101
|
Gui Y, Chen J, Hu J, Liao C, Ouyang M, Deng L, Yang J, Xu D. Soluble epoxide hydrolase inhibitors improve angiogenic function of endothelial progenitor cells via ERK/p38-mediated miR-126 upregulation in myocardial infarction mice after exercise. Exp Cell Res 2020; 397:112360. [PMID: 33188851 DOI: 10.1016/j.yexcr.2020.112360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022]
Abstract
It is well established that exercise could protect against myocardial infarction (MI). Previously, we found that epoxyeicosatrienoic acids (EETs) could be induced by exercise and has been found to protect against MI via promoting angiogenic function of endothelial progenitor cells (EPCs). However, the underling mechanism of EETs in promoting EPC functions is unclear. C57BL/6 mice were fed with a novel soluble epoxide hydrolase inhibitor (sEHi), TPPU, to increase EET levels, for 1 week before undergoing MI surgery. Mice were then subjected to exercise training for 4 weeks. Bone marrow-derived EPCs were isolated and cultured in vitro. Exercise upregulated miR-126 expression but downregulated the protein levels of its target gene, Spred1, in EPCs from MI mice. TPPU further enhanced the effects of exercise on EPCs. Spred1 overexpression abolished the protective effects of TPPU on EPC functions. Downregulation of miR-126 by antagomiR-126 impaired the inhibitor effects of TPPU on Spred1 mRNA and protein expression. Additionally, TPPU upregulated miR-126 is partially mediated through ERK/p38 MAPK pathway. This study showed that sEHi promoted miR-126 expression, which might be related to the beneficial effect of sEHi on EPC functions in MI mice under exercise conditions, by increasing ERK and p38 MAPK phosphorylation and inhibiting Spred1.
Collapse
Affiliation(s)
- Yajun Gui
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China; Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410000, China
| | - Jingyuan Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China
| | - Jiahui Hu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China
| | - Caixiu Liao
- Department of Geratology, Internal Medicine, The Third Hospital of Changsha, Changsha, Hunan, 410000, China
| | - Minzhi Ouyang
- Department of Ultrasonics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China
| | - Limin Deng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China; Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410000, China
| | - Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China.
| |
Collapse
|
102
|
Mi J, Xu J, Yao H, Li X, Tong W, Li Y, Dai B, He X, Chow DHK, Li G, Lui KO, Zhao J, Qin L. Calcitonin Gene-Related Peptide Enhances Distraction Osteogenesis by Increasing Angiogenesis. Tissue Eng Part A 2020; 27:87-102. [PMID: 32375579 DOI: 10.1089/ten.tea.2020.0009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Distraction osteogenesis (DO) is a well-established surgical technique for treating bone defect and limb lengthening. The major drawback of DO is the long treatment period as the external fixator has to be kept in place until consolidation is completed. Calcitonin gene-related peptide (CGRP) has been reported to promote angiogenesis by affecting endothelial progenitor cells (EPCs) in limb ischemia and wound healing. Thus, the goal of this study was to evaluate the angiogenic effect of exogenous CGRP on bone regeneration in a rat DO model. Exogenous CGRP was directly injected into the bone defect after each cycle of distraction in vivo. Microcomputed tomography, biomechanical test, and histological analysis were performed to assess the new bone formation. Angiography and immunofluorescence were performed to assess the formation of blood vessels. CD31+CD144+ EPCs in the bone defect were quantified with flow cytometry. In in vitro study, bone marrow stem cells (BMSCs) were used to investigate the effect of CGRP on EPCs production during endothelial differentiation. Our results showed that CGRP significantly promoted bone regeneration and vessel formation after consolidation. CGRP significantly increased the fraction of CD31+CD144+EPCs and the capillary density in the bone defect at the end of distraction phase. CGRP increased EPC population in the endothelial differentiation of BMSCs in vitro by activating PI3K/AKT signaling pathway. Furthermore, differentiated EPCs rapidly assembled into tube-like structures and promoted osteogenic differentiation of BMSCs. In conclusion, CGRP increased EPC population and promoted blood vessel formation and bone regeneration at the defect region in a DO model. Impact statement Distraction osteogenesis (DO) is a well-established surgical technique for limb lengthening and bone defect. The disadvantage of this technique is that external fixator is needed to be kept in place for about 12 months. This may result in increased risk of infection, financial burden, and negative psychological impacts. In this study, we have injected calcitonin gene-related peptide (CGRP) into the defect region after distraction and found that CGRP enhanced vessel formation and bone regeneration in a rat DO model. This suggests that a controlled delivery system for CGRP could be developed and applied clinically for accelerating bone regeneration in patients with DO.
Collapse
Affiliation(s)
- Jie Mi
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
103
|
An update to the advances in understanding distraction histogenesis: From biological mechanisms to novel clinical applications. J Orthop Translat 2020. [DOI: 10.1016/j.jot.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
104
|
Li SF, Han Y, Wang F, Su Y. Progress in exosomes and their potential use in ocular diseases. Int J Ophthalmol 2020; 13:1493-1498. [PMID: 32953591 DOI: 10.18240/ijo.2020.09.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes contain a variety of biological active substances such as proteins, miRNAs, lncRNAs and lipids, and exosomes from different cells play different biological functions. Exosomes, as a carrier, are involved in many pathological processes such as nerve injury and repair, vascular regeneration, immune response, and fibrosis formation. It plays an important role in the treatment of eye diseases such as glaucoma, diabetic retinopathy, and keratitis. This paper reviews the research progress of exosomes in various diseases in vivo, which provides a new way for the treatment of eye diseases.
Collapse
Affiliation(s)
- Su-Fang Li
- Ophthalmology Branch of the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ying Han
- Gerontology Branch of the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Feng Wang
- Ophthalmology Branch of the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ying Su
- Ophthalmology Branch of the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
105
|
He X, Han Z, Jiang W, Huang F, Ren C, Wei Q, Zhou N. Hypoxia improved vasculogenesis in distraction osteogenesis through Mesenchymal-Epithelial transition (MET), Wnt/β-catenin signaling pathway, and autophagy. Acta Histochem 2020; 122:151593. [PMID: 32778247 DOI: 10.1016/j.acthis.2020.151593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/16/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The osteogenesis rate of distraction osteogenesis is 4-6 times faster than that of infants, far beyond fracture healing. However, the osteogenesis mechanism of DO is complicated and inconclusive owing to two significant elements: mechanical tension which is well explored and trauma caused by bone fracture. Vasculogenesis and EPCs are critical for successful bone regeneration during DO. Thus, this study aimed to explore the effects of hypoxia caused by trauma or CoCl2 on the vasculogenesis of DO and EPCs. MATERIAL AND METHODS Mandibular DO and BF models were generated using 6 beagle dogs with a distraction rate of 1 mm per day for 7 days or acute lengthening for 7 mm. The vasculogenesis in DO-gap or BF-gap were assessed via histological analyses, qRT-PCR and immunofluorescence staining. Dog bone marrow EPCs were isolated and cultured with or without 0.1 mM CoCl2. The effect of hypoxia caused by CoCl2 were subsequently valuated via in vitro assays including Cell Counting Kit-8, transwell assay, qRT-PCR, western blot, and immunofluorescence staining. RESULTS Histological analyses, qRT-PCR and immunofluorescence staining revealed that vasculogenesis markedly accelerated in DO-gap compared with BF-gap, and the DO-gap displayed more positive to CD133, CD34, HIF-1α, E-cadherin, beclin1, β-catenin, VEGF, bFGF, and less positive to ZEB1 than BF-gap. In addition, in vitro analyses revealed CoCl2 treatment enhanced EPCs proliferation and migration, and the levels of HIF-1α, E-cadherin, β-catenin, beclin1, VEGF, bFGF of EPCs were increased, but the level of ZEB1 was decreased. CONCLUSION Our studies showed that hypoxia promoted vasculogenesis in DO and EPCs, and the mechanism may involve autophagy, Wnt/β-catenin signaling pathway, and Mesenchymal-Epithelial transition (MET).
Collapse
Affiliation(s)
- Xuan He
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Zhiqi Han
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Weidong Jiang
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Fangfang Huang
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Chao Ren
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Qian Wei
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China
| | - Nuo Zhou
- College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, China; Guangxi Clinical Research Center for Craniofacial Deformity, China.
| |
Collapse
|
106
|
Yan HC, Yu TT, Li J, Qiao YQ, Wang LC, Zhang T, Li Q, Zhou YH, Liu DW. The Delivery of Extracellular Vesicles Loaded in Biomaterial Scaffolds for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:1015. [PMID: 32974327 PMCID: PMC7466762 DOI: 10.3389/fbioe.2020.01015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous nanoparticles actively released by cells that comprise highly conserved and efficient systems of intercellular communication. In recent years, numerous studies have proven that EVs play an important role in the field of bone tissue engineering (BTE) due to several advantages, such as good biosafety, stability and efficient delivery. However, the application of EVs therapies in bone regeneration has not been widely used. One of the major challenges for the application of EVs is the lack of sufficient scaffolds to load and control the release of EVs. Thus, in this review, we describe the most advanced current strategies for delivering EVs with various biomaterials for the use in bone regeneration, the role of EVs in bone regeneration, the distribution of EVs mediated by biomaterials and common methods of promoting EVs delivery efficacy with a focus on biomaterial properties.
Collapse
Affiliation(s)
- Hui-Chun Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting-Ting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jing Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yi-Qiang Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin-Chuan Wang
- Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Da-Wei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
107
|
He Y, Lin S, Ao Q, He X. The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats. Stem Cell Res Ther 2020; 11:338. [PMID: 32746906 PMCID: PMC7398348 DOI: 10.1186/s13287-020-01858-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background The repair of critical-sized bone defect represents a challenging problem in bone tissue engineering. To address the most important problem in bone defect repair, namely insufficient blood supply, this study aimed to find a method that can promote the formation of vascularized bone tissue. Method The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of osteogenic and angiogenic genes. Furthermore, the co-culture system combined with scaffold material was used to repair the critical-sized bone defects of the cranial bone in rats. Results The co-culture of ASCs/EPCs could increase osteogenesis and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASC/EPC group could promote bone regeneration and vascularization in the meantime and then significantly accelerate the repair of critical-sized bone defects. Conclusion It is feasible to replace traditional single seed cells with ASC/EPC co-culture system for vascularized bone regeneration. This system could ultimately enable clinicians to better repair the defect of craniofacial bone and avoid donor site morbidity.
Collapse
Affiliation(s)
- Yuanjia He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Lin
- Department of Plastic Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, Liaoning, China
| | - Qiang Ao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, China
| | - Xiaoning He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
108
|
Gong J, Yan Z, Liu Q. Progress in experimental research on SPRED protein family. J Int Med Res 2020; 48:300060520929170. [PMID: 32851895 PMCID: PMC7457668 DOI: 10.1177/0300060520929170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology-1 (EVH-1) domain (SPRED) family of proteins was discovered in 2001. These Sprouty-related tyrosine kinase-binding proteins negatively regulate a variety of growth factor-induced Ras/ERK signaling pathways. In recent years, SPRED proteins have been found to regulate vital activities such as cell development, movement, and proliferation, and to participate in pathophysiological processes such as tumor metastasis, hematopoietic regulation, and allergic reactions. The findings of these studies have important implications regarding the involvement of SPRED proteins in disease. Early studies of SPRED proteins focused mainly on various tumors, cardiovascular diseases, and organ development. However, in recent years, great progress has been made in elucidating the role of SPRED proteins in neuropsychiatric, inflammatory, endocrine, and ophthalmic diseases. This article provides a review of the experimental studies performed in recent years on the SPRED proteins and their role in the pathogenesis of certain diseases.
Collapse
Affiliation(s)
- Jian Gong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhangren Yan
- Department of Dermatology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Qiao Liu
- Department of Dermatology, The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
109
|
Xing Z, Zhao C, Liu H, Fan Y. Endothelial Progenitor Cell-Derived Extracellular Vesicles: A Novel Candidate for Regenerative Medicine and Disease Treatment. Adv Healthc Mater 2020; 9:e2000255. [PMID: 32378361 DOI: 10.1002/adhm.202000255] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/12/2020] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membranous structures, which can be secreted by most cell types. As a product of paracrine secretion, EVs are considered to be a regulatory mediator for intercellular communication. There are many bioactive cargos in EVs, such as proteins, lipids, and nucleic acids. As the precursor cell of vascular endothelial cells (ECs), endothelial progenitor cells (EPCs) are first discovered in peripheral blood. With the development of studies about the functions of EPCs, an increasing number of researchers focus on EPC-derived EVs (EPC-EVs). EPC-EVs exert key functions for promoting angiogenesis in regenerative medicine and show significant therapeutic effects on a variety of diseases such as circulatory diseases, kidney diseases, diabetes, bone diseases, and tissue/organ damages. This article reviews the current knowledge on the role of EPC-EVs in regenerative medicine and disease treatment, discussing the main challenges and future directions in this field.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
| | - Chen Zhao
- School of Pharmaceutical SciencesTsinghua University Beijing 100084 P. R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
- National Research Center for Rehabilitation Technical Aids Beijing 100176 P. R. China
| |
Collapse
|
110
|
Hamushan M, Cai W, Zhang Y, Lou T, Zhang S, Zhang X, Cheng P, Zhao C, Han P. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis model through activation of the VHL/HIF-1α/VEGF signaling. J Biomater Appl 2020; 35:224-236. [PMID: 32460592 DOI: 10.1177/0885328220928550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Distraction osteogenesis has widespread clinical use in the treatment of large bone defects. Nonetheless, the prolonged consolidation period carries the risk of complications. Magnesium-based materials have been shown to promote bone regeneration in fracture healing both in vitro and in vivo. Here, we investigated whether high-purity magnesium could enhance bone formation in distraction osteogenesis. High-purity magnesium pins were placed into the medullary cavity in the rat distraction osteogenesis model. Results showed that the bone volume/total tissue volume, bone mineral density, and mechanical properties of new callus were significantly higher in the high-purity magnesium group compared to stainless steel and control group (p < 0.01). Histological analyses confirmed improved bone consolidation and vascularization in high-purity magnesium group. Further, polymerase chain reaction-array investigation, Western blot, and immunohistochemical results found that vascular endothelial growth factor and hypoxia inducible factor-1α were highly expressed in the high-purity magnesium group, while Von Hippel–Lindau protein was the opposite (p < 0.01). In conclusion, high-purity magnesium implants have the potential to enhance angiogenesis and bone consolidation in the distraction osteogenesis application, and this process might be via the regulation of Von Hippel–Lindau/hypoxia inducible factor-1α/vascular endothelial growth factor signaling.
Collapse
Affiliation(s)
- Musha Hamushan
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Weijie Cai
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yubo Zhang
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tengfei Lou
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | | | - Xiaonong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Cheng
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Changli Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Han
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
111
|
Jia Y, Qiu S, Xu J, Kang Q, Chai Y. Exosomes Secreted by Young Mesenchymal Stem Cells Promote New Bone Formation During Distraction Osteogenesis in Older Rats. Calcif Tissue Int 2020; 106:509-517. [PMID: 32103287 DOI: 10.1007/s00223-019-00656-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Distraction osteogenesis (DO) is a clinically effective procedure to regenerate large bone defects. However, the treatment duration is undesirably lengthy, especially in elderly patients. Exosomes derived from mesenchymal stem cells (MSC-Exos) could exert the beneficial effects while avoiding the possible complications of stem cell transplantation. This study aimed to evaluate the effects of MSC-Exos on bone regeneration during DO in older rats. Exosomes were isolated from the supernatants of young bone marrow mesenchymal stem cells (BMSCs) through ultra-centrifugation, and characterized using transmission electron microscopy, western blot, and tunable resistive pulse sensing analysis. The effects of MSC-Exos on the proliferation and differentiation of older BMSCs were evaluated using CCK-8 assay, ALP and ARS staining, and qRT-PCR. Unilateral tibial DO model was established on older Sprague-Dawley rats and MSC-Exos or phosphate buffer saline was locally injected into the distraction gaps after distraction weekly. Bone regeneration were evaluated using X-ray, Micro-CT, mechanical test, and histological staining. The MSC-Exos were round or cup-shaped vesicles ranging from 60 to 130 nm in diameter and expressed markers including CD9, CD63, and TSG101. The in vitro results indicated that MSC-Exos could enhance the proliferation and osteogenic differentiation of older BMSCs. Bone regeneration was markedly accelerated in rats treated with MSC-Exos according to the results of X-ray, micro-CT, and histological analysis. The distracted tibias from the MSC-Exos group also demonstrated better mechanical properties. These results suggest that MSC-Exos promote DO-mediated bone regeneration in older rats through enhancing the proliferation and osteogenic capacity of BMSCs.
Collapse
Affiliation(s)
- Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China
| | - Shuo Qiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China.
| |
Collapse
|
112
|
Hu Y, Zhang Y, Ni CY, Chen CY, Rao SS, Yin H, Huang J, Tan YJ, Wang ZX, Cao J, Liu ZZ, Xie PL, Wu B, Luo J, Xie H. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Am J Cancer Res 2020; 10:2293-2308. [PMID: 32089743 PMCID: PMC7019162 DOI: 10.7150/thno.39238] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis and osteoporotic fractures severely compromise quality of life in elderly people and lead to early death. Human umbilical cord mesenchymal stromal cell (MSC)-derived extracellular vesicles (hucMSC-EVs) possess considerable therapeutic effects in tissue repair and regeneration. Thus, in the present study, we investigated the effects of hucMSC-EVs on primary and secondary osteoporosis and explored the underlying mechanisms. Methods: hucMSCs were isolated and cultured. EVs were obtained from the conditioned medium of hucMSCs and determined by using transmission electron microscopy, dynamic light scattering and Western Blot analyses. The effects of hucMSC-EVs on ovariectomy-induced postmenopausal osteoporosis and tail suspension-induced hindlimb disuse osteoporosis in mouse models were assessed by using microcomputed tomography, biomechanical, histochemical and immunohistochemical, as well as histomorphometric analyses. Proteomic analysis was applied between hucMSC-EVs and hucMSCs to screen the candidate proteins that mediate hucMSC-EVs function. The effects of hucMSC-EVs on osteogenic and adipogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs), and osteoclastogenesis of the macrophage cell line RAW264.7 in vitro were determined by using cytochemical staining and quantitative real-time PCR analysis. Subsequently, the roles of the key protein in hucMSC-EVs-induced regulation on BMSCs and RAW264.7 cells were evaluated. Results: hucMSCs were able to differentiate into osteoblasts, adipocytes or chondrocytes and positively expressed CD29, CD44, CD73 and CD90, but negatively expressed CD34 and CD45. The morphological assessment revealed the typical cup- or sphere-shaped morphology of hucMSC-EVs with diameters predominantly ranging from 60 nm to 150 nm and expressed CD9, CD63, CD81 and TSG101. The systemic administration of hucMSC-EVs prevented bone loss and maintained bone strength in osteoporotic mice by enhancing bone formation, reducing marrow fat accumulation and decreasing bone resorption. Proteomic analysis showed that the potently pro-osteogenic protein, CLEC11A (C-type lectin domain family 11, member A) was very highly enriched in hucMSC-EVs. In addition, hucMSC-EVs enhanced the shift from adipogenic to osteogenic differentiation of BMSCs via delivering CLEC11A in vitro. Moreover, CLEC11A was required for the inhibitory effects of hucMSC-EVs on osteoclast formation. Conclusion: Our results suggest that hucMSC-EVs serve as a critical regulator of bone metabolism by transferring CLEC11A and may represent a potential agent for prevention and treatment of osteoporosis.
Collapse
|
113
|
Haider KH, Aramini B. Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 2020; 11:23. [PMID: 31918755 PMCID: PMC6953131 DOI: 10.1186/s13287-019-1548-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have successfully progressed to phase III clinical trials successive to an intensive in vitro and pre-clinical assessment in experimental animal models of ischemic myocardial injury. With scanty evidence regarding their cardiogenic differentiation in the recipient patients' hearts post-engraftment, paracrine secretion of bioactive molecules is being accepted as the most probable underlying mechanism to interpret the beneficial effects of cell therapy. Secretion of small non-coding microRNA (miR) constitutes an integral part of the paracrine activity of stem cells, and there is emerging interest in miRs' delivery to the heart as part of cell-free therapy to exploit their integral role in various cellular processes. MSCs also release membrane vesicles of diverse sizes loaded with a wide array of miRs as part of their paracrine secretions primarily for intercellular communication and to shuttle genetic material. Exosomes can also be loaded with miRs of interest for delivery to the organs of interest including the heart, and hence, exosome-based cell-free therapy is being assessed for cell-free therapy as an alternative to cell-based therapy. This review of literature provides an update on cell-free therapy with primary focus on exosomes derived from BM-derived MSCs for myocardial repair.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Sulaiman Alrajhi University, Al-Qaseem, Kingdom of Saudi Arabia
- Department of Basic Sciences, Sulaiman Alrajhi University, PO Box 777, Al Bukairiyah, 51941 Kingdom of Saudi Arabia
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
114
|
Interests of Exosomes in Bone and Periodontal Regeneration: A Systematic Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1341:67-87. [PMID: 33159304 DOI: 10.1007/5584_2020_593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Periodontitis is an infectious inflammatory disease characterized by clinical attachment loss and tooth supporting tissue destruction. As exosomes demonstrated pro-regenerative ability, their use in periodontal treatment has been suggested. The aim of this systematic review is to gather and summarize the most recent data regarding exosomes to determine their potential impact in bone and periodontal regeneration. Electronic databases (Pubmed, Web of Science) were searched up to February 2020. Studies assessing the impact of exosomes administration in experimental bone and periodontal defects have been identified according to PRISMA guidelines. Among the 183 identified articles, 16 met the inclusion criteria and were included in this systematic review. Experimental bone defects were mainly surgically induced with a dental bur or distraction tools. All studies considered bone healing after exosomes administration as the primary outcome. Results showed that mesenchymal stem cells derived exosomes administration promoted bone healing and neovascularization. Nevertheless, a dose-effect relationship was observed. Exosomes administration appears to promote significantly the bone healing and periodontal regeneration. However, only a limited number of studies have been carried out so far and the optimized protocols in this context need to be evaluated.
Collapse
|
115
|
Alcaraz MJ, Compañ A, Guillén MI. Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases. Cells 2019; 9:cells9010098. [PMID: 31906087 PMCID: PMC7017209 DOI: 10.3390/cells9010098] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising therapy for musculoskeletal diseases. There is compelling evidence indicating that MSC effects are mainly mediated by paracrine mechanisms and in particular by the secretion of extracellular vesicles (EVs). Many studies have thus suggested that EVs may be an alternative to cell therapy with MSCs in tissue repair. In this review, we summarize the current understanding of MSC EVs actions in preclinical studies of (1) immune regulation and rheumatoid arthritis, (2) bone repair and bone diseases, (3) cartilage repair and osteoarthritis, (4) intervertebral disk degeneration and (5) skeletal muscle and tendon repair. We also discuss the mechanisms underlying these actions and the perspectives of MSC EVs-based strategies for future treatments of musculoskeletal disorders.
Collapse
Affiliation(s)
- María José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
- Correspondence:
| | - Alvaro Compañ
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
| | - María Isabel Guillén
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
- Department of Pharmacy, Cardenal Herrera-CEU University, Ed. Ciencias de la Salud, 46115 Alfara, Valencia, Spain
| |
Collapse
|
116
|
Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol 2019; 7:352. [PMID: 31828066 PMCID: PMC6890555 DOI: 10.3389/fbioe.2019.00352] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Effective regeneration of bone defects often presents significant challenges, particularly in patients with decreased tissue regeneration capacity due to extensive trauma, disease, and/or advanced age. A number of studies have focused on enhancing bone regeneration by applying mesenchymal stromal cells (MSCs) or MSC-based bone tissue engineering strategies. However, translation of these approaches from basic research findings to clinical use has been hampered by the limited understanding of MSC therapeutic actions and complexities, as well as costs related to the manufacturing, regulatory approval, and clinical use of living cells and engineered tissues. More recently, a shift from the view of MSCs directly contributing to tissue regeneration toward appreciating MSCs as "cell factories" that secrete a variety of bioactive molecules and extracellular vesicles with trophic and immunomodulatory activities has steered research into new MSC-based, "cell-free" therapeutic modalities. The current review recapitulates recent developments, challenges, and future perspectives of these various MSC-based bone tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Spinal Cord Injury & Tissue Regeneration Center Salzburg, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
117
|
Wang X, Qian C, Yang Y, Liu MY, Ke Y, Qian ZM. Phosphorylated Rasal2 facilitates breast cancer progression. EBioMedicine 2019; 50:144-155. [PMID: 31759919 PMCID: PMC6921363 DOI: 10.1016/j.ebiom.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Rasal2 has diametric effects on progression of oestrogen receptor-positive (ER+) and -negative (ER-) breast cancers. The relevant causes are unknown. It is also unknown whether the effects of Rasal2 are mediated by an exosome-transport process. METHODS Exosomes were purified from breast cancer cells and identified by transmission electron microscopy and flow cytometry analysis. In vivo and in vitro experiments were conducted to investigate the role of Rasal2 in exosome-mediated breast cancer progression. Western blot analysis was performed to detect Rasal2 and p-Rasal2 (phosphorylated Rasal2) expression in ER+/ER- breast cancer cells and in exosomes, cancer tissues and blood of patients with ER+ or ER- breast cancer. FINDINGS Phosphorylation of Rasal2 at Serine 237 promoted tumour growth in both ER+ and ER- tumour cells and tissues. The functions of both p-Rasal2 and non-p-Rasal2 (non-phosphorylated-Rasal2) in the modulation of breast cancer progression are exosome-mediated. p-Rasal2 expression in ER+ breast cancer cells and exosomes, cancer tissues and blood was significantly lower than in ER- tumour cells and patients. INTERPRETATION p-Rasal2 facilitates tumour progression in both ER+ and ER- breast cancers. The ratio of p-Rasal2/non-p-Rasal2 in ER+ and ER- breast cancers is one of the factors deciding the role of Rasal2 (or total Rasal2) as a suppressor in ER+ breast cancers or as a promoter in ER- breast cancers. Targeting the phosphorylation of Rasal2 machinery may therefore be useful as a therapy to restrain breast cancer progression by reducing p-Rasal2/non-p-Rasal2 ratio, especially in ER- breast cancers. FUND: NSFC and Hong Kong Research Grants Council.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pharmacology and Biochemistry, Fudan University School of Pharmacy, 826 Zhangheng Road, Pu Dong, Shanghai 201203, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yinlong Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Meng-Yue Liu
- Institute of Translational & Precision Medicine, Nantong University, Nantong, JS 226019, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhong-Ming Qian
- Department of Pharmacology and Biochemistry, Fudan University School of Pharmacy, 826 Zhangheng Road, Pu Dong, Shanghai 201203, China; Institute of Translational & Precision Medicine, Nantong University, Nantong, JS 226019, China.
| |
Collapse
|
118
|
Wang C, Song W, Chen B, Liu X, He Y. Exosomes Isolated From Adipose-Derived Stem Cells: A New Cell-Free Approach to Prevent the Muscle Degeneration Associated With Torn Rotator Cuffs. Am J Sports Med 2019; 47:3247-3255. [PMID: 31560856 DOI: 10.1177/0363546519876323] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fatty infiltration, inflammation, and apoptosis are common degenerative changes in patients with chronic rotator cuff tears that can lead to muscle atrophy and can even result in massive irreparable rotator cuff tears. Some data have demonstrated the proregenerative, anti-inflammatory, and anti-apoptotic properties of stem cell-derived exosomes in some orthopaedic disorders, but their effect on torn rotator cuff muscles has never been investigated. PURPOSE To study the effect of exosomes isolated from human adipose-derived stem cells (ASCs-Exos) on muscle degeneration, regeneration, and biomechanical properties in a rat model of a massive rotator cuff tear (MRCT). STUDY DESIGN Controlled laboratory study. METHODS A bilateral supraspinatus and infraspinatus tenotomy was performed on rats to create an MRCT model. Forty-two rats were randomly assigned to 3 groups: the sham surgery group, the saline group (lesions treated with a saline injection), and the ASCs-Exos group (lesions treated with an ASCs-Exos injection). Wet muscle weight, fatty infiltration, inflammation, vascularization, regeneration, and biomechanical properties were evaluated at 8 and 16 weeks after surgery. RESULTS The results revealed that the ASCs-Exos treatment could prevent the atrophy, fatty infiltration, inflammation, and vascularization of muscles in the MRCT model (P < .001). Additionally, the myofiber regeneration and biomechanical properties of ASCs-Exos-treated rotator cuffs were significantly elevated compared with those in the saline-treated group (P < .001). CONCLUSION This study demonstrates that ASCs-Exos can effectively decrease atrophy and degeneration and improve muscle regeneration and biomechanical properties in torn rotator cuff muscles. CLINICAL RELEVANCE ASCs-Exos can be used as a new cell-free approach to prevent the muscle degeneration associated with torn rotator cuffs and may be helpful to repair torn rotator cuffs. Nevertheless, further work needs to be done in a large animal model owing to the inherent regenerative potential possessed by rodents.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bi Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xudong Liu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, Shanghai, China
| |
Collapse
|
119
|
Pourakbari R, Khodadadi M, Aghebati-Maleki A, Aghebati-Maleki L, Yousefi M. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis. Life Sci 2019; 236:116861. [PMID: 31513815 DOI: 10.1016/j.lfs.2019.116861] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is a prevalent worldwide joint disease, which demonstrates a remarkable adverse effect on the patients' life modality. Medicinal agents, exclusively nonsteroidal anti-inflammatory drugs (NSAIDs), have been routinely applied in the clinic. But, their effects are restricted to pain control with insignificant effects on cartilage renovation, which would finally lead to cartilage destruction. In the field of regenerative medicine, many researchers have tried to use stem cells to repair tissues and other human organs. However, in recent years, with the discovery of extracellular microvesicles, especially exosomes, researchers have been able to offer more exciting alternatives on the subject. Exosomes and microvesicles are derived from different types of bone cells such as mesenchymal stem cells, osteoblasts, and osteoclasts. They are also recognized to play substantial roles in bone remodeling processes including osteogenesis, osteoclastogenesis, and angiogenesis. Specifically, exosomes derived from a mesenchymal stem cell have shown a great potential for the desired purpose. Exosomal products include miRNA, DNA, proteins, and other factors. At present, if it is possible to extract exosomes from various stem cells effectively and load certain products or drugs into them, they can be used in diseases, such as rheumatoid arthritis, osteoarthritis, bone fractures, and other diseases. Of course, to achieve proper clinical use, advances have to be made to establish a promising regenerative ability for microvesicles for treatment purposes in the orthopedic disorders. In this review, we describe the exosomes biogenesis and bone cell derived exosomes in the regenerate process of bone and cartilage remodeling.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
120
|
The Role of Exosomes in Bone Remodeling: Implications for Bone Physiology and Disease. DISEASE MARKERS 2019; 2019:9417914. [PMID: 31485281 PMCID: PMC6710799 DOI: 10.1155/2019/9417914] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
Bone remodeling represents a physiological phenomenon of continuous bone tissue renewal that requires fine orchestration of multiple cell types, which is critical for the understanding of bone disease but not yet clarified in precise detail. Exosomes, which are cell-secreted nanovesicles drawing increasing attention for their broad biosignaling functions, can shed new light on how multiple heterogeneous cells communicate for the purpose of bone remodeling. In the healthy bone, exosomes transmit signals favoring both bone synthesis and resorption, regulating the differentiation, recruitment, and activity of most cell types involved in bone remodeling and even assuming an active role in extracellular matrix mineralization. Additionally, in the ailing bone, they actively participate in pathogenic processes constituting also potential therapeutic agents and drug vectors. The present review summarizes the current knowledge on bone exosomes and bone remodeling in health and disease.
Collapse
|
121
|
The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int J Mol Sci 2019; 20:ijms20030705. [PMID: 30736365 PMCID: PMC6387017 DOI: 10.3390/ijms20030705] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/15/2022] Open
Abstract
The superfamily of tumor necrosis factor (TNF) receptors includes osteoprotegerin (OPG) and its ligands, which are receptor activators of nuclear factor kappa-B ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). The OPG/RANKL/RANK system plays an active role in pathological angiogenesis and inflammation as well as cell survival. It has been demonstrated that there is crosstalk between endothelial cells and osteoblasts during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. This OPG/RANKL/RANK/TRAIL system acts on specific cell surface receptors, which are then able to transmit their signals to other intracellular components and modify gene expression. Cytokine production and activation of their receptors induce mechanisms to recruit monocytes and neutrophils as well as endothelial cells. Data support the role of an increased OPG/RANKL ratio as a possible marker of progression of endothelial dysfunction in metabolic disorders in relationship with inflammatory marker levels. We review the role of the OPG/RANKL/RANK triad in vascular function as well as molecular mechanisms related to the etiology of vascular diseases. The potential therapeutic strategies may be very promising in the future.
Collapse
|
122
|
Shan SK, Lin X, Li F, Xu F, Zhong JY, Guo B, Wang Y, Zheng MH, Wu F, Yuan LQ. Exosomes and Bone Disease. Curr Pharm Des 2019; 25:4536-4549. [PMID: 31775592 DOI: 10.2174/1381612825666191127114054] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Exosomes, which mediate cell-to-cell communications and provide a novel insight into information exchange, have drawn increasing attention in recent years. The homeostasis of bone metabolism is critical for bone health. The most common bone diseases such as osteoporosis, osteoarthritis and bone fractures have apparent correlations with exosomes. Accumulating evidence has suggested the potential regenerative capacities of stem cell-derived exosomes. In this review, we summarise the pathophysiological mechanism, clinical picture and therapeutic effects of exosomes in bone metabolism. We introduce the advantages and challenges in the application of exosomes. Although the exact mechanisms remain unclear, miRNAs seem to play major roles in the exosome.
Collapse
Affiliation(s)
- Su-Kang Shan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Lin
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Fuxingzi Li
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Xu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Yu Zhong
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Guo
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Wang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Hui Zheng
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Wu
- Department of Pathology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
123
|
Dashnyam K, Buitrago JO, Bold T, Mandakhbayar N, Perez RA, Knowles JC, Lee JH, Kim HW. Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomater Sci 2019; 7:5221-5231. [DOI: 10.1039/c9bm01103j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The silicate-shelled alginate hydrogel fiber scaffold is highly effective for promoting ion-induced angiogenesis and bone bioactivity, ultimately useful for the repair and regeneration of hard tissues.
Collapse
Affiliation(s)
- Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine
- Dankook University
| | - Jennifer O. Buitrago
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine
- Dankook University
| | - Tsendmaa Bold
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine
- Dankook University
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine
- Dankook University
| | - Roman A. Perez
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine
- Dankook University
| | - Jonathan C. Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre
- Dankook University
- Republic of Korea
- Division of Biomaterials and Tissue Engineering
- Eastman Dental Institute
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine
- Dankook University
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine
- Dankook University
| |
Collapse
|