101
|
Zhang X, Zhong B, Zhang W, Wu J, Wang Y. Circular RNA CircMTO1 Inhibits Proliferation of Glioblastoma Cells via miR-92/WWOX Signaling Pathway. Med Sci Monit 2019; 25:6454-6461. [PMID: 31456594 PMCID: PMC6738003 DOI: 10.12659/msm.918676] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Circular RNA circMTO1 has been reported to inhibit the progression of many types of cancers. However, the role of circMTO1 in the progression of glioblastoma remains unclear. The purpose of our study was to explore the potential involvement of circMTO1 in glioblastoma. Material/Methods The expression of circMTO1 in human glioblastoma tissues was determined via quantitative real-time polymerase chain reaction (qRT-PCR). The effect of circMTO1 on proliferation of human glioblastoma cell line U251 was assessed through the Cell Counting Kit-8 (CCK-8) and colony formation assay. The regulatory interaction between circMTO1 and miR-92 was explored by bioinformatics prediction and luciferase reporter assay. Results We showed that circMTO1 was markedly downregulated in glioblastoma tissues compared with adjacent normal tissues. Lower circMTO1 level was significantly associated with shorter overall survival among patients with glioblastoma. In addition, circMTO1 inhibited proliferation of cell U251 cells. Mechanistically, circMTO1 upregulates the expression of WWOX in U251 cells, and WWOX mediates circMTO1-induced inhibition of proliferation of U251 cells. In addition, miR-92 downregulates the expression of WWOX by the targeting its mRNA 3′ UTR. More importantly, circMTO1 directly interact with miR-92, and subsequently serves as a miRNA sponge to upregulate WWOX expression. Conclusions Our results demonstrate that circMTO1 inhibits the proliferation of glioblastoma cells via the miR-92/WWOX signaling pathway.
Collapse
Affiliation(s)
- Xuewen Zhang
- Department of Neurosurgery, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China (mainland)
| | - Bo Zhong
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Wenjie Zhang
- Department of Neurosurgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Jie Wu
- Department of Neurosurgery, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China (mainland)
| | - Yu Wang
- Department of Neurosurgery, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
102
|
Ma L, Li Z, Li W, Ai J, Chen X. MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biol 2019; 16:1733-1748. [PMID: 31425004 DOI: 10.1080/15476286.2019.1657352] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detailed pathogenesis of endometriosis remains largely unclear despite decades of research. Recent studies have demonstrated that miRNAs plays an important role in endometriosis. The expression of miR-142-3p was decreased in ectopic endometrial tissues, while KLF9 and VEGFA expression levels were increased. Overexpression of miR-142-3p or knockdown of KLF9 significantly suppressed CRL-7566 cell proliferation and metastasis, induced cell apoptosis, and decreased both cell autophagy and vascularization. Additionally, KLF9 was confirmed to be a direct target of miR-142-3p and to directly bind to the promoter of the VEGFA gene, regulating its expression. Finally, intraperitoneal injection of miR-142-3p lentivirus significantly attenuated ectopic endometriotic lesions in vivo.miR-142-3p directly targeted KLF9, regulated VEGFA expression, and was protective against the growth of ectopic endometriotic lesions. Therefore, the miR-142-3p/KLF9/VEGFA signalling pathway may be a potential target in endometriosis treatment.
Collapse
Affiliation(s)
- Lin Ma
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zaiyi Li
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weihao Li
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jing Ai
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoxuan Chen
- Reproductive Medicine center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
103
|
Wang Z, Zhao Y, Wang Y, Jin C. Circular RNA circHIAT1 inhibits cell growth in hepatocellular carcinoma by regulating miR-3171/PTEN axis. Biomed Pharmacother 2019; 116:108932. [PMID: 31108351 DOI: 10.1016/j.biopha.2019.108932] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs), a novel subgroup of non-coding RNAs (ncRNAs), have been reported in human cancers due to their significant regulatory roles. CircRNA Hippocampus Abundant Transcript 1 (circHIAT1) has been studied in clear cell renal cell carcinoma. However, whether it can regulate the tumorigenesis of hepatocellular carcinoma (HCC) remains unclear. The expression level of circHIAT1 in HCC samples and cell lines was measured by qRT-PCR analysis. CircHIAT1 was expressed at a significantly low level in cancerous samples. Based on Kaplan-Meier survival analysis, we determined a positive correlation between the downregulation of circHIAT1 and the poor overall survival of HCC patients. Using subcellular fractionation and RNA FISH assay, we identified the predominant cytoplasmic localization of circHIAT1. Both in vitro and in vivo experiments demonstrated the suppressive effect of circHIAT1 on the HCC cell growth. Mechanistically, circHIAT1 acted as the miR-3171 sponge to upregulate PTEN in HCC. Finally, rescue assays demonstrated the role of circHIAT1/miR-3171/PTEN pathway in regulating HCC cell growth. Taken together, this study revealed the novel mechanism of circHIAT1 in HCC.
Collapse
Affiliation(s)
- Zhengmiao Wang
- Department of Ultrasonography, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yixuan Zhao
- Department of Ultrasonography, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ye Wang
- Department of Pediatric, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street Changchun, Jilin, China
| | - Chunxiang Jin
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street Changchun, Jilin, China.
| |
Collapse
|
104
|
Liu H, Liu Y, Bian Z, Zhang J, Zhang R, Chen X, Huang Y, Wang Y, Zhu J. Correction to: Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 Kip1 axis. Mol Cancer 2019; 18:117. [PMID: 31288817 PMCID: PMC6615290 DOI: 10.1186/s12943-019-1045-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Hui Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yuan Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhaolian Bian
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, 226006, Jiangsu, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yanxia Huang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Medical School of Nantong University, Nantong, 226006, Jiangsu, China
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
105
|
Feng W, Ding Y, Zong W, Ju S. Non-coding RNAs in regulating gastric cancer metastasis. Clin Chim Acta 2019; 496:125-133. [PMID: 31276633 DOI: 10.1016/j.cca.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths worldwide, and mortality remains high, especially in East Asia. At present, the main method to diagnose gastric cancer is pathological biopsy. At the time of diagnosis, most patients have been diagnosed with advanced cancer and metastasis. The treatment of gastric cancer patients is mainly radical surgical resection and chemoradiotherapy, while patients with metastatic tumor have great challenges to radical surgery and are prone to drug resistance. Metastasis is an important factor affecting tumor development. In addition, evidence accumulated in the literature indicates that non-coding RNA plays a key role in tumor metastasis. This article reviews the role of ncRNAs in gastric cancer metastasis and discusses the regulatory mechanism in the development and treatment of gastric cancer.
Collapse
Affiliation(s)
- Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
106
|
Wang KW, Dong M. Role of circular RNAs in gastric cancer: Recent advances and prospects. World J Gastrointest Oncol 2019; 11:459-469. [PMID: 31236197 PMCID: PMC6580317 DOI: 10.4251/wjgo.v11.i6.459] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA) is a newly discovered non-coding RNA with special structure, which is widely expressed in eukaryotic organisms and mainly located in the cytoplasm. circRNAs participate in gene regulation by working as miRNA sponges that block the inhibitory effect of miRNA on its target genes. In addition, circRNAs can bind to RNA binding proteins to regulate gene expression. Based on characteristics of stability, expression specificity and participation in gene regulation, circRNAs are expected to be biomarkers for early diagnosis of cancer or potential targets for cancer therapy. With the help of bioinformatics analysis, circRNA microarray analysis and high-throughput sequencing technology, more circRNAs were discovered to participate in the progression of gastric cancer (GC) over the past three years. This article gives an overview of these recent research focusing on the roles of circRNAs in GC and highlights the advances.
Collapse
Affiliation(s)
- Ke-Wei Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
107
|
Huang S, Zhang X, Guan B, Sun P, Hong CT, Peng J, Tang S, Yang J. A novel circular RNA hsa_circ_0008035 contributes to gastric cancer tumorigenesis through targeting the miR-375/YBX1 axis. Am J Transl Res 2019; 11:2455-2462. [PMID: 31105852 PMCID: PMC6511772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Circular RNAs (circRNAs) play an important regulatory role in a variety of human cancers, including gastric cancer. The mechanisms for the circRNAs in gastric cancers are not fully understood. This study aims to uncover the mechanism by which circRNAs regulate gastric cancer tumorigenesis. Among the microarray data, we screened dysregulated circRNAs and identified an up-regulated circRNA, hsa_circ_0008035. Functionally, the hsa_circ_0008035 silencing by the siRNA transfection inhibited the proliferation and invasion of gastric cancer cells. Mechanically, hsa_circ_0008035 acted as a sponge for the miR-375 and absorbed its expression, and miR-375 was found to target YBX1 3'-UTR, constructing a hsa_circ_0008035/miR-375/YBX1 axis. Taken together, these findings are evidence that circRNA hsa_circ_0008035 promotes gastric cancer cell proliferation and invasion by regulating miR-375/YBX1.
Collapse
Affiliation(s)
- Shifang Huang
- Intensive Care Unit, First Affiliated Hospital, Jinan UniversityGuangzhou 510630, China
| | - Xiaolin Zhang
- Department of Gastrointestinal Surgery, Heze Municipal HospitalHeze 274031, China
| | - Bingsheng Guan
- Department of Gastrointestinal Surgery, Jinan UniversityGuangzhou 510630, China
| | - Peng Sun
- Department of Gastrointestinal Surgery, Jinan UniversityGuangzhou 510630, China
| | - Chong Tsz Hong
- Department of Gastrointestinal Surgery, Jinan UniversityGuangzhou 510630, China
| | - Juzheng Peng
- Department of Gastrointestinal Surgery, Jinan UniversityGuangzhou 510630, China
| | - Shaohui Tang
- Department of Gastroenterology, Jinan UniversityGuangzhou 510630, China
| | - Jingge Yang
- Department of Gastrointestinal Surgery, Jinan UniversityGuangzhou 510630, China
| |
Collapse
|
108
|
Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W, Zhu J. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer 2019; 18:80. [PMID: 30953514 PMCID: PMC6449953 DOI: 10.1186/s12943-019-1015-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/28/2019] [Indexed: 01/14/2023] Open
Abstract
Background Accumulating evidence shows that, the dysregulation of circular RNAs (circRNAs) is associated with the progression of multiple malignancies. But, the underlying mechanisms by which has_circ_0032627 (circDLST) contributed to gastric cancer (GC) remain undocumented. Methods The expression and cellular localization of circDLST and its association with clinicopathological characteristics and prognosis in patients with GC was analysed by using fluorescence in situ hybridization. Gain- and loss-of-function experiments as well as a subcutaneous xenograft tumor model and a liver metastasis model from orthotopic implantation of GC tissues were conducted to assess the role of circDLST in GC cells. CircDLST specific binding with miR-502-5p was confirmed by dual luciferase gene report, RNA immunoprecipitation (RIP) assays and RIP-miRNA expression profiling. qRT-PCR and Western blot analysis was used to detect the effects of circDLST on miR-502-5p-mediated NRAS/MEK1/ERK1/2 signaling in GC cells. Results The expression levels of circDLST were dramatically elevated in GC tissues as compared with the adjacent normal tissues, and acted as an independent prognostic factor of poor survival in patients with GC. Knockdown of circDLST inhibited the cell viability, colony formation, DNA synthesis, cell invasion and liver metastasis in vitro and in vivo, whereas overexpression of circDLST had the opposite effects. Furthermore, circDLST was co-localized with miR-502-5p in the cytoplasm of GC cells, and acted as a sponge of miR-502-3p in GC cells, which abrogated the tumor promoting effects of circDLST by inactivating the NRAS/MEK1/ERK1/2 signaling in GC cells. Conclusion CircDLST promotes the tumorigenesis and metastasis of GC cells by sponging miR-502-5p to activate the NRAS/MEK1/ERK1/2 signaling. Electronic supplementary material The online version of this article (10.1186/s12943-019-1015-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Liang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
109
|
Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y, Huang K, Wang G, Wang J, Ma J, Shen S, Fan S. Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol Cancer 2019; 18:73. [PMID: 30940151 PMCID: PMC6444890 DOI: 10.1186/s12943-019-1007-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND As a subclass of noncoding RNAs, circular RNAs (circRNAs) have been demonstrated to play a critical role in regulating gene expression in eukaryotes. Recent studies have revealed the pivotal functions of circRNAs in cancer progression. However, little is known about the role of circTADA2A, also named hsa_circ_0043278, in osteosarcoma (OS). METHODS CircTADA2A was selected from a previously reported circRNA microarray comparing OS cell lines and normal bone cells. QRT-PCR was used to detect the expression of circTADA2A in OS tissue and cell lines. Luciferase reporter, RNA immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization (FISH) assays were performed to confirm the binding of circTADA2A with miR-203a-3p. OS cells were stably transfected with lentiviruses, and Transwell migration, Matrigel invasion, colony formation, proliferation, apoptosis, Western blotting, and in vivo tumorigenesis and metastasis assays were employed to evaluate the roles of circTADA2A, miR-203a-3p and CREB3. RESULTS Our findings demonstrated that circTADA2A was highly expressed in both OS tissue and cell lines, and circTADA2A inhibition attenuated the migration, invasion and proliferation of OS cells in vitro as well as tumorigenesis and metastasis in vivo. A mechanistic study revealed that circTADA2A could readily sponge miR-203a-3p to upregulate the expression of CREB3, which was identified as a driver gene in OS. Furthermore, miR-203a-3p inhibition or CREB3 overexpression could reverse the circTADA2A silencing-induced impairment of malignant tumor behavior. CONCLUSIONS CircTADA2A functions as a tumor promoter in OS to increase malignant tumor behavior through the miR-203a-3p/CREB3 axis, which could be a novel target for OS therapy.
Collapse
Affiliation(s)
- Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Gangliang Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|