101
|
Zhao S, Zhang L, Yang C, Li Z, Rong S. Procyanidins and Alzheimer’s Disease. Mol Neurobiol 2019; 56:5556-5567. [DOI: 10.1007/s12035-019-1469-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
102
|
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15:73-88. [DOI: 10.1038/s41582-018-0116-6] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
103
|
Morsy A, Trippier PC. Current and Emerging Pharmacological Targets for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2019; 72:S145-S176. [PMID: 31594236 DOI: 10.3233/jad-190744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
No cure or disease-modifying therapy for Alzheimer's disease (AD) has yet been realized. However, a multitude of pharmacological targets have been identified for possible engagement to enable drug discovery efforts for AD. Herein, we review these targets comprised around three main therapeutic strategies. First is an approach that targets the main pathological hallmarks of AD: amyloid-β (Aβ) oligomers and hyperphosphorylated tau tangles which primarily focuses on reducing formation and aggregation, and/or inducing their clearance. Second is a strategy that modulates neurotransmitter signaling. Comprising this strategy are the cholinesterase inhibitors and N-methyl-D-aspartate receptor blockade treatments that are clinically approved for the symptomatic treatment of AD. Additional targets that aim to stabilize neuron signaling through modulation of neurotransmitters and their receptors are also discussed. Finally, the third approach comprises a collection of 'sensitive targets' that indirectly influence Aβ or tau accumulation. These targets are proteins that upon Aβ accumulation in the brain or direct Aβ-target interaction, a modification in the target's function is induced. The process occurs early in disease progression, ultimately causing neuronal dysfunction. This strategy aims to restore normal target function to alleviate Aβ-induced toxicity in neurons. Overall, we generally limit our analysis to targets that have emerged in the last decade and targets that have been validated using small molecules in in vitro and/or in vivo models. This review is not an exhaustive list of all possible targets for AD but serves to highlight the most promising and critical targets suitable for small molecule drug intervention.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
104
|
|
105
|
Cummings J. The Role of Biomarkers in Alzheimer's Disease Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:29-61. [PMID: 30747416 DOI: 10.1007/978-3-030-05542-4_2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomarkers have a key role in Alzheimer's disease (AD) drug development. Biomarkers can assist in diagnosis, demonstrate target engagement, support disease modification, and monitor for safety. The amyloid (A), tau (T), neurodegeneration (N) Research Framework emphasizes brain imaging and CSF measures relevant to disease diagnosis and staging and can be applied to drug development and clinical trials. Demonstration of target engagement in Phase 2 is critical before advancing a treatment candidate to Phase 3. Trials with biomarker outcomes are shorter and smaller than those required to show clinical benefit and are important to understanding the biological impact of an agent and inform go/no-go decisions. Companion diagnostics are required for safe and effective use of treatments and may emerge in AD drug development programs. Complementary biomarkers inform the use of therapies but are not mandatory for use. Biomarkers promise to de-risk AD drug development, attract sponsors to AD research, and accelerate getting new drugs to those with or at risk for AD.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
| |
Collapse
|
106
|
Okuya M, Matsunaga S, Ikuta T, Kishi T, Iwata N. Efficacy, Acceptability, and Safety of Intravenous Immunoglobulin Administration for Mild-To-Moderate Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2018; 66:1379-1387. [DOI: 10.3233/jad-180888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Makoto Okuya
- Department of Psychiatry, Fujita Health University School of Medicine, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Shinji Matsunaga
- Department of Psychiatry, Fujita Health University School of Medicine, Kutsukake-cho, Toyoake, Aichi, Japan
- Department of Geriatrics and Cognitive Disorders, Fujita Health University School of Medicine, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, University, MS, USA
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Kutsukake-cho, Toyoake, Aichi, Japan
| |
Collapse
|
107
|
Fernández-Eulate G, Alberro A, Muñoz-Culla M, Zulaica M, Zufiría M, Barandiarán M, Etxeberria I, Yanguas JJ, Gallardo MM, Soberón N, Lacosta AM, Pérez-Grijalba V, Canudas J, Fandos N, Pesini P, Sarasa M, Indakoetxea B, Moreno F, Vergara I, Otaegui D, Blasco M, López de Munain A. Blood Markers in Healthy-Aged Nonagenarians: A Combination of High Telomere Length and Low Amyloidβ Are Strongly Associated With Healthy Aging in the Oldest Old. Front Aging Neurosci 2018; 10:380. [PMID: 30546303 PMCID: PMC6280560 DOI: 10.3389/fnagi.2018.00380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Many factors may converge in healthy aging in the oldest old, but their association and predictive power on healthy or functionally impaired aging has yet to be demonstrated. By detecting healthy aging and in turn, poor aging, we could take action to prevent chronic diseases associated with age. We conducted a pilot study comparing results of a set of markers (peripheral blood mononuclear cell or PBMC telomere length, circulating Aβ peptides, anti-Aβ antibodies, and ApoE status) previously associated with poor aging or cognitive deterioration, and their combinations, in a cohort of “neurologically healthy” (both motor and cognitive) nonagenarians (n = 20) and functionally impaired, institutionalized nonagenarians (n = 38) recruited between 2014 and 2015. We recruited 58 nonagenarians (41 women, 70.7%; mean age: 92.37 years in the neurologically healthy group vs. 94.13 years in the functionally impaired group). Healthy nonagenarians had significantly higher mean PBMC telomere lengths (mean = 7, p = 0.001), this being inversely correlated with functional impairment, and lower circulating Aβ40 (total in plasma fraction or TP and free in plasma fraction or FP), Aβ42 (TP and FP) and Aβ17 (FP) levels (FP40 131.35, p = 0.004; TP40 299.10, p = 0.007; FP42 6.29, p = 0.009; TP42 22.53, p = 0.019; FP17 1.32 p = 0.001; TP17 4.47, p = 0.3), after adjusting by age. Although healthy nonagenarians had higher anti-Aβ40 antibody levels (net adsorbed signal or NAS ± SD: 0.211 ± 0.107), the number of participants that pass the threshold (NAS > 3) to be considered as positive did not show such a strong association. There was no association with ApoE status. Additionally, we propose a “Composite Neurologically Healthy Aging Score” combining TP40 and mean PBMC telomere length, the strongest correlation of measured biomarkers with neurologically healthy status in nonagenarians (AUC = 0.904).
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain.,Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ainhoa Alberro
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Maider Muñoz-Culla
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Miren Zulaica
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Mónica Zufiría
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Myriam Barandiarán
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain.,Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Igone Etxeberria
- Department of Personality, Assessment, and Psychological Treatments, Faculty of Psychology, University of the Basque UPV/EHU, San Sebastián, Spain
| | | | - Maria Mercedes Gallardo
- Telomeres & Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Nora Soberón
- Telomeres & Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | | | | | | | | | | | | | - Begoña Indakoetxea
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain
| | - Fermin Moreno
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain
| | - Itziar Vergara
- Primary Health Area, Biodonostia Institute, San Sebastián, Spain.,Health Services Research on Chronic Patients Network, REDISSEC, Bilbao, Spain
| | - David Otaegui
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Maria Blasco
- Telomeres & Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Adolfo López de Munain
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain.,Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain.,Department of Neurosciences, University of the Basque Country, San Sebastián, Spain
| |
Collapse
|
108
|
Viña J, Sanz-Ros J. Alzheimer's disease: Only prevention makes sense. Eur J Clin Invest 2018; 48:e13005. [PMID: 30028503 DOI: 10.1111/eci.13005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease therapeutics is one of the most important endeavours in today's clinical investigation. Over more than 30 years of research, no disease-modifying treatment has been approved by either the FDA or the EMA to treat Alzheimer's disease. Recently, the evidence of pathological alterations in the brain tissue has been gathered showing that the signs of brain damage appear more than 20 years before the onset of Alzheimer's dementia. The major aim of this review is to underpin the idea that in Alzheimer's therapeutics, only prevention makes sense. It is difficult to visualise that would-be patients may be treated with endovenous administration of antibodies for several years to delay the onset of dementia. Rather, changes in lifestyle that should be specific, stratified and personalised are a likely alternative to delay the transition from asymptomatic Alzheimer's to minimal cognitive impairment and from there to dementia. These efforts are of the utmost importance. If we could delay the onset of full-blown dementia by 5 years, the number of demented patients would be almost halved. Thus, emphasis on preventive measures that can be implemented for decades must be supported. This approach, where even mild changes in cognition are of the greatest importance, cannot be underestimated in terms of both the individual and society's viewpoints.
Collapse
Affiliation(s)
- José Viña
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Health Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Madrid, Spain
| | - Jorge Sanz-Ros
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.,INCLIVA Health Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Madrid, Spain
| |
Collapse
|
109
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
110
|
Kim BY, Lim HS, Kim Y, Kim YJ, Koo I, Jeong SJ. Evaluation of Animal Models by Comparison with Human Late-Onset Alzheimer's Disease. Mol Neurobiol 2018; 55:9234-9250. [PMID: 29656362 PMCID: PMC6208860 DOI: 10.1007/s12035-018-1036-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/23/2018] [Indexed: 01/21/2023]
Abstract
Despite many efforts to alleviate the pathological conditions of Alzheimer's disease (AD), effective therapeutic drugs have not been developed, mainly because of the lack of molecular information about AD and animal models. We observed the reciprocal regulation of AD-associated genes (AD genes) and their related functions. Upregulated AD genes were positioned in central regions in the protein-protein interaction network and were involved in inflammation and DNA repair pathways. Downregulated AD genes positioned in the periphery of the network were associated with metabolic pathways. Using these features of AD genes, we found that 5×FAD, amyloid β-injected mice, and rats in the initial phases after bilateral common carotid artery occlusion (BCCAO) exhibited patterns that were most similar to those of AD. In contrast, using differentially expressed genes from animal models, we observed that 3×Tg and animals in late phases of BCCAO were positioned close to AD genes.
Collapse
Affiliation(s)
- Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Hye-Sun Lim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Yoonju Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Yu Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.,College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Imhoi Koo
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Soo-Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.,Korean Medicine of Life Science, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
111
|
Medina M. An Overview on the Clinical Development of Tau-Based Therapeutics. Int J Mol Sci 2018; 19:ijms19041160. [PMID: 29641484 PMCID: PMC5979300 DOI: 10.3390/ijms19041160] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/25/2023] Open
Abstract
Tauopathies such as Alzheimer's disease (AD), frontotemporal lobar degeneration, or progressive supranuclear palsy constitute a group of brain disorders defined by neurodegeneration and the presence of tau aggregates in the affected brains regions. Tau is a microtubule-associated protein that accumulates in the cytosol under pathological conditions, steering the formation of aggregates or inclusions thought to be involved in the degeneration and neuronal death associated with these diseases. Despite a substantial and unmet medical need for novel, more effective disease-modifying therapies for the treatment of AD and tauopathies, the last couple of decades have seen numerous drug development undertakings primarily focused on β-amyloid, with disappointing results to date. On the other hand, tau-focused approaches have not received much attention until recently, notwithstanding that the presence of extensive tau pathology is fundamental for the disease and tau pathology shows a better correlation with impaired cognitive function than with amyloid pathology in AD patients. The last few years have brought us advances in our comprehension of tau biological functions beyond its well-established role as a microtubule-associated protein, unveiling novel physiological tau functions that may also be involved in pathogenesis and thus provide novel targets for therapeutic intervention. This review describes several emerging, encouraging therapeutic approaches aimed at tackling the underlying causes of tau pathology in AD and other tauopathies that have recently reached the clinical development stage.
Collapse
Affiliation(s)
- Miguel Medina
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Carlos III Institute of Health, 28031 Madrid, Spain.
| |
Collapse
|
112
|
Khoury R, Patel K, Gold J, Hinds S, Grossberg GT. Recent Progress in the Pharmacotherapy of Alzheimer's Disease. Drugs Aging 2018; 34:811-820. [PMID: 29116600 DOI: 10.1007/s40266-017-0499-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is the most common major neurocognitive disorder with substantial social and economic impacts. This article is an update on current pharmacotherapy, advancements in biomarker use, and drugs in the pipeline for this disease. To date, no new drug has qualified to be added to the current therapeutic arsenal comprising cholinesterase inhibitors and the NMDA receptor antagonist memantine. Drugs in the pipeline include symptomatic therapies that are neurotransmitter-based, but mostly disease-modifying therapies. The latter have yielded disappointing results by focusing mainly on the two pathophysiological hallmarks of Alzheimer's disease: Aβ amyloid deposits and tau protein aggregates forming neurofibrillary tangles. These unsuccessful trials may have resulted from studying these drugs 'too late' relative to Alzheimer's disease onset, in addition to focusing only on the amyloid cascade. In fact, Alzheimer's disease is a complex multifactorial disease. Combining different biomarkers might enhance our ability to identify those patients most at risk of developing the disease, and better predict their conversion rates. Furthermore, adopting an integrative treatment approach by targeting additional pathophysiological pathways in Alzheimer's disease such as inflammation and oxidative stress could be the key to better outcomes in Alzheimer's disease pharmacotherapy research.
Collapse
Affiliation(s)
- Rita Khoury
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA.
| | - Kush Patel
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| | - Jake Gold
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| | - Stephanie Hinds
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| | - George T Grossberg
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| |
Collapse
|
113
|
Bachurin SO, Gavrilova SI, Samsonova A, Barreto GE, Aliev G. Mild cognitive impairment due to Alzheimer disease: Contemporary approaches to diagnostics and pharmacological intervention. Pharmacol Res 2018; 129:216-226. [DOI: 10.1016/j.phrs.2017.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 01/16/2023]
|
114
|
Aisen PS. Author response: A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 2018; 90:145. [DOI: 10.1212/wnl.0000000000004821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
115
|
Piazza F. Reader response: A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 2018; 90:144-145. [DOI: 10.1212/wnl.0000000000004824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
116
|
Loeffler DA, Klaver AC. Polyvalent immunoglobulin binding is an obstacle to accurate measurement of specific antibodies with ELISA despite inclusion of blocking agents. Int Immunopharmacol 2017; 52:227-229. [PMID: 28946116 DOI: 10.1016/j.intimp.2017.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Specific antibody concentrations are frequently measured in serum (and plasma and intravenous immunoglobulin) samples by enzyme-linked immunosorbent assay (ELISA). The standard negative control involves incubation of buffer alone on antigen-coated wells. The immunoreactivity that develops in antigen-coated wells in which diluted serum has been incubated is assumed to represent specific antibody binding. This approach can result in marked overestimation of specific antibody levels, because serum contains specific polyvalent antibodies which bind, primarily with low affinity, to multiple antigens (including those on ELISA plates) despite the use of blocking agents. Non-denaturing purification of serum IgG, followed by assessment of the antigen binding or antigen-binding affinity of this purified IgG, can reduce but not eliminate the problem of polyvalent antibody binding in indirect ELISAs. Alternatively, polyvalent antibody binding can be estimated by incubating a diluted serum sample on wells coated with an irrelevant protein (such as bovine serum albumin or a scrambled peptide sequence) or buffer alone, then subtracting this reactivity from the sample's binding to wells coated with the antigen of interest. Polyvalent binding of immunoglobulins must be accounted for in order to obtain accurate ELISA measurements of serum, plasma, or intravenous immunoglobulin antibodies.
Collapse
Affiliation(s)
- David A Loeffler
- Department of Neurology, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak, MI, USA.
| | - Andrea C Klaver
- Department of Neurology, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
117
|
Abstract
Alzheimer's disease (AD) is a major form of senile dementia, characterized by progressive memory and neuronal loss combined with cognitive impairment. AD is the most common neurodegenerative disease worldwide, affecting one-fifth of those aged over 85 years. Recent therapeutic approaches have been strongly influenced by five neuropathological hallmarks of AD: acetylcholine deficiency, glutamate excitotoxicity, extracellular deposition of amyloid-β (Aβ plague), formation of intraneuronal neurofibrillary tangles (NTFs), and neuroinflammation. The lowered concentrations of acetylcholine (ACh) in AD result in a progressive and significant loss of cognitive and behavioral function. Current AD medications, memantine and acetylcholinesterase inhibitors (AChEIs) alleviate some of these symptoms by enhancing cholinergic signaling, but they are not curative. Since 2003, no new drugs have been approved for the treatment of AD. This article focuses on the current research in clinical trials targeting the neuropathological findings of AD including acetylcholine response, glutamate transmission, Aβ clearance, tau protein deposits, and neuroinflammation. These investigations include acetylcholinesterase inhibitors, agonists and antagonists of neurotransmitter receptors, β-secretase (BACE) or γ-secretase inhibitors, vaccines or antibodies targeting Aβ clearance or tau protein, as well as anti-inflammation compounds. Ongoing Phase III clinical trials via passive immunotherapy against Aβ peptides (crenezumab, gantenerumab, and aducanumab) seem to be promising. Using small molecules blocking 5-HT6 serotonin receptor (intepirdine), inhibiting BACE activity (E2609, AZD3293, and verubecestat), or reducing tau aggregation (TRx0237) are also currently in Phase III clinical trials. We here systemically review the findings from recent clinical trials to provide a comprehensive review of novel therapeutic compounds in the treatment and prevention of AD.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan
- Division of Colorectal Surgery, China Medical University Hospital, Taichung, 40447 Taiwan
| | - Wen-Mei Fu
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051 Taiwan
| |
Collapse
|
118
|
Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y. Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs 2017; 31:1057-1082. [PMID: 29260466 PMCID: PMC5747579 DOI: 10.1007/s40263-017-0483-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Collapse
Affiliation(s)
- A. Ardura-Fabregat
- grid.5963.9Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - E. W. G. M. Boddeke
- 0000 0004 0407 1981grid.4830.fDepartment of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A. Boza-Serrano
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - S. Brioschi
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - S. Castro-Gomez
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Ceyzériat
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Dansokho
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - T. Dierkes
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dBiomedical Centre, Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - G. Gelders
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Michael T. Heneka
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - L. Hoeijmakers
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - L. Iaccarino
- grid.15496.3fVita-Salute San Raffaele University, Milan, Italy ,0000000417581884grid.18887.3eIn Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S. Jahnert
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Landreth
- 0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - N. Lonnemann
- 0000 0001 1090 0254grid.6738.aDepartment of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - R. M. McManus
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Paulus
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - K. Reemst
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J. M. Sanchez-Caro
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Tiberi
- grid.6093.cBio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - A. Van der Perren
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - A. Vautheny
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Venegas
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - A. Webers
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - P. Weydt
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - T. S. Wijasa
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - X. Xiang
- 0000 0004 1936 973Xgrid.5252.0Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany ,0000 0004 1936 973Xgrid.5252.0Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, 82152 Munich, Germany
| | - Y. Yang
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| |
Collapse
|