101
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
102
|
Kori M, Aydın B, Unal S, Arga KY, Kazan D. Metabolic Biomarkers and Neurodegeneration: A Pathway Enrichment Analysis of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:645-661. [PMID: 27828769 DOI: 10.1089/omi.2016.0106] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) lack robust diagnostics and prognostic biomarkers. Metabolomics is a postgenomics field that offers fresh insights for biomarkers of common complex as well as rare diseases. Using data on metabolite-disease associations published in the previous decade (2006-2016) in PubMed, ScienceDirect, Scopus, and Web of Science, we identified 101 metabolites as putative biomarkers for these three neurodegenerative diseases. Notably, uric acid, choline, creatine, L-glutamine, alanine, creatinine, and N-acetyl-L-aspartate were the shared metabolite signatures among the three diseases. The disease-metabolite-pathway associations pointed out the importance of membrane transport (through ATP binding cassette transporters), particularly of arginine and proline amino acids in all three neurodegenerative diseases. When disease-specific and common metabolic pathways were queried by using the pathway enrichment analyses, we found that alanine, aspartate, glutamate, and purine metabolism might act as alternative pathways to overcome inadequate glucose supply and energy crisis in neurodegeneration. These observations underscore the importance of metabolite-based biomarker research in deciphering the elusive pathophysiology of neurodegenerative diseases. Future research investments in metabolomics of complex diseases might provide new insights on AD, PD, and ALS that continue to place a significant burden on global health.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University , Istanbul, Turkey
| | - Busra Aydın
- Department of Bioengineering, Faculty of Engineering, Marmara University , Istanbul, Turkey
| | - Semra Unal
- Department of Bioengineering, Faculty of Engineering, Marmara University , Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University , Istanbul, Turkey
| | - Dilek Kazan
- Department of Bioengineering, Faculty of Engineering, Marmara University , Istanbul, Turkey
| |
Collapse
|
103
|
Lei M, Shafique A, Shang K, Couttas TA, Zhao H, Don AS, Karl T. Contextual fear conditioning is enhanced in mice lacking functional sphingosine kinase 2. Behav Brain Res 2017. [DOI: 10.1016/j.bbr.2017.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
104
|
Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse. J Neurosci 2017; 36:8653-67. [PMID: 27535912 DOI: 10.1523/jneurosci.1429-16.2016] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Recent evidence implicates exosomes in the aggregation of Aβ and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aβ42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aβ42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aβ42 and blocked glial clearance of Aβ42 in vitro Aβ42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aβ42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aβ. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. SIGNIFICANCE STATEMENT We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome secretion as a potential therapy for individuals at risk for developing AD.
Collapse
|
105
|
Daugherty D, Goldberg J, Fischer W, Dargusch R, Maher P, Schubert D. A novel Alzheimer's disease drug candidate targeting inflammation and fatty acid metabolism. ALZHEIMERS RESEARCH & THERAPY 2017; 9:50. [PMID: 28709449 PMCID: PMC5513091 DOI: 10.1186/s13195-017-0277-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022]
Abstract
Background CAD-31 is an Alzheimer’s disease (AD) drug candidate that was selected on the basis of its ability to stimulate the replication of human embryonic stem cell-derived neural precursor cells as well as in APPswe/PS1ΔE9 AD mice. To move CAD-31 toward the clinic, experiments were undertaken to determine its neuroprotective and pharmacological properties, as well as to assay its therapeutic efficacy in a rigorous mouse model of AD. Results CAD-31 has potent neuroprotective properties in six distinct nerve cell assays that mimic toxicities observed in the old brain. Pharmacological and preliminary toxicological studies show that CAD-31 is brain-penetrant and likely safe. When fed to old, symptomatic APPswe/PS1ΔE9 AD mice starting at 10 months of age for 3 additional months in a therapeutic model of the disease, there was a reduction in the memory deficit and brain inflammation, as well as an increase in the expression of synaptic proteins. Small-molecule metabolic data from the brain and plasma showed that the major effect of CAD-31 is centered on fatty acid metabolism and inflammation. Pathway analysis of gene expression data showed that CAD-31 had major effects on synapse formation and AD energy metabolic pathways. Conclusions All of the multiple physiological effects of CAD-31 were favorable in the context of preventing some of the toxic events in old age-associated neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0277-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Daugherty
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Joshua Goldberg
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Wolfgang Fischer
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Richard Dargusch
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Pamela Maher
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - David Schubert
- Cellular Neuroendocrinology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA.
| |
Collapse
|
106
|
Defective Sphingosine-1-phosphate metabolism is a druggable target in Huntington's disease. Sci Rep 2017; 7:5280. [PMID: 28706199 PMCID: PMC5509685 DOI: 10.1038/s41598-017-05709-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Huntington’s disease is characterized by a complex and heterogeneous pathogenic profile. Studies have shown that disturbance in lipid homeostasis may represent a critical determinant in the progression of several neurodegenerative disorders. The recognition of perturbed lipid metabolism is only recently becoming evident in HD. In order to provide more insight into the nature of such a perturbation and into the effect its modulation may have in HD pathology, we investigated the metabolism of Sphingosine-1-phosphate (S1P), one of the most important bioactive lipids, in both animal models and patient samples. Here, we demonstrated that S1P metabolism is significantly disrupted in HD even at early stage of the disease and importantly, we revealed that such a dysfunction represents a common denominator among multiple disease models ranging from cells to humans through mouse models. Interestingly, the in vitro anti-apoptotic and the pro-survival actions seen after modulation of S1P-metabolizing enzymes allows this axis to emerge as a new druggable target and unfolds its promising therapeutic potential for the development of more effective and targeted interventions against this incurable condition.
Collapse
|
107
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
108
|
Karunakaran I, van Echten-Deckert G. Sphingosine 1-phosphate - A double edged sword in the brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1573-1582. [PMID: 28315304 DOI: 10.1016/j.bbamem.2017.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
The physiological functions of sphingosine 1-phosphate (S1P) and its pathological roles in various diseases are increasingly being elucidated. Particularly, a growing body of literature has implicated S1P in the pathogenesis of brain related disorders. With the deciphering of more intricate aspects of S1P signalling, there is also a need to reconsider the notion of S1P only as a determinant of cell survival and proliferation. Further the concept of 'S1P-ceramide' balance as the controlling switch of cellular fate and functions needs to be refined. In this review, we focus on the brain related functions of S1P with special focus on its role in synaptic transmission, neuronal autophagy and neuroinflammation. The review also attempts to bring out the multi-faceted nature of S1P signalling aspects that makes it a 'double edged sword'. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | | |
Collapse
|
109
|
Dysregulation of lipids in Alzheimer's disease and their role as potential biomarkers. Alzheimers Dement 2017; 13:810-827. [PMID: 28242299 DOI: 10.1016/j.jalz.2017.01.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/17/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022]
Abstract
The brain is highly enriched in lipids, and an intensive study of these lipids may be informative, not only of normal brain function but also of changes with age and in disease. In recent years, the development of highly sensitive mass spectrometry platforms and other high-throughput technologies has enabled the discovery of complex changes in the entire lipidome. This lipidomics approach promises to be a particularly useful tool for identifying diagnostic biomarkers for early detection of age-related neurodegenerative disease, such as Alzheimer's disease (AD), which has till recently been limited to protein- and gene-centric approaches. This review highlights known lipid changes affecting the AD brain and presents an update on the progress of lipid biomarker research in AD. Important considerations for designing large-scale lipidomics experiments are discussed to help standardize findings across different laboratories, as well as challenges associated with moving toward clinical application.
Collapse
|
110
|
Gendron DR, Lecours PB, Lemay AM, Beaulieu MJ, Huppé CA, Lee-Gosselin A, Flamand N, Don AS, Bissonnette É, Blanchet MR, Laplante M, Bourgoin SG, Bossé Y, Marsolais D. A Phosphorylatable Sphingosine Analog Induces Airway Smooth Muscle Cytostasis and Reverses Airway Hyperresponsiveness in Experimental Asthma. Front Pharmacol 2017; 8:78. [PMID: 28270767 PMCID: PMC5318459 DOI: 10.3389/fphar.2017.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
In asthma, excessive bronchial narrowing associated with thickening of the airway smooth muscle (ASM) causes respiratory distress. Numerous pharmacological agents prevent experimental airway hyperresponsiveness (AHR) when delivered prophylactically. However, most fail to resolve this feature after disease is instated. Although sphingosine analogs are primarily perceived as immune modulators with the ability to prevent experimental asthma, they also influence processes associated with tissue atrophy, supporting the hypothesis that they could interfere with mechanisms sustaining pre-established AHR. We thus assessed the ability of a sphingosine analog (AAL-R) to reverse AHR in a chronic model of asthma. We dissected the pharmacological mechanism of this class of agents using the non-phosphorylatable chiral isomer AAL-S and the pre-phosphorylated form of AAL-R (AFD-R) in vivo and in human ASM cells. We found that a therapeutic course of AAL-R reversed experimental AHR in the methacholine challenge test, which was not replicated by dexamethasone or the non-phosphorylatable isomer AAL-S. AAL-R efficiently interfered with ASM cell proliferation in vitro, supporting the concept that immunomodulation is not necessary to interfere with cellular mechanisms sustaining AHR. Moreover, the sphingosine-1-phosphate lyase inhibitor SM4 and the sphingosine-1-phosphate receptor antagonist VPC23019 failed to inhibit proliferation, indicating that intracellular accumulation of sphingosine-1-phosphate or interference with cell surface S1P1/S1P3 activation, are not sufficient to induce cytostasis. Potent AAL-R-induced cytostasis specifically related to its ability to induce intracellular AFD-R accumulation. Thus, a sphingosine analog that possesses the ability to be phosphorylated in situ interferes with cellular mechanisms that beget AHR.
Collapse
Affiliation(s)
- David R Gendron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Pascale B Lecours
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Anne-Marie Lemay
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Marie-Josée Beaulieu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Carole-Ann Huppé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Audrey Lee-Gosselin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Anthony S Don
- Centenary Institute and NHMRC Clinical Trials Centre, University of Sydney, Camperdown NSW, Australia
| | - Élyse Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Sylvain G Bourgoin
- Faculty of Medicine, Université Laval, QuébecQC, Canada; Division of Infectious Diseases and Immunology, CHU de Québec Research Center, QuébecQC, Canada
| | - Ynuk Bossé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| |
Collapse
|
111
|
Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases. Neuropharmacology 2017; 113:597-607. [DOI: 10.1016/j.neuropharm.2016.11.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
|
112
|
Vitamin D 3 protects against Aβ peptide cytotoxicity in differentiated human neuroblastoma SH- SY5Y cells: A role for S1P1/p38MAPK/ATF4 axis. Neuropharmacology 2017; 116:328-342. [PMID: 28077289 DOI: 10.1016/j.neuropharm.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 02/06/2023]
Abstract
Besides its classical function of bone metabolism regulation, 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3), acts on a variety of tissues including the nervous system, where the hormone plays an important role as neuroprotective, antiproliferating and differentiating agent. Sphingolipids are bioactive lipids that play critical and complex roles in regulating cell fate. In the present paper we have investigated whether sphingolipids are involved in the protective action of 1,25(OH)2D3. We have found that 1,25(OH)2D3 prevents amyloid-β peptide (Aβ(1-42)) cytotoxicity both in differentiated SH-SY5Y human neuroblastoma cells and in vivo. In differentiated SH-SY5Y cells, Aβ(1-42) strongly reduces the sphingosine-1-phosphate (S1P)/ceramide (Cer) ratio while 1,25(OH)2D3 partially reverts this effect. 1,25(OH)2D3 reverts also the Aβ(1-42)-induced reduction of sphingosine kinase activity. We have also studied the crosstalk between 1,25(OH)2D3 and S1P signaling pathways downstream to the activation of S1P receptor subtype S1P1. Notably, we found that 1,25(OH)2D3 prevents the reduction of S1P1 expression promoted by Aβ(1-42) and thereby it modulates the downstream signaling leading to ER stress damage (p38MAPK/ATF4). Similar effects were observed by using ZK191784. In addition, chronic treatment with 1,25(OH)2D3 protects from aggregated Aβ(1-42)-induced damage in the CA1 region of the rat hippocampus and promotes cell proliferation in the hippocampal dentate gyrus of adult mice. In conclusion, these results represent the first evidence of the role of 1,25(OH)2D3 and its structural analogue ZK191784 in counteracting the Aβ(1-42) peptide-induced toxicity through the modulation of S1P/S1P1/p38MAPK/ATF4 pathway in differentiated SH-SY5Y cells.
Collapse
|
113
|
On the possible structural role of single chain sphingolipids Sphingosine and Sphingosine 1-phosphate in the amyloid-β peptide interactions with membranes. Consequences for Alzheimer’s disease development. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
114
|
Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism. Sci Rep 2016; 6:37064. [PMID: 27883090 PMCID: PMC5121647 DOI: 10.1038/srep37064] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 01/28/2023] Open
Abstract
The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPLfl/fl/Nes) but not postnatal neuronal forebrain-restricted SPL deletion (SPLfl/fl/CaMK) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPLfl/fl/Nes mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity.
Collapse
|
115
|
Weth-Malsch D, Langeslag M, Beroukas D, Zangrandi L, Kastenberger I, Quarta S, Malsch P, Kalpachidou T, Schwarzer C, Proia RL, Haberberger RV, Kress M. Ablation of Sphingosine 1-Phosphate Receptor Subtype 3 Impairs Hippocampal Neuron Excitability In vitro and Spatial Working Memory In vivo. Front Cell Neurosci 2016; 10:258. [PMID: 27872583 PMCID: PMC5097928 DOI: 10.3389/fncel.2016.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and S1P3−/− mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus.
Collapse
Affiliation(s)
- Daniela Weth-Malsch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Dimitra Beroukas
- Anatomy and Histology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Iris Kastenberger
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Serena Quarta
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Philipp Malsch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Theodora Kalpachidou
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| | - Rainer V Haberberger
- Anatomy and Histology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
116
|
Colin J, Gregory-Pauron L, Lanhers MC, Claudepierre T, Corbier C, Yen FT, Malaplate-Armand C, Oster T. Membrane raft domains and remodeling in aging brain. Biochimie 2016; 130:178-187. [DOI: 10.1016/j.biochi.2016.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
|
117
|
Oo A, Hassandarvish P, Chin SP, Lee VS, Abu Bakar S, Zandi K. In silico study on anti-Chikungunya virus activity of hesperetin. PeerJ 2016; 4:e2602. [PMID: 27812412 PMCID: PMC5088613 DOI: 10.7717/peerj.2602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/23/2016] [Indexed: 11/24/2022] Open
Abstract
Background The re-emerging, Aedes spp. transmitted Chikungunya virus (CHIKV) has recently caused large outbreaks in a wide geographical distribution of the world including countries in Europe and America. Though fatalities associated with this self-remitting disease were rarely reported, quality of patients’ lives have been severely diminished by polyarthralgia recurrence. Neither effective antiviral treatment nor vaccines are available for CHIKV. Our previous in vitro screening showed that hesperetin, a bioflavonoid exhibits inhibitory effect on the virus intracellular replication. Here, we present a study using the computational approach to identify possible target proteins for future mechanistic studies of hesperetin. Methods 3D structures of CHIKV nsP2 (3TRK) and nsP3 (3GPG) were retrieved from Protein Data Bank (PDB), whereas nsP1, nsP4 and cellular factor SPK2 were modeled using Iterative Threading Assembly Refinement (I-TASSER) server based on respective amino acids sequence. We performed molecular docking on hesperetin against all four CHIKV non-structural proteins and SPK2. Proteins preparation and subsequent molecular docking were performed using Discovery Studio 2.5 and AutoDock Vina 1.5.6. The Lipinski’s values of the ligand were computed and compared with the available data from PubChem. Two non-structural proteins with crystal structures 3GPG and 3TRK in complexed with hesperetin, demonstrated favorable free energy of binding from the docking study, were further explored using molecular dynamics (MD) simulations. Results We observed that hesperetin interacts with different types of proteins involving hydrogen bonds, pi-pi effects, pi-cation bonding and pi-sigma interactions with varying binding energies. Among all five tested proteins, our compound has the highest binding affinity with 3GPG at −8.5 kcal/mol. The ligand used in this study also matches the Lipinski’s rule of five in addition to exhibiting closely similar properties with that of in PubChem. The docking simulation was performed to obtain a first guess of the binding structure of hesperetin complex and subsequently analysed by MD simulations to assess the reliability of the docking results. Root mean square deviation (RMSD) of the simulated systems from MD simulations indicated that the hesperetin complex remains stable within the simulation timescale. Discussion The ligand’s tendencies of binding to the important proteins for CHIKV replication were consistent with our previous in vitro screening which showed its efficacy in blocking the virus intracellular replication. NsP3 serves as the highest potential target protein for the compound’s inhibitory effect, while it is interesting to highlight the possibility of interrupting CHIKV replication via interaction with host cellular factor. By complying the Lipinski’s rule of five, hesperetin exhibits drug-like properties which projects its potential as a therapeutic option for CHIKV infection.
Collapse
Affiliation(s)
- Adrian Oo
- Tropical Infectious Disease Research and Education Centre, Department of Medical Microbiology Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Centre, Department of Medical Microbiology Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Sek Peng Chin
- Department of Chemistry, University of Malaya , Kuala Lumpur , Malaysia
| | | | - Sazaly Abu Bakar
- Tropical Infectious Disease Research and Education Centre, Department of Medical Microbiology Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Centre, Department of Medical Microbiology Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
118
|
Becker-Krail D, Farrand AQ, Boger HA, Lavin A. Effects of fingolimod administration in a genetic model of cognitive deficits. J Neurosci Res 2016; 95:1174-1181. [PMID: 27439747 DOI: 10.1002/jnr.23799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 11/09/2022]
Abstract
Notwithstanding recent advances, cognitive impairments are among the most difficult-to-treat symptoms in neuropsychiatric disorders. Deficits in information processing contributing to memory and sociability impairments are found across neuropsychiatric-related disorders. Previously, we have shown that mutations in the DTNBP1 gene (encoding dystrobrevin-binding protein 1 [dysbindin-1]) lead to abnormalities in synaptic glutamate release in the prefrontal cortex (PFC) and hippocampus and to cognitive deficits; glutamatergic transmission is important for cortical recurrent excitation that allows information processing in the PFC. To investigate possible means of restoring glutamate release and improving cognitive impairments, we assess the effects of increasing endogenous levels of brain-derived neurotrophic factor (BDNF) in a dysbindin-1-deficient mouse model. Increasing endogenous levels of BDNF may aid in remediating cognitive deficits, given the roles of BDNF in synaptic transmission, plasticity, and neuroprotection. To increase BDNF, we use a novel strategy, repeated intraperitoneal injections of fingolimod (Gilenya). Sphingolipids have recently been shown to have therapeutic value in several neurology-related disorders. Both wild-type (WT) and mutant (MUT) genotypes were tested for sociability and recognition memory, followed by measuring endogenous BDNF levels and presynaptic [Ca2+ ]i within the PFC. Both genotypes were treated for 1 week with either saline or fingolimod. Relative to WT mice, MUT mice demonstrated impairments in sociability and recognition memory and lower presynaptic calcium. After fingolimod treatment, MUT mice exhibited significant improvements in sociability and recognition memory and increases in presynaptic calcium and endogenous concentrations of BDNF. These results show promise for counteracting the cognitive impairments seen in neuropsychiatric disorders and may shed light on the role of dysbindin-1. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - A Q Farrand
- Deptartment of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - H A Boger
- Deptartment of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - A Lavin
- Deptartment of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
119
|
Couttas TA, Kain N, Suchowerska AK, Quek LE, Turner N, Fath T, Garner B, Don AS. Loss of ceramide synthase 2 activity, necessary for myelin biosynthesis, precedes tau pathology in the cortical pathogenesis of Alzheimer's disease. Neurobiol Aging 2016; 43:89-100. [PMID: 27255818 DOI: 10.1016/j.neurobiolaging.2016.03.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/01/2016] [Accepted: 03/27/2016] [Indexed: 01/07/2023]
Abstract
The anatomical progression of neurofibrillary tangle pathology throughout Alzheimer's disease (AD) pathogenesis runs inverse to the pattern of developmental myelination, with the disease preferentially affecting thinly myelinated regions. Myelin is comprised 80% of lipids, and the prototypical myelin lipids, galactosylceramide, and sulfatide are critical for neurological function. We observed severe depletion of galactosylceramide and sulfatide in AD brain tissue, which can be traced metabolically to the loss of their biosynthetic precursor, very long chain ceramide. The synthesis of very long chain ceramides is catalyzed by ceramide synthase 2 (CERS2). We demonstrate a significant reduction in CERS2 activity as early as Braak stage I/II in temporal cortex, and Braak stage III/IV in hippocampus and frontal cortex, indicating that loss of myelin-specific ceramide synthase activity precedes neurofibrillary tangle pathology in cortical regions. These findings open a new vista on AD pathogenesis by demonstrating a defect in myelin lipid biosynthesis at the preclinical stages of the disease. We posit that, over time, this defect contributes significantly to myelin deterioration, synaptic dysfunction, and neurological decline.
Collapse
Affiliation(s)
- Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nupur Kain
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Lake-Ee Quek
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nigel Turner
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Thomas Fath
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
120
|
D Potdar P, U Shetti A. Molecular Biomarkers for Diagnosis & Therapies of Alzheimer’s Disease. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.4.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
121
|
Xiang Y, Lam SM, Shui G. What can lipidomics tell us about the pathogenesis of Alzheimer disease? Biol Chem 2015; 396:1281-91. [DOI: 10.1515/hsz-2015-0207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 11/15/2022]
Abstract
Abstract
Lipids serve many distinct functions in cellular homeostasis such as membrane organization, as a platform for membrane function and protein/protein or protein/lipid interaction, energy storage, as well as secondary messengers in signal transduction. Perturbations in lipid homeostasis may result in abnormal cellular function. Alzheimer’s disease (AD) is a neurodegenerative disorder in which the brain represents the primary site of pathology. While there is a plethora of previous work pertaining to AD pathogenesis, the precise mechanism of the disease is still not well-understood. Recent waves of technological advances in the realm of lipidomics have enabled scientists to look at AD pathogenesis from a previously unexplored perspective, and studies have revealed extensive lipid aberrations are implicated in the disease pathology. Herein, we review the critical lipids alternations, which affect amyloid plaque and neurofibrillary tangles formation and accumulation, as well as lipid aberrations related to neuronal and synaptic dysfunction in cells and animal models. We also summarize lipid abnormalities observed in the human cerebrospinal fluid (CSF), as well as other circulating fluids including plasma and serum in association with AD, which could serve as candidate biomarkers to diagnose and monitor the disease.
Collapse
|
122
|
Lopes Pinheiro MA, Kroon J, Hoogenboezem M, Geerts D, van Het Hof B, van der Pol SMA, van Buul JD, de Vries HE. Acid Sphingomyelinase-Derived Ceramide Regulates ICAM-1 Function during T Cell Transmigration across Brain Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 196:72-9. [PMID: 26597010 DOI: 10.4049/jimmunol.1500702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disorder of the CNS characterized by immune cell infiltration across the brain vasculature into the brain, a process not yet fully understood. We previously demonstrated that the sphingolipid metabolism is altered in MS lesions. In particular, acid sphingomyelinase (ASM), a critical enzyme in the production of the bioactive lipid ceramide, is involved in the pathogenesis of MS; however, its role in the brain vasculature remains unknown. Transmigration of T lymphocytes is highly dependent on adhesion molecules in the vasculature such as intercellular adhesion molecule-1 (ICAM-1). In this article, we hypothesize that ASM controls T cell migration by regulating ICAM-1 function. To study the role of endothelial ASM in transmigration, we generated brain endothelial cells lacking ASM activity using a lentiviral shRNA approach. Interestingly, although ICAM-1 expression was increased in cells lacking ASM activity, we measured a significant decrease in T lymphocyte adhesion and consequently transmigration both in static and under flow conditions. As an underlying mechanism, we revealed that upon lack of endothelial ASM activity, the phosphorylation of ezrin was perturbed as well as the interaction between filamin and ICAM-1 upon ICAM-1 clustering. Functionally this resulted in reduced microvilli formation and impaired transendothelial migration of T cells. In conclusion, in this article, we show that ASM coordinates ICAM-1 function in brain endothelial cells by regulating its interaction with filamin and phosphorylation of ezrin. The understanding of these underlying mechanisms of T lymphocyte transmigration is of great value to develop new strategies against MS lesion formation.
Collapse
Affiliation(s)
- Melissa A Lopes Pinheiro
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Jeffrey Kroon
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| | - Mark Hoogenboezem
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Sophia Children's Hospital, Erasmus University Medical Center, 3015 GJ Rotterdam, the Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands;
| |
Collapse
|
123
|
The Molecular Mechanism of Amyloid β42 Peptide Toxicity: The Role of Sphingosine Kinase-1 and Mitochondrial Sirtuins. PLoS One 2015; 10:e0137193. [PMID: 26334640 PMCID: PMC4567180 DOI: 10.1371/journal.pone.0137193] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/22/2015] [Indexed: 12/14/2022] Open
Abstract
Our study focused on the relationship between amyloid β 1–42 (Aβ), sphingosine kinases (SphKs) and mitochondrial sirtuins in regulating cell fate. SphK1 is a key enzyme involved in maintaining sphingolipid rheostat in the brain. Deregulation of the sphingolipid metabolism may play a crucial role in the pathogenesis of Alzheimer’s disease (AD). Mitochondrial function and mitochondrial deacetylases, i.e. sirtuins (Sirt3,-4,-5), are also important for cell viability. In this study, we evaluated the interaction between Aβ1–42, SphKs and Sirts in cell survival/death, and we examined several compounds to indicate possible target(s) for a strategy protecting against cytotoxicity of Aβ1–42. PC12 cells were subjected to Aβ1–42 oligomers and SphK inhibitor SKI II for 24–96 h. Our data indicated that Aβ1–42 enhanced SphK1 expression and activity after 24 h, but down-regulated them after 96 h and had no effect on Sphk2. Aβ1–42 and SKI II induced free radical formation, disturbed the balance between pro- and anti-apoptotic proteins and evoked cell death. Simultaneously, up-regulation of anti-oxidative enzymes catalase and superoxide dismutase 2 was observed. Moreover, the total protein level of glycogen synthase kinase-3β was decreased. Aβ1–42 significantly increased the level of mitochondrial proteins: apoptosis-inducing factor AIF and Sirt3, -4, -5. By using several pharmacologically active compounds we showed that p53 protein plays a significant role at very early stages of Aβ1–42 toxicity. However, during prolonged exposure to Aβ1–42, the activation of caspases, MEK/ERK, and alterations in mitochondrial permeability transition pores were additional factors leading to cell death. Moreover, SphK product, sphingosine-1-phosphate (S1P), and Sirt activators and antioxidants, resveratrol and quercetin, significantly enhanced viability of cells subjected to Aβ1–42. Our data indicated that p53 protein and inhibition of SphKs may be early key events responsible for cell death evoked by Aβ1–42. We suggest that activation of S1P-dependent signalling and Sirts may offer a promising cytoprotective strategy.
Collapse
|
124
|
Zhao YD, Chu L, Lin K, Granton E, Yin L, Peng J, Hsin M, Wu L, Yu A, Waddell T, Keshavjee S, Granton J, de Perrot M. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung. PLoS One 2015; 10:e0134958. [PMID: 26317340 PMCID: PMC4552732 DOI: 10.1371/journal.pone.0134958] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/16/2015] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH), leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8) and control lung tissue (n = 8) leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO) and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P) metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH.
Collapse
Affiliation(s)
- Yidan D. Zhao
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (YDZ); (MdP)
| | - Lei Chu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen Lin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elise Granton
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Li Yin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jenny Peng
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Michael Hsin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Amy Yu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Waddell
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - John Granton
- Clinical Studies Resource Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (YDZ); (MdP)
| |
Collapse
|
125
|
Marciani DJ. Alzheimer's disease vaccine development: A new strategy focusing on immune modulation. J Neuroimmunol 2015; 287:54-63. [PMID: 26439962 DOI: 10.1016/j.jneuroim.2015.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
Despite significant advances in the development of Alzheimer's disease (AD) vaccines effective in animal models, these prototypes have been clinically unsuccessful; apparently the result of using immunogens modified to prevent inflammation. Hence, a new paradigm is needed that uses entire AD-associated immunogens, a notion supported by recent successful passive immunotherapy results, with adjuvants that induce Th2-only while inhibiting without abrogating Th1 immunity. Here, we discuss the obstacles to AD vaccine development and Th2-adjuvants that by acting on dendritic and T cells, would elicit regardless of the antigen a safe and effective antibody response, while preventing damaging neuroinflammation and ameliorating immunosenescence.
Collapse
Affiliation(s)
- Dante J Marciani
- Qantu Therapeutics, Inc., 612 E. Main Street, Lewisville, TX 75057, USA.
| |
Collapse
|
126
|
Romero-Guevara R, Cencetti F, Donati C, Bruni P. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss? Front Aging Neurosci 2015; 7:60. [PMID: 25954197 PMCID: PMC4407579 DOI: 10.3389/fnagi.2015.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future studies.
Collapse
Affiliation(s)
- Ricardo Romero-Guevara
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Francesca Cencetti
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Chiara Donati
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Paola Bruni
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| |
Collapse
|
127
|
Sphingosin-1-phosphate Receptor 1: a Potential Target to Inhibit Neuroinflammation and Restore the Sphingosin-1-phosphate Metabolism. Can J Neurol Sci 2015; 42:195-202. [PMID: 25860537 DOI: 10.1017/cjn.2015.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent evidence suggests that an extreme shift may occur in sphingosine metabolism in neuroinflammatory contexts. Sphingosine 1-phosphate (S1P)-metabolizing enzymes (SMEs) regulate the level of S1P. We recently found that FTY720, a S1P analogue, and SEW2871, a selective S1P receptor 1 (S1P1) agonist, provide protection against neural damage and memory deficit in amyloid beta (Aβ)-injected animals. This study aimed to evaluate the effects of these two analogues on the expression of SMEs as well as their anti-inflammatory roles. METHODS Rats were treated with intracerebral lipopolysaccharide (LPS) or Aβ. Memory impairment was assessed by Morris water maze and the effects of drugs on SMEs as well as inflammatory markers, TNF- α and COX-II, were determined by immunoblotting. RESULTS Aβ and LPS differentially altered the expression profile of SMEs. In Aβ-injected animals, FTY720 and SEW2871 treatments exerted anti-inflammatory effects and restored the expression profile of SMEs, in parallel to our previous findings. In LPS animals however, in spite of anti-inflammatory effects of the two analogues, only FTY720 restored the levels of SMEs and prevented memory deficit. CONCLUSION The observed ameliorating effects of FTY720 and SEW7821 can be partly attributed to the interruption of the vicious cycle of abnormal S1P metabolism and neuro-inflammation. The close imitation of the FTY720 effects by SW2871 in Aβ-induced neuro-inflammation may highlight the attractive role of S1P1 as a potential target to restore S1P metabolism and inhibit inflammatory processes.
Collapse
|
128
|
A Three-Step Assay for Ceramide Synthase Activity Using a Fluorescent Substrate and HPLC. Lipids 2014; 50:101-9. [DOI: 10.1007/s11745-014-3969-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
|
129
|
Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease. Arch Toxicol 2014; 88:2213-32. [PMID: 25344023 DOI: 10.1007/s00204-014-1386-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/08/2014] [Indexed: 01/10/2023]
Abstract
Resveratrol, a natural compound endowed with multiple health-promoting effects, has received much attention given its potential for the treatment of cardiovascular, inflammatory, neurodegenerative, metabolic and age-related diseases. However, the translational potential of resveratrol has been limited by its specificity, poor bioavailability and uncertain toxicity. In recent years, there has been an accumulation of evidence demonstrating that resveratrol modulates sphingolipid metabolism. Moreover, resveratrol forms higher order oligomers that exhibit better selectivity and potency in modulating sphingolipid metabolism. This review evaluates the evidence supporting the modulation of sphingolipid metabolism and signaling as a mechanism of action underlying the therapeutic efficacy of resveratrol and oligomers in diseases, such as cancer.
Collapse
|
130
|
Brunkhorst R, Vutukuri R, Pfeilschifter W. Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Front Cell Neurosci 2014; 8:283. [PMID: 25309325 PMCID: PMC4162362 DOI: 10.3389/fncel.2014.00283] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022] Open
Abstract
Sphingolipids are a fascinating class of signaling molecules derived from the membrane lipid sphingomyelin. They show abundant expression in the brain. Complex sphingolipids such as glycosphingolipids (gangliosides and cerebrosides) regulate vesicular transport and lysosomal degradation and their dysregulation can lead to storage diseases with a neurological phenotype. More recently, simple sphingolipids such ceramide, sphingosine and sphingosine 1-phosphate (S1P) were discovered to signal in response to many extracellular stimuli. Forming an intricate signaling network, the balance of these readily interchangeable mediators is decisive for cell fate under stressful conditions. The immunomodulator fingolimod is the prodrug of an S1P receptor agonist. Following receptor activation, the drug leads to downregulation of the S1P1 receptor inducing functional antagonism. As the first drug to modulate the sphingolipid signaling pathway, it was marketed in 2010 for the treatment of multiple sclerosis (MS). At that time, immunomodulation was widely accepted as the key mechanism of fingolimod’s efficacy in MS. But given the excellent passage of this lipophilic compound into the brain and its massive brain accumulation as well as the abundant expression of S1P receptors on brain cells, it is conceivable that fingolimod also affects brain cells directly. Indeed, a seminal study showed that the protective effect of fingolimod in experimental autoimmune encephalitis (EAE), a murine MS model, is lost in mice lacking the S1P1 receptor on astrocytes, arguing for a specific role of astrocytic S1P signaling in MS. In this review, we discuss the role of sphingolipid mediators and their metabolizing enzymes in neurologic diseases and putative therapeutic strategies arising thereof.
Collapse
Affiliation(s)
- Robert Brunkhorst
- Cerebrovascular Research Group, Department of Neurology, Frankfurt University Hospital Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, pharmazentrum frankfurt, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Cerebrovascular Research Group, Department of Neurology, Frankfurt University Hospital Frankfurt am Main, Germany
| |
Collapse
|
131
|
Sphingosine-1-phosphate and its effect on glucose deprivation/glucose reload stress: from gene expression to neuronal survival. Mol Neurobiol 2014; 51:1300-8. [PMID: 25056275 PMCID: PMC4434862 DOI: 10.1007/s12035-014-8807-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/08/2014] [Indexed: 12/14/2022]
Abstract
Sphingosine kinase-1 (Sphk1-1, EC 2.7.1.91) is a regulator of pro-survival signalling, and its alterations have been observed in Alzheimer’s disease, brain ischemia and other neurological disorders. In this study we addressed the question whether Sphk1 and its product, sphingosine-1-phosphate (S1P), play a significant role in glucose deprivation (GD)/glucose reload (GR) stress in hippocampal neuronal cells (HT22). It was found that GD (6 h) followed by 24 h of GR evoked enhancement of the free radical level and neuronal HT22 cell death. Moreover, the significantly stronger gene expression for the pro-apoptotic Bax protein and down-regulation of the anti-apoptotic Bcl-2 and Bcl-XL proteins were observed. Concomitantly, this stress up-regulated: gene expression, protein level and activity of Sphk1. Exogenous S1P at 1 μM concentration and the other agonists of the S1P1 receptor (SEW 2871 and P-FTY720) enhanced HT22 cell viability affected by GD/GR stress. This mechanism is mediated by S1P receptor(s) signalling and by the activation of gene expression for Bcl-2 and Bcl-XL. Summarising, our data suggest that sphingolipid metabolism may play an important role in the early events that take place in neuronal cell survival/death under GD/GR stress. Our data demonstrate that exogenous S1P, through the activation of specific receptors S1P1 and S1P3 signalling pathways, regulates the gene expression for anti-apoptotic proteins and enhances neuronal cell survival affected by GD/GR stress.
Collapse
|
132
|
Ceccom J, Delisle MB, Cuvillier O. [Sphingosine 1-phosphate as a biomarker for Alzheimer's disease?]. Med Sci (Paris) 2014; 30:493-5. [PMID: 24939530 DOI: 10.1051/medsci/20143005006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Johnatan Ceccom
- Service d'anatomie pathologique, CHU Toulouse Rangueil, faculté de médecine, 1, avenue Jean Poulhès, 31059 Toulouse Cedex 9, France
| | - Marie-Bernadette Delisle
- Service d'anatomie pathologique, CHU Toulouse Rangueil, faculté de médecine, 1, avenue Jean Poulhès, 31059 Toulouse Cedex 9, France - Inserm UMR 1037, France
| | - Olivier Cuvillier
- CNRS, institut de pharmacologie et de biologie structurale, Toulouse, France - Université de Toulouse, UPS, IPBS, Toulouse, France
| |
Collapse
|