sequencing frequencies of these novel miRNAs were less than those of the conserved miRNAs. In total, 3959 and 1614 target genes for 349 known and 193 novel miRNAs, respectively, were predicted with the criteria that a single target gene can be targeted by different miRNAs and that a single miRNA can also have a large number of target genes. Three targets were even found to be targeted by 13 novel miRNAs that contained the same complete miRNA sequence at different locations and had different scaffolds. The proteins predicted to be targeted by the miRNAs identified in this study encompass a wide range of transcription factors and are involved in many biological processes and pathways, including development, metabolism, stress responses and signal transduction. A total of 115 and 101 target genes were identified to be cleaved by 60 known miRNAs and 27 novel miRNAs through degradome sequencing, respectively. These miRNAs induce cleavage of their targets precisely at the position between nucleotides 10 and 11 of the miRNA sequences from the 5’ to the 3’ end. Thirty conserved miRNAs and 19 novel miRNAs exhibited differential expression profiles in the peach, and the expression patterns of some miRNAs appeared to be tissue- or developmental stage-specific. The findings of this study provide an important basis for the analysis of miRNAs, their targets and the functions of these targets in peach fruit.
Collapse
|
109
|
Xia J, Wang X, Perroud PF, He Y, Quatrano R, Zhang W. Endogenous Small-Noncoding RNAs and Potential Functions in Desiccation Tolerance in Physcomitrella Patens. Sci Rep 2016; 6:30118. [PMID: 27443635 PMCID: PMC4957126 DOI: 10.1038/srep30118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
Early land plants like moss Physcomitrella patens have developed remarkable drought tolerance. Phytohormone abscisic acid (ABA) protects seeds during water stress by activating genes through transcription factors such as ABSCISIC ACID INSENSITIVE (ABI3). Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are key gene regulators in eukaryotes, playing critical roles in stress tolerance in plants. Combining next-generation sequencing and computational analysis, we profiled and characterized sncRNA species from two ABI3 deletion mutants and the wild type P. patens that were subject to ABA treatment in dehydration and rehydration stages. Small RNA profiling using deep sequencing helped identify 22 novel miRNAs and 6 genomic loci producing trans-acting siRNAs (ta-siRNAs) including TAS3a to TAS3e and TAS6. Data from degradome profiling showed that ABI3 genes (ABI3a/b/c) are potentially regulated by the plant-specific miR536 and that other ABA-relevant genes are regulated by miRNAs and ta-siRNAs. We also observed broad variations of miRNAs and ta-siRNAs expression across different stages, suggesting that they could potentially influence desiccation tolerance. This study provided evidence on the potential roles of sncRNA in mediating desiccation-responsive pathways in early land plants.
Collapse
Affiliation(s)
- Jing Xia
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA
| | - Xiaoqin Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China.,Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ralph Quatrano
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA.,Department of Genetics, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
110
|
Pan L, Wang Z, Cai J, Gao H, Zhao H, Dong L. High-throughput sequencing reveals differential regulation of miRNAs in fenoxaprop-P-ethyl-resistant Beckmannia syzigachne. Sci Rep 2016; 6:28725. [PMID: 27353151 PMCID: PMC4926119 DOI: 10.1038/srep28725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 06/09/2016] [Indexed: 12/02/2022] Open
Abstract
Non-target site resistance (NTSR) to herbicides is an increasing concern for weed control. The majority of previous studies have focused on metabolic resistance mechanisms of NTSR, but no research exists on gene regulation mechanisms behind herbicide resistance, such as microRNA (miRNA). Here, we identified 3 American sloughgrass (Beckmannia syzigachne Steud.) populations containing fenoxaprop-P-ethyl-resistant plants. We then constructed small RNA libraries and subjected them to deep sequencing and bioinformatics analyses. Forty known and 36 potentially novel, predicted miRNAs were successfully identified. Of these, we identified 3 conserved, predicted candidate NTSR-determinant miRNAs and their potential corresponding target genes, as well as 4 novel potential miRNAs with high count. Target gene prediction and annotation indicated that these 7 differentially expressed miRNAs potentially play a role in regulating specific stress-responsive genes, very likely related to herbicide resistance. Expression profiles were determined with quantitative real-time PCR. The present study is a novel, large-scale characterization of weed miRNAs. The results should further our understanding of miRNA expression profiles associated with herbicide resistance, allowing for the development of more effective weed management strategies.
Collapse
Affiliation(s)
- Lang Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Zhaoyun Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Jia Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Haitao Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| |
Collapse
|
111
|
Bakhshi B, Mohseni Fard E, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH. MicroRNA Signatures of Drought Signaling in Rice Root. PLoS One 2016; 11:e0156814. [PMID: 27276090 PMCID: PMC4898717 DOI: 10.1371/journal.pone.0156814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Background Drought stress is one of the most important abiotic stresses and the main constraint to rice agriculture. MicroRNA-mediated post-transcriptional gene regulation is one of the ways to establish drought stress tolerance in plants. MiRNAs are 20–24-nt regulatory RNAs that play an important role in regulating plant gene expression upon exposure to biotic and abiotic stresses. Methodology/Principal Findings In this study, we applied a partial root drying system as well as a complete root drying system to identify miRNAs involved in conditions of drought stress, drought signaling and wet signaling using high-throughput sequencing. To this end, we produced four small RNA libraries: (1) fully-watered (WW), (2) fully-droughted (WD), and split-root systems where (3) one-half was well watered (SpWW) and (4) the other half was water-deprived (SpWD). Our analysis revealed 10,671 and 783 unique known and novel miRNA reads in all libraries, respectively. We identified, 65 (52 known + 13 novel), 72 (61 known + 11 novel) and 51 (38 known + 13 novel) miRNAs that showed differential expression under conditions of drought stress, drought signaling and wet signaling, respectively. The results of quantitative real-time PCR showed expression patterns similar to the high-throughput sequencing results. Furthermore, our target prediction led to the identification of 244, 341 and 239 unique target genes for drought-stress-, drought-signaling- and wet-signaling-responsive miRNAs, respectively. Conclusions/Significance Our results suggest that miRNAs that are responsive under different conditions could play different roles in the regulation of abscisic acid signaling, calcium signaling, detoxification and lateral root formation.
Collapse
Affiliation(s)
- Behnam Bakhshi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Mohseni Fard
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Nava Nikpay
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | | | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|
112
|
Biswas S, Hazra S, Chattopadhyay S. Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
113
|
Wang L, Zhao H, Chen D, Li L, Sun H, Lou Y, Gao Z. Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. PLANT CELL REPORTS 2016; 35:1371-83. [PMID: 27021381 DOI: 10.1007/s00299-016-1970-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 05/04/2023]
Abstract
PeSNAC1 , a stress-related NAC1 from Phyllostachys edulis , was characterized. Ectopic expression in Arabidopsis indicated that PeSNAC1 together with ped -miR164b participated in the regulation of organ boundaries and stress tolerance. NAC (NAM, ATAF1/2 and CUC2) participates in many different processes regulating plant growth, development, and stress response. A total of 125 NAC genes have been predicted in moso bamboo (Phyllostachys edulis), but their roles are poorly understood. PeSNAC1 targeted by ped-miR164b was focused for further study. The cleavage of PeSNAC1 mRNA guided by ped-miR164b was validated using RLM-5' RACE. Tissue-specific expression analysis demonstrated that ped-miR164b had a declining trend from root, sheath, leaf, to that of stem, which was opposite to that of PeSNAC1. Transgenic Arabidopsis plants overexpressing either PeSNAC1 (OX-PeSNAC1) or, ped-miR164b (OX-ped-miR164b) driven by the CaMV35S promoter were generated. OX-ped-miR164b plants showed similar phenotype of cuc2 mutants whose growth was seriously suppressed. Compared with Col-0, sense OX-PeSNAC1 plants grew rapidly and flowered earlier, whereas antisense plants grew slowly and exhibited delayed flowering. Sense OX-PeSNAC1 plants had the greatest number of lateral roots, while antisense OX-PeSNAC1 and OX-ped-miR164b plants had fewer lateral roots than Col-0. Under NaCl and PEG6000 stresses, survival rates were higher and F v/F m values declined more slowly in sense OX-PeSNAC1 plants than in Col-0, with lower survival rates and a more rapid decrease in F v/F m values conversely observed in antisense OX-PeSNAC1 and OX-ped-miR164b plants. These findings indicated that ped-miR164b-targeted PeSNAC1 may play key roles in plant development and tolerance to salinity and drought stresses.
Collapse
Affiliation(s)
- Lili Wang
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
- Lianyungang Academy of Agricultural Sciences, Lianyungang, 222000, China
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Dongliang Chen
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lichao Li
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Huayu Sun
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Yongfeng Lou
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zhimin Gao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
114
|
Li D, Liu Z, Gao L, Wang L, Gao M, Jiao Z, Qiao H, Yang J, Chen M, Yao L, Liu R, Kan Y. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L. PLoS One 2016; 11:e0153168. [PMID: 27082634 PMCID: PMC4833412 DOI: 10.1371/journal.pone.0153168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7–2 collected 4–6, 7–9, 12–14, and 18–23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12–14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18–23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation.
Collapse
Affiliation(s)
- Dandan Li
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Zongcai Liu
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Lei Gao
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Lifang Wang
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Meijuan Gao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Zhujin Jiao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Jianwei Yang
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Min Chen
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Lunguang Yao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- * E-mail: (RYL); (YCK)
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
- * E-mail: (RYL); (YCK)
| |
Collapse
|
115
|
Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genet 2016; 17:57. [PMID: 27068810 PMCID: PMC4828802 DOI: 10.1186/s12863-016-0364-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/01/2016] [Indexed: 12/03/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is a diploid C4 panicoid species. Because of its prominent drought resistance, small genome size, self-pollination, and short life cycle, foxtail millet has become an ideal model system for studying drought tolerance of crops. MicroRNAs (miRNAs) are endogenous, small RNAs that play important regulatory roles in the development and stress response in plants. Results In this study, we applied Illumina sequencing to systematically investigate the drought-responsive miRNAs derived from S. italica inbred An04-4783 seedlings grown under control and drought conditions. Degradome sequencing was applied to confirm the targets of these miRNAs at a global level. A total of 81 known miRNAs belonging to 28 families were identified, among which 14 miRNAs were upregulated and four were downregulated in response to drought. In addition, 72 potential novel miRNAs were identified, three of which were differentially expressed under drought conditions. Degradome sequencing analysis showed that 56 and 26 genes were identified as targets of known and novel miRNAs, respectively. Conclusions Our analysis revealed post-transcriptional remodeling of cell development, transcription factors, ABA signaling, and cellar homeostasis in S.italica in response to drought. This preliminary characterization provided useful information for further studies on the regulatory networks of drought-responsive miRNAs in foxtail millet. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0364-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongqiang Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China.,Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Lin Li
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianguang Liu
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hanshuang Zhang
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Xianmin Diao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China. .,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
116
|
Alptekin B, Budak H. Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomics 2016; 17:171-187. [PMID: 27032785 DOI: 10.1007/s10142-016-0487-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
MicroRNAs are critical players of post-transcriptional gene regulation with profound effects on the fundamental processes of cellular life. Their identification and characterization, together with their targets, hold great significance in exploring and exploiting their roles on a functional context, providing valuable clues into the regulation of important biological processes, such as stress tolerance or environmental adaptation. Wheat is a hardy crop, extensively harvested in temperate regions, and is a major component of the human diet. With the advent of the next generation sequencing technologies considerably decreasing sequencing costs per base-pair, genomic, and transcriptomic data from several wheat species, including the progenitors and wild relatives have become available. In this study, we performed in silico identification and comparative analysis of microRNA repertoires of bread wheat (Triticum aestivum L.) and its diploid progenitors and relatives, Aegilops sharonensis, Aegilops speltoides, Aegilops tauschii, Triticum monococcum, and Triticum urartu through the utilization of publicly available transcriptomic data. Over 200 miRNA families were identified, majority of which have not previously been reported. Ancestral relationships expanded our understanding of wheat miRNA evolution, while T. monococcum miRNAs delivered important clues on the effects of domestication on miRNA expression. Comparative analyses on wild Ae. sharonensis accessions highlighted candidate miRNAs that can be linked to stress tolerance. The miRNA repertoires of bread wheat and its diploid progenitors and relatives provide important insight into the diversification and distribution of miRNA genes, which should contribute to the elucidation of miRNA evolution of Poaceae family. A thorough understanding of the convergent and divergent expression profiles of miRNAs in different genetic backgrounds can provide unique opportunities to modulation of gene regulation for better crop performance.
Collapse
Affiliation(s)
- Burcu Alptekin
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
117
|
Sajeevan R, Nataraja KN. Molecular cloning and characterization of a novel basic helix–loop–helix-144 (bHLH144)-like transcription factor from Morus alba (L.). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
118
|
Yan H, Chen Y, Zhou S, Li C, Gong G, Chen X, Wang T, Chen S, Sha Z. Expression Profile Analysis of miR-221 and miR-222 in Different Tissues and Head Kidney Cells of Cynoglossus semilaevis, Following Pathogen Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:37-48. [PMID: 26420296 DOI: 10.1007/s10126-015-9668-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Half-smooth tongue sole (Cynoglossus semilaevis) is an important marine commercial fish species in China, which suffers from widespread disease outbreaks. Recently, in this regard, our group identified immune-related microRNAs (miRNAs) of C. semilaevis following Vibrio anguillarum infection. Furthermore, miRNA microarray was utilized to characterize the immune roles of important miRNA candidates in response to bacterial infection. Therefore, in the present study, we characterized miR-221 and miR-222 and profiled their expression after challenge. Here, miR-221 and miR-222 precursors were predicted to have a typical hairpin structure. Both miRNAs were expressed in a broad range of tissues in C. semilaevis, while miR-221 and miR-222 were significantly differentially expressed in the immune tissues of C. semilaevis among three small RNA libraries [control group (CG), bacteria-challenged fish without obvious symptoms of infection (NOSG), and bacteria-challenged fish with obvious symptoms of infection (HOSG)]. In order to further characterize and understand the immune response of miR-221 and miR-222, therefore, we profiled miR-221 and miR-222 expression in selected immune tissues after challenge with V. anguillarum. Both miR-221 and miR-222 were upregulated in the liver and spleen, while different expression patterns were observed in the head kidney. In addition, in half-smooth tongue sole head kidney cell line after challenge with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), peptidoglycan (PGN), and red-spotted grouper nervous necrosis virus (RGNNV), both miR-221 and miR-222 showed significant difference in expression response to pathogen. Meanwhile, the target gene of miR-221 and miR-222 was predicted, which indicated that tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 beta (IL-1β) were the target genes of miR-221 and miR-222, respectively. Collectively, these findings indicated that miR-221 and miR-222 have putative roles in innate immune response during C. semilaevis exposure to pathogens. Our findings could expand the knowledge of immune function of C. semilaevis miRNA and guide future studies on C. semilaevis immunity.
Collapse
Affiliation(s)
- Hui Yan
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Yadong Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Guangye Gong
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Xuejie Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Tianzi Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Songlin Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Zhenxia Sha
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
119
|
Alptekin B, Akpinar BA, Budak H. A Comprehensive Prescription for Plant miRNA Identification. FRONTIERS IN PLANT SCIENCE 2016; 7:2058. [PMID: 28174574 PMCID: PMC5258749 DOI: 10.3389/fpls.2016.02058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/23/2016] [Indexed: 05/15/2023]
Abstract
microRNAs (miRNAs) are tiny ribo-regulatory molecules involved in various essential pathways for persistence of cellular life, such as development, environmental adaptation, and stress response. In recent years, miRNAs have become a major focus in molecular biology because of their functional and diagnostic importance. This interest in miRNA research has resulted in the development of many specific software and pipelines for the identification of miRNAs and their specific targets, which is the key for the elucidation of miRNA-modulated gene expression. While the well-recognized importance of miRNAs in clinical research pushed the emergence of many useful computational identification approaches in animals, available software and pipelines are fewer for plants. Additionally, existing approaches suffers from mis-identification and annotation of plant miRNAs since the miRNA mining process for plants is highly prone to false-positives, particularly in cereals which have a highly repetitive genome. Our group developed a homology-based in silico miRNA identification approach for plants, which utilizes two Perl scripts "SUmirFind" and "SUmirFold" and since then, this method helped identify many miRNAs particularly from crop species such as Triticum or Aegliops. Herein, we describe a comprehensive updated guideline by the implementation of two new scripts, "SUmirPredictor" and "SUmirLocator," and refinements to our previous method in order to identify genuine miRNAs with increased sensitivity in consideration of miRNA identification problems in plants. Recent updates enable our method to provide more reliable and precise results in an automated fashion in addition to solutions for elimination of most false-positive predictions, miRNA naming and miRNA mis-annotation. It also provides a comprehensive view to genome/transcriptome-wide location of miRNA precursors as well as their association with transposable elements. The "SUmirPredictor" and "SUmirLocator" scripts are freely available together with a reference high-confidence plant miRNA list.
Collapse
Affiliation(s)
- Burcu Alptekin
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
| | - Bala A. Akpinar
- Sabanci University Nanotechnology Research and Application Centre, Sabanci UniversityIstanbul, Turkey
| | - Hikmet Budak
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
- *Correspondence: Hikmet Budak
| |
Collapse
|
120
|
Gharat SA, Shaw BP. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants. BMC PLANT BIOLOGY 2015; 15:301. [PMID: 26714456 PMCID: PMC4696257 DOI: 10.1186/s12870-015-0682-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/13/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although miRNAs are reportedly involved in the salt stress tolerance of plants, miRNA profiling in plants has largely remained restricted to glycophytes, including certain crop species that do not exhibit any tolerance to salinity. Hence, this manuscript describes the results from the miRNA profiling of the halophyte Suaeda maritima, which is used worldwide to study salt tolerance in plants. RESULTS A total of 134 conserved miRNAs were identified from unique sRNA reads, with 126 identified using miRBase 21.0 and an additional eight identified using the Plant Non-coding RNA Database. The presence of the precursors of seven conserved miRNAs was validated in S. maritima. In addition, 13 novel miRNAs were predicted using the ESTs of two mangrove plants, Rhizophora mangle and Heritiera littoralis, and the precursors of seven miRNAs were found in S. maritima. Most of the miRNAs considered for characterization were responsive to NaCl application, indicating their importance in the regulation of metabolic activities in plants exposed to salinity. An expression study of the novel miRNAs in plants of diverse ecological and taxonomic groups revealed that two of the miRNAs, sma-miR6 and sma-miR7, were also expressed in Oryza sativa, whereas another two, sma-miR2 and sma-miR5, were only expressed in plants growing under the influence of seawater, similar to S. maritima. CONCLUSION The distribution of conserved miRNAs among only 25 families indicated the possibility of identifying a greater number of miRNAs with increase in knowledge of the genomes of more halophytes. The expression of two novel miRNAs, sma-miR2 and sma-miR5, only in plants growing under the influence of seawater suggested their metabolic regulatory roles specific to saline environments, and such behavior might be mediated by alterations in the expression of certain genes, modifications of proteins leading to changes in their activity and production of secondary metabolites as revealed by the miRNA target predictions. Moreover, the auxin responsive factor targeted by sma-miR7 could also be involved in salt tolerance because the target is conserved between species. This study also indicated that the transcriptome of one species can be successfully used to computationally predict the miRNAs in other species, especially those that have similar metabolism, even if they are taxonomically separated.
Collapse
Affiliation(s)
- Sachin Ashruba Gharat
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
121
|
Soares AR, Fernandes N, Reverendo M, Araújo HR, Oliveira JL, Moura GMR, Santos MAS. Conserved and highly expressed tRNA derived fragments in zebrafish. BMC Mol Biol 2015; 16:22. [PMID: 26694924 PMCID: PMC4688932 DOI: 10.1186/s12867-015-0050-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Small non-coding RNAs (sncRNAs) are a class of transcripts implicated in several eukaryotic regulatory mechanisms, namely gene silencing and chromatin regulation. Despite significant progress in their identification by next generation sequencing (NGS) we are still far from understanding their full diversity and functional repertoire. RESULTS Here we report the identification of tRNA derived fragments (tRFs) by NGS of the sncRNA fraction of zebrafish. The tRFs identified are 18-30 nt long, are derived from specific 5' and 3' processing of mature tRNAs and are differentially expressed during development and in differentiated tissues, suggesting that they are likely produced by specific processing rather than random degradation of tRNAs. We further show that a highly expressed tRF (5'tRF-Pro(CGG)) is cleaved in vitro by Dicer and has silencing ability, indicating that it can enter the RNAi pathway. A computational analysis of zebrafish tRFs shows that they are conserved among vertebrates and mining of publicly available datasets reveals that some 5'tRFs are differentially expressed in disease conditions, namely during infection and colorectal cancer. CONCLUSIONS tRFs constitute a class of conserved regulatory RNAs in vertebrates and may be involved in mechanisms of genome regulation and in some diseases.
Collapse
Affiliation(s)
- Ana Raquel Soares
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Noémia Fernandes
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Marisa Reverendo
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | | | | | - Gabriela M R Moura
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Manuel A S Santos
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
122
|
Usha S, Jyothi MN, Sharadamma N, Dixit R, Devaraj VR, Nagesh Babu R. Identification of microRNAs and their targets in Finger millet by high throughput sequencing. Gene 2015; 574:210-6. [PMID: 26255946 DOI: 10.1016/j.gene.2015.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development.
Collapse
Affiliation(s)
- S Usha
- Post Graduate Department of Biochemistry, Maharani's Science College for Women, Bangalore 560001, India; Centre for Bioinformatics, Faculty of Biological Engineering, Shobhit University, Meerut, 250110 India
| | - M N Jyothi
- Post Graduate Department of Biochemistry, Maharani's Science College for Women, Bangalore 560001, India; Centre for Bioinformatics, Faculty of Biological Engineering, Shobhit University, Meerut, 250110 India
| | - N Sharadamma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012 India
| | - Rekha Dixit
- Centre for Bioinformatics, Faculty of Biological Engineering, Shobhit University, Meerut, 250110 India
| | - V R Devaraj
- Department of Biochemistry, Central College Campus, Bangalore University, Bangalore 560001 India
| | - R Nagesh Babu
- Post Graduate Department of Biochemistry, Maharani's Science College for Women, Bangalore 560001, India.
| |
Collapse
|
123
|
Tripathi A, Goswami K, Sanan-Mishra N. Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution. Front Physiol 2015; 6:286. [PMID: 26578966 PMCID: PMC4620411 DOI: 10.3389/fphys.2015.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRs) are a class of 21-24 nucleotide long non-coding RNAs responsible for regulating the expression of associated genes mainly by cleavage or translational inhibition of the target transcripts. With this characteristic of silencing, miRs act as an important component in regulation of plant responses in various stress conditions. In recent years, with drastic change in environmental and soil conditions different type of stresses have emerged as a major challenge for plants growth and productivity. The identification and profiling of miRs has itself been a challenge for research workers given their small size and large number of many probable sequences in the genome. Application of computational approaches has expedited the process of identification of miRs and their expression profiling in different conditions. The development of High-Throughput Sequencing (HTS) techniques has facilitated to gain access to the global profiles of the miRs for understanding their mode of action in plants. Introduction of various bioinformatics databases and tools have revolutionized the study of miRs and other small RNAs. This review focuses the role of bioinformatics approaches in the identification and study of the regulatory roles of plant miRs in the adaptive response to stresses.
Collapse
Affiliation(s)
- Anita Tripathi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Kavita Goswami
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| |
Collapse
|
124
|
Wei R, Qiu D, Wilson IW, Zhao H, Lu S, Miao J, Feng S, Bai L, Wu Q, Tu D, Ma X, Tang Q. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics 2015; 16:835. [PMID: 26490136 PMCID: PMC4618736 DOI: 10.1186/s12864-015-2010-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, non-coding RNAs that are important regulators of gene expression, and play major roles in plant development and their response to the environment. Root extracts from Panax notoginseng contain triterpene saponins as their principal bioactive constituent, and demonstrate medicinal properties. To investigate the novel and conserved miRNAs in P. notoginseng, three small RNA libraries constructed from 1-, 2-, and 3-year-old roots in which root saponin levels vary underwent high-throughput sequencing. METHODS P. notoginseng roots, purified from 1-, 2-, and 3-year-old roots, were extracted for RNA, respectively. Three small libraries were constructed and subjected to next generation sequencing. RESULTS Sequencing of the three libraries generated 67,217,124 clean reads from P. notoginseng roots. A total of 316 conserved miRNAs (belonging to 67 miRNA families and one unclassified family) and 52 novel miRNAs were identified. MIR156 and MIR166 were the largest miRNA families, while miR156i and miR156g showed the highest abundance of miRNA species. Potential miRNA target genes were predicted and annotated using Cluster of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. Comparing these miRNAs between root samples revealed 33 that were differentially expressed between 2- and 1-year-old roots (8 increased, 25 decreased), 27 differentially expressed between 3- and 1-year-old roots (7 increased, 20 decreased), and 29 differentially expressed between 3- and 2-year-old roots (8 increased, 21 decreased). Two significantly differentially expressed miRNAs and four miRNAs predicted to target genes involved in the terpenoid backbone biosynthesis pathway were selected and validated by quantitative reverse transcription PCR. Furthermore, the expression patterns of these six miRNAs were analyzed in P. notoginseng roots, stems, and leaves at different developmental stages. CONCLUSIONS This study identified a large number of P. notoginseng miRNAs and their target genes, functional annotations, and gene expression patterns. It provides the first known miRNA profiles of the P. notoginseng root development cycle.
Collapse
Affiliation(s)
- Rongchang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China. .,Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Deyou Qiu
- Department of Molecular Biology, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Iain W Wilson
- CSIRO Agriculture, PO Box 1600, Canberra, ACT 2001, Australia.
| | - Huan Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Jianhua Miao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Shixin Feng
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Longhua Bai
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Qinghua Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Dongping Tu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Qi Tang
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China. .,Hunan Provincial Key Laboratory of Crop Germplasm innovation and Utilization and National Chinese Medicinal Herbs (Hunan) Technology Center, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
125
|
Yusuf NHM, Ong WD, Redwan RM, Latip MA, Kumar SV. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus). Gene 2015; 571:71-80. [DOI: 10.1016/j.gene.2015.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/05/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
|
126
|
Geng H, Sui Z, Zhang S, Du Q, Ren Y, Liu Y, Kong F, Zhong J, Ma Q. Identification of microRNAs in the Toxigenic Dinoflagellate Alexandrium catenella by High-Throughput Illumina Sequencing and Bioinformatic Analysis. PLoS One 2015; 10:e0138709. [PMID: 26398216 PMCID: PMC4580472 DOI: 10.1371/journal.pone.0138709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/02/2015] [Indexed: 12/19/2022] Open
Abstract
Micro-ribonucleic acids (miRNAs) are a large group of endogenous, tiny, non-coding RNAs consisting of 19–25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs). To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR) was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915), and one down-regulated conserved miRNA (tae-miR159a). The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813target genes. Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in the growth of A. catenella, and they provide the basis for further studies of the molecular mechanisms that underlie bloom growth in red tides species.
Collapse
Affiliation(s)
- Huili Geng
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
- * E-mail:
| | - Shu Zhang
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingwei Du
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuanyuan Ren
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Fanna Kong
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jie Zhong
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingxia Ma
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
127
|
Cheah BH, Nadarajah K, Divate MD, Wickneswari R. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. BMC Genomics 2015; 16:692. [PMID: 26369665 PMCID: PMC4570225 DOI: 10.1186/s12864-015-1851-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Background Developing drought-tolerant rice varieties with higher yield under water stressed conditions provides a viable solution to serious yield-reduction impact of drought. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success of rice molecular breeding programmes. microRNAs have received tremendous attention recently due to its importance in negative regulation. In plants, apart from regulating developmental and physiological processes, microRNAs have also been associated with different biotic and abiotic stresses. Hence here we chose to analyze the differential expression profiles of microRNAs in three drought treated rice varieties: Vandana (drought-tolerant), Aday Sel (drought-tolerant) and IR64 (drought-susceptible) in greenhouse conditions via high-throughput sequencing. Results Twenty-six novel microRNA candidates involved in the regulation of diverse biological processes were identified based on the detection of miRNA*. Out of their 110 predicted targets, we confirmed 16 targets from 5 novel microRNA candidates. In the differential expression analysis, mature microRNA members from 49 families of known Oryza sativa microRNA were differentially expressed in leaf and stem respectively with over 28 families having at least a similar mature microRNA member commonly found to be differentially expressed between both tissues. Via the sequence profiling data of leaf samples, we identified osa-miR397a/b, osa-miR398b, osa-miR408-5p and osa-miR528-5p as being down-regulated in two drought-tolerant rice varieties and up-regulated in the drought-susceptible variety. These microRNAs are known to be involved in regulating starch metabolism, antioxidant defence, respiration and photosynthesis. A wide range of biological processes were found to be regulated by the target genes of all the identified differentially expressed microRNAs between both tissues, namely root development (5.3–5.7 %), cell transport (13.2–18.4 %), response to stress (10.5–11.3 %), lignin catabolic process (3.8–5.3 %), metabolic processes (32.1–39.5 %), oxidation-reduction process (9.4–13.2 %) and DNA replication (5.7–7.9 %). The predicted target genes of osa-miR166e-3p, osa-miR166h-5p*, osa-miR169r-3p* and osa-miR397a/b were found to be annotated to several of the aforementioned biological processes. Conclusions The experimental design of this study, which features rice varieties with different drought tolerance and tissue specificity (leaf and stem), has provided new microRNA profiling information. The potentially regulatory importance of the microRNA genes mentioned above and their target genes would require further functional analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1851-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Boon Huat Cheah
- School of Biotechnology and Bioscience, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Kalaivani Nadarajah
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Mayur Dashrath Divate
- Bionivid Technology [P] Ltd., 401-4AB Cross, 1st Main, NGEF East Kasturi Nagar, Bangalore, 560043, India.
| | - Ratnam Wickneswari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
128
|
Ganie SA, Dey N, Mondal TK. Promoter methylation regulates the abundance of osa-miR393a in contrasting rice genotypes under salinity stress. Funct Integr Genomics 2015; 16:1-11. [PMID: 26319531 DOI: 10.1007/s10142-015-0460-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are important molecules that regulate gene expression under salinity stress. Despite their evolutionary conservation, these regulatory elements have been shown to behave differently in different plant species under a particular environmental stress. In this study, we investigated the behavior of salt responsive osa-miR393a and its target gene (TIR1, LOC_Os05g05800) in salt-tolerant (FL478) and salt-sensitive (IR29) rice genotypes. It was found that the mature and precursor sequences of osa-miR393a as well as its cleavage site in TIR1 were conserved among salt tolerant and sensitive genotypes. Promoters of different salt-responsive miRNAs were also found to be less variable between salt-tolerant and salt-susceptible genotypes. Analysis of gene expression, promoter methylation, and cis-element abundance showed that osa-miR393a behaves differently in FL478 and IR29. Salt stress altered the expression pattern of osa-miR393a-TIR1 module in a time-dependent manner in the roots and shoots of two genotypes. Promoter methylation of this regulatory module was also altered at different time points under salt stress. Expression analysis in two genotypes indicated the overall down-regulation of osa-miR393a and up-regulation of TIR1 in FL478 and their reciprocal regulation in IR29. The expression results were complemented by the differential promoter methylation and cis-element abundance of this regulatory module. Together, the results of transcript abundance and promoter methylation of osa-miR393a-TIR1 module signified the association between these two processes which is reported for the first time in plants to the best of our knowledge.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, IARI Campus, New Delhi, 110012, India
| | - Narottam Dey
- Department of Biotechnology, Visva-Bharati, Santiniketan, 731 235, West Bengal, India
| | - Tapan Kumar Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, IARI Campus, New Delhi, 110012, India.
| |
Collapse
|
129
|
Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics 2015; 15:587-98. [PMID: 26174050 DOI: 10.1007/s10142-015-0453-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023]
Abstract
MicroRNAs, small regulatory molecules with significant impacts on the transcriptional network of all living organisms, have been the focus of several studies conducted mostly on modern wheat cultivars. In this study, we investigated miRNA repertoires of modern durum wheat and its wild relatives, with differing degrees of drought tolerance, to identify miRNA candidates and their targets involved in drought stress response. Root transcriptomes of Triticum turgidum ssp. durum variety Kızıltan and two Triticum turgidum ssp. dicoccoides genotypes TR39477 and TTD-22 under control and drought conditions were assembled from individual RNA-Seq reads and used for in silico identification of miRNAs. A total of 66 miRNAs were identified from all species, across all conditions, of which 46 and 38 of the miRNAs identified from modern durum wheat and wild genotypes, respectively, had not been previously reported. Genotype- and/or stress-specific miRNAs provide insights into our understanding of the complex drought response. Particularly, miR1435, miR5024, and miR7714, identified only from drought-stress roots of drought-tolerant genotype TR39477, can be candidates for future studies to explore and exploit the drought response to develop tolerant varieties.
Collapse
|
130
|
miRNA-based drought regulation in wheat. Funct Integr Genomics 2015; 16:221-33. [PMID: 26141043 DOI: 10.1007/s10142-015-0452-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. Drought is a common environmental stress influencing crop growth and development. To date, it has been reported that a number of plant miRNA are involved in drought stress response. In this study, we comparatively investigated drought stress-responsive miRNAs in the root and leaf of bread wheat (Triticum aestivum cv. Sivas 111/33) by miRNA microarray screening. miRNA microarray analysis showed that 285 miRNAs (207 upregulated and 78 downregulated) and 244 miRNAs (115 upregulated and 129 downregulated) were differentially expressed in leaf and root tissues, respectively. Among the differentially expressed miRNAs, 23 miRNAs were only expressed in the leaf and 26 miRNAs were only expressed in the root of wheat growth under drought stress. Upon drought treatment, expression of miR159, miR160, miR166, miR169, miR172, miR395, miR396, miR408, miR472, miR477, miR482, miR1858, miR2118, and miR5049 were found to be significantly differentiated in bread wheat. The regulatory network analysis showed that miR395 has connections with a number of target transcripts, and miR159 and miR319 share a number of target genes. Drought-tolerant and drought-sensitive wheat cultivars showed altered expression pattern upon drought stress in terms of investigated miRNA and their target transcript expression level.
Collapse
|
131
|
Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing. Gene 2015; 571:178-87. [PMID: 26115771 DOI: 10.1016/j.gene.2015.06.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 11/23/2022]
Abstract
Turnip mosaic virus (TuMV) is the most prevalent viral pathogen infecting most cruciferous plants. MicroRNAs (miRNAs) are around 22 nucleotides long non-protein-coding RNAs that play key regulatory roles in plants. Recent research findings show that miRNAs are involved in plant-virus interaction. However we know little about plant defense and viral offense system networks throughout microRNA regulation pathway. In this study, two small RNA libraries were constructed based on non-heading Chinese cabbage (Brassica campestris ssp. chinensis L. Makino, NHCC) leaves infected by TuMV and healthy leaves, and sequenced using the Illumina-Solexa high-throughput sequencing technology. A total of 86 conserved miRNAs belonging to 25 known miRNA families and 45 novel ones were identified. Among them, twelve conserved and ten new miRNAs were validated by real-time fluorescence quantitative PCR (qPCR). Differential expression analysis showed that 42 miRNAs were down-regulated and 27 miRNAs were up-regulated in response to TuMV stress. A total of 271 target genes were predicted using a bioinformatics approach, these genes are mainly involved in growth and resistance to various stresses. We further selected 13 miRNAs and their corresponding target genes to explore their expression pattern under TuMV and/or cold (4°C) stresses, and the results indicated that some of the identified miRNAs could link TuMV response with cold response of NHCC. The characterization of these miRNAs could contribute to a better understanding of plant-virus interaction throughout microRNA regulation pathway. This can lead to finding new approach to defend virus infection using miRNA in Chinese cabbage.
Collapse
|
132
|
Srivastava S, Zheng Y, Kudapa H, Jagadeeswaran G, Hivrale V, Varshney RK, Sunkar R. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:46-57. [PMID: 25900565 DOI: 10.1016/j.plantsci.2015.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 05/04/2023]
Abstract
Among legumes, chickpea (Cicer arietinum L.) is the second most important crop after soybean. MicroRNAs (miRNAs) play important roles by regulating target gene expression important for plant development and tolerance to stress conditions. Additionally, recently discovered phased siRNAs (phasiRNAs), a new class of small RNAs, are abundantly produced in legumes. Nevertheless, little is known about these regulatory molecules in chickpea. The small RNA population was sequenced from leaves and flowers of chickpea to identify conserved and novel miRNAs as well as phasiRNAs/phasiRNA loci. Bioinformatics analysis revealed 157 miRNA loci for the 96 highly conserved and known miRNA homologs belonging to 38 miRNA families in chickpea. Furthermore, 20 novel miRNAs belonging to 17 miRNA families were identified. Sequence analysis revealed approximately 60 phasiRNA loci. Potential target genes likely to be regulated by these miRNAs were predicted and some were confirmed by modified 5' RACE assay. Predicted targets are mostly transcription factors that might be important for developmental processes, and others include superoxide dismutases, plantacyanin, laccases and F-box proteins that could participate in stress responses and protein degradation. Overall, this study provides an inventory of miRNA-target gene interactions for chickpea, useful for the comparative analysis of small RNAs among legumes.
Collapse
Affiliation(s)
- Sangeeta Srivastava
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727, South Jingming Road, Kunming, Yunnan 650500, China
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, India
| | - Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Vandana Hivrale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, India; School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA.
| |
Collapse
|
133
|
Tian C, Zuo Z, Qiu JL. Identification and Characterization of ABA-Responsive MicroRNAs in Rice. J Genet Genomics 2015; 42:393-402. [PMID: 26233894 DOI: 10.1016/j.jgg.2015.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that silence genes through mRNA degradation or translational inhibition. The phytohormone abscisic acid (ABA) is essential for plant development and adaptation to abiotic and biotic stresses. In Arabidopsis, miRNAs are implicated in ABA functions. However, ABA-responsive miRNAs have not been systematically studied in rice. Here high throughput sequencing of small RNAs revealed that 107 miRNAs were differentially expressed in the rice ABA deficient mutant, Osaba1. Of these, 13 were confirmed by stem-loop RT-PCR. Among them, miR1425-5P, miR169a, miR169n, miR390-5P, miR397a and miR397b were up-regulated, but miR162b reduced in expression in Osaba1. The targets of these 13 miRNAs were predicted and validated by gene expression profiling. Interestingly, the expression levels of these miRNAs and their targets were regulated by ABA. Cleavage sites were detected on 7 of the miRNA targets by 5'-Rapid Amplification of cDNA Ends (5'-RACE). Finally, miR162b and its target OsTRE1 were shown to affect rice resistance to drought stress, suggesting that miR162b increases resistance to drought by targeting OsTRE1. Our work provides important information for further characterization and functional analysis of ABA-responsive miRNAs in rice.
Collapse
Affiliation(s)
- Caijuan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangli Zuo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
134
|
Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak. PLoS One 2015; 10:e0127184. [PMID: 25978425 PMCID: PMC4433266 DOI: 10.1371/journal.pone.0127184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Ginkgo biloba, a dioecious plant known as a living fossil, is an ancient gymnosperm that stands distinct from other gymnosperms and angiosperms. Ginkgo biloba var. epiphylla (G. biloba var. epiphylla), with ovules borne on the leaf blade, is an unusual germplasm derived from G. biloba. MicroRNAs (miRNAs) are post-transcriptional gene regulators that play critical roles in diverse biological and metabolic processes. Currently, little is known about the miRNAs involved in the key stage of partly epiphyllous ovule germination in G. biloba var. epiphylla. Two small RNA libraries constructed from epiphyllous ovule leaves and normal leaves of G. biloba var. epiphylla were sequenced on an Illumina/Solexa platform. A total of 82 miRNA sequences belonging to 23 families and 53 putative novel miRNAs were identified in the two libraries. Differential expression analysis showed that 25 conserved and 21 novel miRNAs were differentially expressed between epiphyllous ovule leaves and normal leaves. The expression patterns of partially differentially expressed miRNAs and the transcript levels of their predicted target genes were validated by quantitative real time RT-PCR. All the expression profiles of the 21 selected miRNAs were similar to those detected by Solexa deep sequencing. Additionally, the transcript levels of almost all the putative target genes of 9 selected miRNAs were opposite to those of the corresponding miRNAs. The putative target genes of the differentially expressed miRNAs were annotated with Gene Ontology terms related to reproductive process, metabolic process and responding to stimulus. This work presents a broad range of small RNA transcriptome data obtained from epiphyllous ovule and normal leaves of G. biloba var. epiphylla, which may provide insights into the miRNA-mediated regulation in the epiphyllous ovule germination process.
Collapse
|
135
|
Gao J, Yin F, Liu M, Luo M, Qin C, Yang A, Yang S, Zhang Z, Shen Y, Lin H, Pan G. Identification and characterisation of tobacco microRNA transcriptome using high-throughput sequencing. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:591-8. [PMID: 25287651 DOI: 10.1111/plb.12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/26/2014] [Indexed: 05/09/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators that are involved in numerous biological processes in plants. In this study, we investigate miRNAs in Honghua Dajinyuan, an agronomically important species of tobacco in China. Here, we report a comprehensive analysis of miRNA expression profiles in the leaf, stem and root using a high-throughput sequencing approach. A total of 165 miRNAs, representing 55 conserved families, and 50 novel miRNAs, representing 19 families, were identified in three libraries. In addition, 12 miRNAs were randomly selected from a differentially expressed conserved miRNA family in three libraries with expression alterations and subjected to qRT-PCR validation. Of these, the expression level of nta-miR167d is highly enriched in the leaf tissue. In addition, the expression level of nta-miR319a is prominently enriched in the stem, while nta-miR160c is highly enriched in the root. Moreover, the target prediction showed that most of the targets coded for transcription factors that are involved in cellular and metabolic processes. GO analysis showed that most of the targets were involved in organelle function, served binding functions, and take part in cellular and metabolic processes. This study helps shed new light on understanding the role of miRNAs in different parts of the tobacco plant and adds a significant number of novel miRNAs to the tobacco miRNA transcriptome.
Collapse
Affiliation(s)
- J Gao
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Long RC, Li MN, Kang JM, Zhang TJ, Sun Y, Yang QC. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. PHYSIOLOGIA PLANTARUM 2015; 154:13-27. [PMID: 25156209 DOI: 10.1111/ppl.12266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/25/2014] [Accepted: 07/11/2014] [Indexed: 05/23/2023]
Abstract
Small 21- to 24-nucleotide (nt) ribonucleic acids (RNAs), notably the microRNA (miRNA), are emerging as a posttranscriptional regulation mechanism. Salt stress is one of the primary abiotic stresses that cause the crop losses worldwide. In saline lands, root growth and function of plant are determined by the action of environmental salt stress through specific genes that adapt root development to the restrictive condition. To elucidate the role of miRNAs in salt stress regulation in Medicago, we used a high-throughput sequencing approach to analyze four small RNA libraries from roots of Zhongmu-1 (Medicago sativa) and Jemalong A17 (Medicago truncatula), which were treated with 300 mM NaCl for 0 and 8 h. Each library generated about 20 million short sequences and contained predominantly small RNAs of 24-nt length, followed by 21-nt and 22-nt small RNAs. Using sequence analysis, we identified 385 conserved miRNAs from 96 families, along with 68 novel candidate miRNAs. Of all the 68 predicted novel miRNAs, 15 miRNAs were identified to have miRNA*. Statistical analysis on abundance of sequencing read revealed specific miRNA showing contrasting expression patterns between M. sativa and M. truncatula roots, as well as between roots treated for 0 and 8 h. The expression of 10 conserved and novel miRNAs was also quantified by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The miRNA precursor and target genes were predicted by bioinformatics analysis. We concluded that the salt stress related conserved and novel miRNAs may have a large variety of target mRNAs, some of which might play key roles in salt stress regulation of Medicago.
Collapse
Affiliation(s)
- Rui-Cai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
137
|
Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N. Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing. PLoS One 2015; 10:e0124371. [PMID: 25909659 PMCID: PMC4409343 DOI: 10.1371/journal.pone.0124371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3’-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Results Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. Conclusions The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing, China
| | - Lulu Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
- * E-mail:
| |
Collapse
|
138
|
Kong L, Guo H, Sun M. Signal transduction during wheat grain development. PLANTA 2015; 241:789-801. [PMID: 25680351 DOI: 10.1007/s00425-015-2260-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/03/2015] [Indexed: 05/08/2023]
Abstract
This review examines the signaling pathways from the developmental and environmental point of view and the interactions among external conditions, hormonal regulations, and sugarsensing in wheat. Grain development is the key phase of reproductive growth that is closely associated with vegetative organ senescence, initiation of grain filling, pre-stored assimilates remobilization, and maturation. Senescence is characterized by loss of chlorophyll and the degradation of proteins, nucleic acids, lipids as well as nutrient exports to the sink. The initiation and progression of vegetative organ senescence are under the control of an array of environmental signals (such as biotic and abiotic stresses, darkness, and nutrient availability) and endogenous factors (including aging, multiple hormones, and sugar availability). This review will discuss the major breakthroughs in signal transduction for the wheat (Triticum aestivum) grain development achieved in the past several years, with focuses on the regulation of senescence, reserves remobilization and biosynthesis of main components of the grain. Different mechanisms of diverse signals in controlling different phrases of wheat grain development, and cross talks between different signaling pathways will also be discussed. For perspectives, key signaling networks for grain development remain to be elucidated, including cross talks and the interactions between various environmental factors and internal signals.
Collapse
Affiliation(s)
- Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100, China,
| | | | | |
Collapse
|
139
|
Xie F, Jones DC, Wang Q, Sun R, Zhang B. Small RNA sequencing identifies miRNA roles in ovule and fibre development. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:355-69. [PMID: 25572837 DOI: 10.1111/pbi.12296] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have been found to be differentially expressed during cotton fibre development. However, which specific miRNAs and how they are involved in fibre development is unclear. Here, using deep sequencing, 65 conserved miRNA families were identified and 32 families were differentially expressed between leaf and ovule. At least 40 miRNAs were either leaf or ovule specific, whereas 62 miRNAs were shared in both leaf and ovule. qRT-PCR confirmed these miRNAs were differentially expressed during fibre early development. A total of 820 genes were potentially targeted by the identified miRNAs, whose functions are involved in a series of biological processes including fibre development, metabolism and signal transduction. Many predicted miRNA-target pairs were subsequently validated by degradome sequencing analysis. GO and KEGG analyses showed that the identified miRNAs and their targets were classified to 1027 GO terms including 568 biological processes, 324 molecular functions and 135 cellular components and were enriched to 78 KEGG pathways. At least seven unique miRNAs participate in trichome regulatory interaction network. Eleven trans-acting siRNA (tasiRNA) candidate genes were also identified in cotton. One has never been found in other plant species and two of them were derived from MYB and ARF, both of which play important roles in cotton fibre development. Sixteen genes were predicted to be tasiRNA targets, including sucrose synthase and MYB2. Together, this study discovered new miRNAs in cotton and offered evidences that miRNAs play important roles in cotton ovule/fibre development. The identification of tasiRNA genes and their targets broadens our understanding of the complicated regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|
140
|
Ferdous J, Li Y, Reid N, Langridge P, Shi BJ, Tricker PJ. Identification of reference genes for quantitative expression analysis of microRNAs and mRNAs in barley under various stress conditions. PLoS One 2015; 10:e0118503. [PMID: 25793505 PMCID: PMC4368757 DOI: 10.1371/journal.pone.0118503] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/19/2015] [Indexed: 01/22/2023] Open
Abstract
For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR), the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAs) would be stably expressed in different barley varieties and under different experimental treatments, in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAs) and mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection, boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT), alpha-Tubulin (α-TUB), Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ADP-ribosylation factor 1-like protein (ADP), four snoRNAs; (U18, U61, snoR14 and snoR23) and two microRNAs (miR168, miR159) as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR), the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAs) would be stably expressed in different barley varieties and under different experimental treatments, in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAs) and mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection, boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT), alpha-Tubulin (α-TUB), Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ADP-ribosylation factor 1-like protein (ADP), four snoRNAs; (U18, U61, snoR14 and snoR23) and two microRNAs (miR168, miR159) as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. Additionally, we found that miR168 was a suitable reference gene for expression analysis in barley. Finally, we validated the performance of our stable and unstable candidate reference genes for both mRNA and miRNA qPCR data normalization under different stress conditions and demonstrated the superiority of the stable candidates. Our data demonstrate the suitability of barley snoRNAs and miRNAs as potential reference genes for miRNA and mRNA qPCR data normalization under different stress treatments.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Australian Centre for Plant Functional Genomics, University of Adelaide, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Yuan Li
- Australian Centre for Plant Functional Genomics, University of Adelaide, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Nicolas Reid
- Australian Centre for Plant Functional Genomics, University of Adelaide, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, University of Adelaide, Hartley Grove, Urrbrae, South Australia 5064, Australia
| | - Bu-Jun Shi
- Australian Centre for Plant Functional Genomics, University of Adelaide, Hartley Grove, Urrbrae, South Australia 5064, Australia
- * E-mail:
| | - Penny J. Tricker
- Australian Centre for Plant Functional Genomics, University of Adelaide, Hartley Grove, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
141
|
High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute. Int J Genomics 2015; 2015:125048. [PMID: 25861616 PMCID: PMC4378336 DOI: 10.1155/2015/125048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.
Collapse
|
142
|
Teotia S, Tang G. To bloom or not to bloom: role of microRNAs in plant flowering. MOLECULAR PLANT 2015; 8:359-77. [PMID: 25737467 DOI: 10.1016/j.molp.2014.12.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 05/02/2023]
Abstract
During the course of their life cycles, plants undergo various morphological and physiological changes underlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step of plasticity of a plant toward the start of its new life cycle. In addition to the previously revealed intrinsic genetic programs, exogenous cues, and endogenous cues, a class of small non-coding RNAs, microRNAs (miRNAs), plays a key role in plants making the decision to flower by integrating into the known flowering pathways. This review highlights the age-dependent flowering pathway with a focus on a number of timing miRNAs in determining such a key process. The contributions of other miRNAs which exist mainly outside the age pathway are also discussed. Approaches to study the flowering-determining miRNAs, their interactions, and applications are presented.
Collapse
Affiliation(s)
- Sachin Teotia
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India; Department of Biological Sciences and Biotechnology Research Center (BRC), Michigan Technological University, Houghton, MI 49931, USA
| | - Guiliang Tang
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences and Biotechnology Research Center (BRC), Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
143
|
Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M. MicroRNAs and drought responses in sugarcane. FRONTIERS IN PLANT SCIENCE 2015; 6:58. [PMID: 25755657 PMCID: PMC4337329 DOI: 10.3389/fpls.2015.00058] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 01/22/2015] [Indexed: 05/03/2023]
Abstract
There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches.
Collapse
Affiliation(s)
| | | | | | | | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de CampinasCampinas, São Paulo, Brazil
| |
Collapse
|
144
|
Yin K, Tang Y, Zhao J. Genome-Wide Characterization of miRNAs Involved in N Gene-Mediated Immunity in Response to Tobacco Mosaic Virus in Nicotiana benthamiana. Evol Bioinform Online 2015; 11:1-11. [PMID: 25673968 PMCID: PMC4294599 DOI: 10.4137/ebo.s20744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/16/2014] [Accepted: 11/22/2014] [Indexed: 11/05/2022] Open
Abstract
microRNAs (miRNAs) are a class of endogenous small RNAs (sRNAs) that play pivotal roles in plant development, abiotic stress response, and pathogen response. miRNAs have been extensively studied in plants, but rarely in Nicotiana benthamiana, despite its wide use in plant virology studies, particularly for studying N protein-tobacco mosaic virus (TMV) interactions. We report an efficient method using high-throughput sequencing and bioinformatics to identify genome-wide miRNAs in N. benthamiana. A total of 30 conserved miRNA families and 113 novel miRNAs belonging to 93 families were identified. Some miRNAs were clustered on chromosomes, and some were embedded in host gene introns. The predicted miRNA targets were involved in diverse biological processes, such as metabolism, signaling, and responses to stimuli. miRNA expression profiling revealed that most of them were differentially expressed during N-mediated immunity to TMV. This study provides a framework for further analysis of miRNA functions in plant immunity.
Collapse
Affiliation(s)
- Kangquan Yin
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Tang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection (Ministry of China), Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
145
|
Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC. Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. FRONTIERS IN PLANT SCIENCE 2015; 6:506. [PMID: 26236318 PMCID: PMC4504434 DOI: 10.3389/fpls.2015.00506] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/23/2015] [Indexed: 05/03/2023]
Abstract
Small non-coding RNAs (sRNAs) namely microRNAs (miRNAs) and trans-acting small interfering RNAs (tasi-RNAs) play a crucial role in post-transcriptional regulation of gene expression and thus the control plant development and stress responses. In order to identify drought-responsive miRNAs and tasi-RNAs in sorghum, we constructed small RNA libraries from a drought tolerant (M35-1) and susceptible (C43) sorghum genotypes grown under control and drought stress conditions, and sequenced by Illumina Genome Analyzer IIx. Ninety seven conserved and 526 novel miRNAs representing 472 unique miRNA families were identified from sorghum. Ninety-six unique miRNAs were found to be regulated by drought stress, of which 32 were up- and 49 were down-regulated (fold change ≥ 2 or ≤ -2) at least in one genotype, while the remaining 15 miRNAs showed contrasting drought-regulated expression pattern between genotypes. A maximum of 17 and 18 miRNAs was differentially regulated under drought stress condition in the sensitive and tolerant genotypes, respectively. These results suggest that genotype dependent stress responsive regulation of miRNAs may contribute, at least in part, to the differential drought tolerance of sorghum genotypes. We also identified two miR390-directed TAS3 gene homologs and the auxin response factors as tasi-RNA targets. We predicted more than 1300 unique target genes for the novel and conserved miRNAs. These target genes were predicted to be involved in different cellular, metabolic, response to stimulus, biological regulation, and developmental processes. Genome-wide identification of stress-responsive miRNAs, tasi-RNAs and their targets identified in this study will be useful in unraveling the molecular mechanisms underlying drought stress responses and genetic improvement of biomass production and stress tolerance in sorghum.
Collapse
Affiliation(s)
- Amit Katiyar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic ResourcesNew Delhi, India
- Department of Biotechnology, Birla Institute of Technology, MesraRanchi, India
| | - Shuchi Smita
- Indian Council of Agricultural Research-National Bureau of Plant Genetic ResourcesNew Delhi, India
- Department of Biotechnology, Birla Institute of Technology, MesraRanchi, India
| | - Senthilkumar K. Muthusamy
- Indian Council of Agricultural Research-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | - Dev M. Pandey
- Department of Biotechnology, Birla Institute of Technology, MesraRanchi, India
| | - Kailash C. Bansal
- Indian Council of Agricultural Research-National Bureau of Plant Genetic ResourcesNew Delhi, India
- *Correspondence: Kailash C. Bansal, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (NBPGR), IARI Pusa Campus, New Delhi 110012, India
| |
Collapse
|
146
|
Sun X, Fan G, Su L, Wang W, Liang Z, Li S, Xin H. Identification of cold-inducible microRNAs in grapevine. FRONTIERS IN PLANT SCIENCE 2015; 6:595. [PMID: 26300896 PMCID: PMC4523783 DOI: 10.3389/fpls.2015.00595] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/20/2015] [Indexed: 05/21/2023]
Abstract
Low temperature is one of the most important environmental factors that limits the geographical distribution and productivity of grapevine. However, the molecular mechanisms on how grapevine responds to cold stress remains to be elucidated. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play an essential role during plant development and stress responses. Although miRNAs and their targets have been identified in several Vitis species, their participation during cold accumulation in grapevine remains unknown. In this study, two small RNA libraries were generated from micropropagated 'Muscat Hamburg' (V. vinifera) plantlets under normal and low temperatures (4°C). A total of 163 known miRNAs and 67 putative novel miRNAs were detected from two small RNA libraries by Solexa sequencing. Forty-four cold-inducible miRNAs were identified through differentially expressed miRNAs (DEMs) analysis; among which, 13 belonged to upregulated DEMs while 31 belonged downregulated DEMs. The expression patterns of the 13 DEMs were verified by real-time RT-PCR analysis. The prediction of the target genes for DEMs indicated that miRNA may regulate transcription factors, including AP2, SBP, MYB, bHLH, GRAS, and bZIP under cold stress. The 5'-RLM RACE were conducted to verify the cleavage site of predicted targets. Seven predicted target genes for four known and three novel vvi-miRNAs showed specific cleavage sites corresponding to their miRNA complementary sequences. The expression pattern of these seven target genes revealed negative correlation with the expression level of the corresponding vvi-miRNAs. Our results indicated that a diverse set of miRNAs in V. vinifera are cold-inducible and may play an important role in cold stress response.
Collapse
Affiliation(s)
- Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Gaotao Fan
- Department of Biological Engineering, School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Lingye Su
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Wanjun Wang
- Department of Biological Engineering, School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Shaohua Li, Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Haiping Xin, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 1 Lumo Road, Wuhan 430074, China
| |
Collapse
|
147
|
Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza Sativa spp. Gene 2015; 555:127-39. [DOI: 10.1016/j.gene.2014.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/12/2014] [Accepted: 10/26/2014] [Indexed: 01/16/2023]
|
148
|
Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA. Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2525-43. [PMID: 25256907 DOI: 10.1007/s00122-014-2391-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/28/2014] [Indexed: 05/27/2023]
Abstract
Small RNAs that are highly conserved across many plant species are involved in stress responses. Plants are exposed to many types of unfavorable conditions during their life cycle that result in some degree of stress. Recent studies on microRNAs (miRNAs) have highlighted their great potential as regulators of stress tolerance in plants. One of the possible ways in which plants counter environmental stresses is by altering their gene expression by the action of miRNAs. miRNAs regulate the expression of target genes by hybridizing to their nascent reverse complementary sequences marking them for cleavage in the nucleus or translational repression in the cytoplasm. Some miRNAs have been reported to be key regulators in biotic as well as abiotic stress responses across many species. The present review highlights some of the regulatory roles of orthologous plant miRNAs in response to various types of stress conditions.
Collapse
Affiliation(s)
- Ravi Rajwanshi
- Genomics Core Facility, Department of Plant Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL, 62901-4415, USA,
| | | | | | | | | |
Collapse
|
149
|
Ghani MA, Li J, Rao L, Raza MA, Cao L, Yu N, Zou X, Chen L. The high-throughput sequencing of small RNAs profiling in wide hybridisation and allopolyploidisation between Brassica rapa and Brassica nigra. GENOMICS DATA 2014; 3:1-3. [PMID: 26484138 PMCID: PMC4536001 DOI: 10.1016/j.gdata.2014.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/30/2014] [Indexed: 11/27/2022]
Abstract
Small RNAs play an important role in maintaining the genome reconstruction and stability in the plant. However, little is known regarding the role of small RNAs during the process of wide hybridisation and chromosome doubling. Therefore, the changes in the small RNAs were assessed during the formation of an allodiploid (genome: AB) and its allotetraploid (genome: AABB) between Brassica rapa (♀) and Brassica nigra (♂) in the present study. Here, the experimental methods described in details, RNA-seq data (available at Gene Expression Omnibus database under GSE61872) and analysis published by Ghani et al. [1]. The study showed that small RNAs play an important role in maintaining the genome stability, and regulate gene expression which induces the phenotype variation in the formation of an allotetraploid. This may play an important role in the occurrence of heterosis in the allotetraploid.
Collapse
Affiliation(s)
- Muhammad Awais Ghani
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road No. 866, Hangzhou 310058, Zhejiang Province, PR China
| | - Junxing Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road No. 866, Hangzhou 310058, Zhejiang Province, PR China
| | - Linli Rao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road No. 866, Hangzhou 310058, Zhejiang Province, PR China
| | - Muhammad Ammar Raza
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road No. 866, Hangzhou 310058, Zhejiang Province, PR China
| | - Liwen Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road No. 866, Hangzhou 310058, Zhejiang Province, PR China
| | - Ningning Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road No. 866, Hangzhou 310058, Zhejiang Province, PR China
| | - Xiaoxia Zou
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road No. 866, Hangzhou 310058, Zhejiang Province, PR China
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road No. 866, Hangzhou 310058, Zhejiang Province, PR China
| |
Collapse
|
150
|
Zhai J, Dong Y, Sun Y, Wang Q, Wang N, Wang F, Liu W, Li X, Chen H, Yao N, Guan L, Chen K, Cui X, Yang M, Li H. Discovery and analysis of microRNAs in Leymus chinensis under saline-alkali and drought stress using high-throughput sequencing. PLoS One 2014; 9:e105417. [PMID: 25369004 PMCID: PMC4219666 DOI: 10.1371/journal.pone.0105417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental processes, pathogen responses, and abiotic stress in plants. In this study, we used Solexa sequencing technology to generate high-quality small RNA data from three L. chinensis groups: a control group, a saline-alkaline stress group (100 mM NaCl and 200 mM NaHCO3), and a drought stress group (20% polyethylene glycol 2000). From these data we identified 132 known miRNAs and 16 novel miRNAs candidates. For these miRNAs we also identified target genes that encode a broad range of proteins that may be correlated with abiotic stress regulation. This is the first study to demonstrate differentially expressed miRNAs in L. chinensis under saline-alkali and drought stress. These findings may help explain the saline-alkaline and drought stress responses in L. chinensis.
Collapse
Affiliation(s)
- Junfeng Zhai
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuanyuan Dong
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Yepeng Sun
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Qi Wang
- High School attached to Northeast Normal University, Changchun, Jilin, China
| | - Nan Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Fawei Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Weican Liu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaowei Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Huan Chen
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Na Yao
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Lili Guan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Kai Chen
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiyan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|