101
|
Akiyama R, Kawakami H, Taketo MM, Evans SM, Wada N, Petryk A, Kawakami Y. Distinct populations within Isl1 lineages contribute to appendicular and facial skeletogenesis through the β-catenin pathway. Dev Biol 2014; 387:37-48. [PMID: 24424161 DOI: 10.1016/j.ydbio.2014.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
Isl1 expression marks progenitor populations in developing embryos. In this study, we investigated the contribution of Isl1-expressing cells that utilize the β-catenin pathway to skeletal development. Inactivation of β-catenin in Isl1-expressing cells caused agenesis of the hindlimb skeleton and absence of the lower jaw (agnathia). In the hindlimb, Isl1-lineages broadly contributed to the mesenchyme; however, deletion of β-catenin in the Isl1-lineage caused cell death only in a discrete posterior domain of nascent hindlimb bud mesenchyme. We found that the loss of posterior mesenchyme, which gives rise to Shh-expressing posterior organizer tissue, caused loss of posterior gene expression and failure to expand chondrogenic precursor cells, leading to severe truncation of the hindlimb. In facial tissues, Isl1-expressing cells broadly contributed to facial epithelium. We found reduced nuclear β-catenin accumulation and loss of Fgf8 expression in mandibular epithelium of Isl1(-/-) embryos. Inactivating β-catenin in Isl1-expressing epithelium caused both loss of epithelial Fgf8 expression and death of mesenchymal cells in the mandibular arch without affecting epithelial proliferation and survival. These results suggest a Isl1→β-catenin→Fgf8 pathway that regulates mesenchymal survival and development of the lower jaw in the mandibular epithelium. By contrast, activating β-catenin signaling in Isl1-lineages caused activation of Fgf8 broadly in facial epithelium. Our results provide evidence that, despite its broad contribution to hindlimb mesenchyme and facial epithelium, the Isl1-β-catenin pathway regulates skeletal development of the hindlimb and lower jaw through discrete populations of cells that give rise to Shh-expressing posterior hindlimb mesenchyme and Fgf8-expressing mandibular epithelium.
Collapse
Affiliation(s)
- Ryutaro Akiyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, 2001 Sixth Street SE, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, 2001 Sixth Street SE, Minneapolis, MN 55455, USA
| | - M Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8051, Japan
| | - Sylvia M Evans
- Skaggs School of Pharmacy, and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Naoyuki Wada
- Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Anna Petryk
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55455, USA; Developmental Biology Center, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, 2001 Sixth Street SE, Minneapolis, MN 55455, USA; Developmental Biology Center, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
102
|
Peng S, Tan J, Hu S, Zhou H, Guo J, Jin L, Tang K. Detecting genetic association of common human facial morphological variation using high density 3D image registration. PLoS Comput Biol 2013; 9:e1003375. [PMID: 24339768 PMCID: PMC3854494 DOI: 10.1371/journal.pcbi.1003375] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022] Open
Abstract
Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ∼30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the IRF6 gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation. Heritability of human facial appearance is an intriguing question to the general public and researchers. Although it is known that some facial features are highly heritable, the exact genetic basis is unknown. Previous studies used simple linear measurements such as landmark distances, to evaluate the facial shape variation. Such approaches, although easy to carry out, may lack statistical power and miss complex morphological changes. In this study, we utilized a new 3D face registration method that enables subtle differences to be detected at high resolution 3D images. Based on this, we tried to test and characterize the associations of 10 candidate genetic variants to common facial morphological variations. Different types of phenotype data were extracted and compared in the association tests. Our results show that geometry based data performed better than simple distance based data. Furthermore, high density geometric data outstood the others in capturing small shape changes and modeling the 3D face visualization. Interestingly, a genetic variant from IRF6 gene, which is also a well-known risk factor of non-syndrome cleft lip, was found to strongly predispose the mouth shape in Han Chinese females.
Collapse
Affiliation(s)
- Shouneng Peng
- Human Functional Genetic Variation Group, CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sile Hu
- Human Functional Genetic Variation Group, CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China
| | - Hang Zhou
- Human Functional Genetic Variation Group, CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China
| | - Jing Guo
- Human Functional Genetic Variation Group, CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China
| | - Li Jin
- Human Functional Genetic Variation Group, CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Kun Tang
- Human Functional Genetic Variation Group, CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China
- * E-mail:
| |
Collapse
|
103
|
Abzhanov A. von Baer's law for the ages: lost and found principles of developmental evolution. Trends Genet 2013; 29:712-22. [PMID: 24120296 DOI: 10.1016/j.tig.2013.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/26/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
In 1828, Karl Ernst von Baer formulated a series of empirically defined rules, which became widely known as the 'Law of Development' or 'von Baer's law of embryology'. This was one the most significant attempts to define the principles that connected morphological complexity and embryonic development. Understanding this relation is central to both evolutionary biology and developmental genetics. Von Baer's ideas have been both a source of inspiration to generations of biologists and a target of continuous criticism over many years. With advances in multiple fields, including paleontology, cladistics, phylogenetics, genomics, and cell and developmental biology, it is now possible to examine carefully the significance of von Baer's law and its predictions. In this review, I argue that, 185 years after von Baer's law was first formulated, its main concepts after proper refurbishing remain surprisingly relevant in revealing the fundamentals of the evolution-development connection, and suggest that their explanation should become the focus of renewed research.
Collapse
Affiliation(s)
- Arhat Abzhanov
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
104
|
Kosins AM, Daniel RK, Sajjadian A, Helms J. Rhinoplasty: congenital deficiencies of the alar cartilage. Aesthet Surg J 2013; 33:799-808. [PMID: 23838255 DOI: 10.1177/1090820x13495692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Congenital deficiencies of the alar cartilages are rare and often visible at birth but can occasionally present later. OBJECTIVES The authors review the anatomical development and discuss the incidence and treatment of congenital defects within the alar cartilages seen in rhinoplasty cases. METHODS The charts of 869 consecutive patients who underwent open rhinoplasty were retrospectively reviewed, and 8 cases of congenital defects of the alar cartilage within the middle crura were identified. Intraoperative photographs were taken of the alar deformities, and each patient underwent surgical correction. To simplify analysis, a classification of the defects was developed. A division was a cleft in the continuity of the alar cartilage with the 2 ends separate. A gap was a true absence of cartilage ranging from 1 to 4 mm, which can be accurately assessed in unilateral cases. A segmental loss was a defect greater than 4 mm. RESULTS The 8 cases of deformity could be classified as 4 divisions, 3 gaps, and 1 segmental loss. None of the patients had a history of prior nasal trauma or nasal surgery. Six patients were women and 2 patients were men. In all cases, adequate projection and stability were achieved with a columellar strut. Asymmetry was minimized through concealer or tip grafts. There were no complications. CONCLUSIONS Surgeons performing rhinoplasty surgery will encounter and should be prepared to deal with unexpected congenital defects of the alar cartilage. These defects within the middle crura will require stabilization with a columellar strut and, often, coverage with a concealer tip graft. We speculate that the cause of these defects is a disruption of the hedgehog signals that may arrest the condensation or block the differentiation of the underlying neural crest cells.
Collapse
Affiliation(s)
- Aaron M Kosins
- Division of Plastic Surgery, School of Medicine, University of California-Irvine, CA, USA
| | | | | | | |
Collapse
|
105
|
Apaf1 apoptotic function critically limits Sonic hedgehog signaling during craniofacial development. Cell Death Differ 2013; 20:1510-20. [PMID: 23892366 DOI: 10.1038/cdd.2013.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 01/18/2023] Open
Abstract
Apaf1 is an evolutionarily conserved component of the apoptosome. In mammals, the apoptosome assembles when cytochrome c is released from mitochondria, binding Apaf1 in an ATP-dependent manner and activating caspase 9 to execute apoptosis. Here we identify and characterize a novel mouse mutant, yautja, and find it results from a leucine-to-proline substitution in the winged-helix domain of Apaf1. We show that this allele of Apaf1 is unique, as the yautja mutant Apaf1 protein is stable, yet does not possess apoptotic function in cell culture or in vivo assays. Mutant embryos die perinatally with defects in craniofacial and nervous system development, as well as reduced levels of apoptosis. We further investigated the defects in craniofacial development in the yautja mutation and found altered Sonic hedgehog (Shh) signaling between the prechordal plate and the frontonasal ectoderm, leading to increased mesenchymal proliferation in the face and delayed or absent ossification of the skull base. Taken together, our data highlight the time-sensitive link between Shh signaling and the regulation of apoptosis function in craniofacial development to sculpt the face. We propose that decreased apoptosis in the developing nervous system allows Shh-producing cells to persist and direct a lateral outgrowth of the upper jaw, resulting in the craniofacial defects we see. Finally, the novel yautja Apaf1 allele offers the first in vivo understanding of a stable Apaf1 protein that lacks a function, which should make a useful tool with which to explore the regulation of programmed cell death in mammals.
Collapse
|
106
|
Kamel G, Hoyos T, Rochard L, Dougherty M, Kong Y, Tse W, Shubinets V, Grimaldi M, Liao EC. Requirement for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis. Dev Biol 2013; 381:423-33. [PMID: 23806211 DOI: 10.1016/j.ydbio.2013.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 11/29/2022]
Abstract
Regulation of convergence and extension by wnt-frizzled signaling is a common theme in embryogenesis. This study examines the functional requirements of frzb and fzd7a in convergence and extension mechanisms during craniofacial development. Using a morpholino knockdown approach, we found that frzb and fzd7a are dispensable for directed migration of the bilateral trabeculae, but necessary for the convergence and extension of the palatal elements, where the extension process is mediated by chondrocyte proliferation, morphologic change and intercalation. In contrast, frzb and fzd7a are required for convergence of the mandibular prominences, where knockdown of either frzb or fzd7a resulted in complete loss of lower jaw structures. Further, we found that bapx1 was specifically downregulated in the wnt9a/frzb/fzd7a morphants, while general neural crest markers were unaffected. In addition, expression of wnt9a and frzb was also absent in the edn-/- mutant. Notably, over-expression of bapx1 was sufficient to partially rescue mandibular elements in the wnt9a/frzb/fzd7a morphants, demonstrating genetic epistasis of bapx1 acting downstream of edn1 and wnt9a/frzb/fzd7a in lower jaw development. This study underscores the important role of wnt-frizzled signaling in convergence and extension in palate and craniofacial morphogenesis, distinct regulation of upper vs. lower jaw structures, and integration of wnt-frizzled with endothelin signaling to coordinate shaping of the facial form.
Collapse
Affiliation(s)
- George Kamel
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
108
|
Starbuck JM, Cole TM, Reeves RH, Richtsmeier JT. Trisomy 21 and facial developmental instability. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:49-57. [PMID: 23505010 DOI: 10.1002/ajpa.22255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/06/2013] [Indexed: 01/03/2023]
Abstract
The most common live-born human aneuploidy is trisomy 21, which causes Down syndrome (DS). Dosage imbalance of genes on chromosome 21 (Hsa21) affects complex gene-regulatory interactions and alters development to produce a wide range of phenotypes, including characteristic facial dysmorphology. Little is known about how trisomy 21 alters craniofacial morphogenesis to create this characteristic appearance. Proponents of the "amplified developmental instability" hypothesis argue that trisomy 21 causes a generalized genetic imbalance that disrupts evolutionarily conserved developmental pathways by decreasing developmental homeostasis and precision throughout development. Based on this model, we test the hypothesis that DS faces exhibit increased developmental instability relative to euploid individuals. Developmental instability was assessed by a statistical analysis of fluctuating asymmetry. We compared the magnitude and patterns of fluctuating asymmetry among siblings using three-dimensional coordinate locations of 20 anatomic landmarks collected from facial surface reconstructions in four age-matched samples ranging from 4 to 12 years: (1) DS individuals (n = 55); (2) biological siblings of DS individuals (n = 55); 3) and 4) two samples of typically developing individuals (n = 55 for each sample), who are euploid siblings and age-matched to the DS individuals and their euploid siblings (samples 1 and 2). Identification in the DS sample of facial prominences exhibiting increased fluctuating asymmetry during facial morphogenesis provides evidence for increased developmental instability in DS faces. We found the highest developmental instability in facial structures derived from the mandibular prominence and lowest in facial regions derived from the frontal prominence.
Collapse
Affiliation(s)
- John M Starbuck
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
109
|
Martin A, Maher S, Summerhurst K, Davidson D, Murphy P. Differential deployment of paralogous Wnt genes in the mouse and chick embryo during development. Evol Dev 2013; 14:178-95. [PMID: 23017026 PMCID: PMC3498729 DOI: 10.1111/j.1525-142x.2012.00534.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genes encoding Wnt ligands are crucial in body patterning and are highly conserved among metazoans. Given their conservation at the protein-coding level, it is likely that changes in where and when these genes are active are important in generating evolutionary variations. However, we lack detailed knowledge about how their deployment has diverged. Here, we focus on four Wnt subfamilies (Wnt2, Wnt5, Wnt7, and Wnt8) in mammalian and avian species, consisting of a paralogous gene pair in each, believed to have duplicated in the last common ancestor of vertebrates. We use three-dimensional imaging to capture expression patterns in detail and carry out systematic comparisons. We find evidence of greater divergence between these subgroup paralogues than the respective orthologues, consistent with some level of subfunctionalization/neofunctionalization in the common vertebrate ancestor that has been conserved. However, there were exceptions; in the case of chick Wnt2b, individual sites were shared with both mouse Wnt2 and Wnt2b. We also find greater divergence, between paralogues and orthologues, in some subfamilies (Wnt2 and Wnt8) compared to others (Wnt5 and Wnt7) with the more highly similar expression patterns showing more extensive expression in more structures in the embryo. Wnt8 genes were most restricted and most divergent. Major sites of expression for all subfamilies include CNS, limbs, and facial region, and in general there were more similarities in gene deployment in these territories with divergent patterns featuring more in organs such as heart and gut. A detailed comparison of gene expression patterns in the limb showed similarities in overall combined domains across species with notable differences that may relate to lineage-specific morphogenesis.
Collapse
Affiliation(s)
- Audrey Martin
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
110
|
Boije H, Harun-Or-Rashid M, Lee YJ, Imsland F, Bruneau N, Vieaud A, Gourichon D, Tixier-Boichard M, Bed’hom B, Andersson L, Hallböök F. Sonic Hedgehog-signalling patterns the developing chicken comb as revealed by exploration of the pea-comb mutation. PLoS One 2012; 7:e50890. [PMID: 23227218 PMCID: PMC3515514 DOI: 10.1371/journal.pone.0050890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022] Open
Abstract
The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH) receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb), is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.
Collapse
Affiliation(s)
- Henrik Boije
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Yu-Jen Lee
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Freyja Imsland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Nicolas Bruneau
- Institut National de la Recherche Agronomique, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | - Agathe Vieaud
- Institut National de la Recherche Agronomique, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | - David Gourichon
- Institut National de la Recherche Agronomique, UE1295 Poultry Experimental Platform of Tours, Nouzilly, France
| | - Michèle Tixier-Boichard
- Institut National de la Recherche Agronomique, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | - Bertrand Bed’hom
- Institut National de la Recherche Agronomique, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
111
|
Abstract
Craniofacial development requires an exquisitely timed and positioned cross-talk between the embryonic cephalic epithelia and mesenchyme. This cross-talk underlies the precise translation of patterning processes and information into distinct, appropriate skeletal morphologies. The molecular and cellular dialogue includes communication via secreted signaling molecules, including Fgf8, and effectors of their interpretation. Herein, we use genetic attenuation of Fgf8 in mice and perform gain-of-function mouse-chick chimeric experiments to demonstrate that significant character states of the frontonasal and optic skeletons are dependent on Fgf8. Notably, we show that the normal orientation and polarity of the nasal capsules and their developing primordia are dependent on Fgf8. We further demonstrate that Fgf8 is required for midfacial integration, and provide evidence for a role for Fgf8 in optic capsular development. Taken together, our data highlight Fgf8 signaling in craniofacial development as a plausible target for evolutionary selective pressures.
Collapse
|
112
|
Dougherty M, Kamel G, Grimaldi M, Gfrerer L, Shubinets V, Ethier R, Hickey G, Cornell RA, Liao EC. Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development 2012; 140:76-81. [PMID: 23154410 DOI: 10.1242/dev.080473] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Development of the palate in vertebrates involves cranial neural crest migration, convergence of facial prominences and extension of the cartilaginous framework. Dysregulation of palatogenesis results in orofacial clefts, which represent the most common structural birth defects. Detailed analysis of zebrafish palatogenesis revealed distinct mechanisms of palatal morphogenesis: extension, proliferation and integration. We show that wnt9a is required for palatal extension, wherein the chondrocytes form a proliferative front, undergo morphological change and intercalate to form the ethmoid plate. Meanwhile, irf6 is required specifically for integration of facial prominences along a V-shaped seam. This work presents a mechanistic analysis of palate morphogenesis in a clinically relevant context.
Collapse
Affiliation(s)
- Max Dougherty
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Bonventre JA, White LA, Cooper KR. Craniofacial abnormalities and altered wnt and mmp mRNA expression in zebrafish embryos exposed to gasoline oxygenates ETBE and TAME. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 120-121:45-53. [PMID: 22609741 PMCID: PMC4380079 DOI: 10.1016/j.aquatox.2012.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 06/01/2023]
Abstract
Gasoline additives ethyl tert butyl ether (ETBE) and tertiary amyl methyl ether (TAME) are used world wide, but the consequence of developmental exposure to these hydrophilic chemicals is unknown for aquatic vertebrates. The effect of ETBE and TAME on zebrafish embryos was determined following OECD 212 guidelines, and their toxicity was compared to structurally related methyl tert-butyl ether (MTBE), which is known to target developing vasculature. LC50s for ETBE and TAME were 14 mM [95% CI=10-20] and 10 mM [CI=8-12.5], respectively. Both chemicals caused dose dependent developmental lesions (0.625-10 mM), which included pericardial edema, abnormal vascular development, whole body edema, and craniofacial abnormalities. The lesions were suggestive of a dysregulation of WNT ligands and matrix metalloproteinase (MMP) protein families based on their roles in development. Exposure to 5 mM ETBE significantly (p≤0.05) decreased relative mRNA transcript levels of mmp-9 and wnt3a, while 2.5 and 5 mM TAME significantly decreased wnt3a, and wnt8a. TAME also significantly decreased mmp-2 and -9 mRNA levels at 5mM. ETBE and TAME were less effective in altering the expression of vascular endothelial growth factor-a and -c, which were the only genes tested that were significantly decreased by MTBE. This is the first study to characterize the aquatic developmental toxicity following embryonic exposure to ETBE and TAME. Unlike MTBE, which specifically targets angiogenesis, ETBE and TAME disrupt multiple organ systems and significantly alter the mRNA transcript levels of genes required for general development.
Collapse
Affiliation(s)
| | - Lori A. White
- Rutgers University - Department of Biochemistry and Microbiology
| | - Keith R. Cooper
- Rutgers University - Department of Biochemistry and Microbiology
| |
Collapse
|
114
|
Mostowska A, Hozyasz KK, Biedziak B, Wojcicki P, Lianeri M, Jagodzinski PP. Genotype and haplotype analysis of WNT genes in non-syndromic cleft lip with or without cleft palate. Eur J Oral Sci 2012; 120:1-8. [PMID: 22288914 DOI: 10.1111/j.1600-0722.2011.00938.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The wingless-type MMTV integration site family (Wnt) signalling pathway plays a crucial role in craniofacial development. Recently, nucleotide variants in WNT genes have been shown to be associated with oral congenital anomalies, including facial clefts. Therefore, in the current study we decided to assay the association of nucleotide variants in selected WNT genes with the risk of non-syndromic cleft lip with or without cleft palate (NCL/P) in the Polish population. Fourteen polymorphisms in WNT3, WNT3A, WNT5A, WNT8A, WNT9B, and WNT11 were tested in a group of 210 patients with NCL/P and in a properly matched control group. The most significant results were found for the WNT3 rs3809857 variant, which, under the assumption of a recessive model, was associated with a two-fold decrease in the risk of NCL/P (OR(TT vs. GT + GG) = 0.492, 95% CI: 0.276-0.879, P = 0.015). Moreover, haplotype analysis revealed that WNT3 is significantly correlated with NCL/P. The global P-values for haplotypes of rs12452064_rs7207916 and rs3809857_rs12452064_rs7207916 were 0.0034 and 0.0014, respectively, and these results were statistically significant, even after the permutation test correction. In conclusion, our study confirmed the involvement of polymorphisms in the WNT3 gene in NCL/P aetiology in the tested population.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
115
|
Leucht P, Monica SD, Temiyasathit S, Lenton K, Manu A, Longaker MT, Jacobs CR, Spilker RL, Guo H, Brunski JB, Helms JA. Primary cilia act as mechanosensors during bone healing around an implant. Med Eng Phys 2012; 35:392-402. [PMID: 22784673 DOI: 10.1016/j.medengphy.2012.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 01/05/2023]
Abstract
The primary cilium is an organelle that senses cues in a cell's local environment. Some of these cues constitute molecular signals; here, we investigate the extent to which primary cilia can also sense mechanical stimuli. We used a conditional approach to delete Kif3a in pre-osteoblasts and then employed a motion device that generated a spatial distribution of strain around an intra-osseous implant positioned in the mouse tibia. We correlated interfacial strain fields with cell behaviors ranging from proliferation through all stages of osteogenic differentiation. We found that peri-implant cells in the Col1Cre;Kif3a(fl/fl) mice were unable to proliferate in response to a mechanical stimulus, failed to deposit and then orient collagen fibers to the strain fields caused by implant displacement, and failed to differentiate into bone-forming osteoblasts. Collectively, these data demonstrate that the lack of a functioning primary cilium blunts the normal response of a cell to a defined mechanical stimulus. The ability to manipulate the genetic background of peri-implant cells within the context of a whole, living tissue provides a rare opportunity to explore mechanotransduction from a multi-scale perspective.
Collapse
Affiliation(s)
- P Leucht
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Kennedy AE, Dickinson AJG. Median facial clefts in Xenopus laevis: roles of retinoic acid signaling and homeobox genes. Dev Biol 2012; 365:229-40. [PMID: 22405964 DOI: 10.1016/j.ydbio.2012.02.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/28/2022]
Abstract
The upper lip and primary palate form an essential separation between the brain, nasal structures and the oral cavity. Surprisingly little is known about the development of these structures, despite the fact that abnormalities can result in various forms of orofacial clefts. We have uncovered that retinoic acid is a critical regulator of upper lip and primary palate development in Xenopus laevis. Retinoic acid synthesis enzyme, RALDH2, and retinoic acid receptor gamma (RARγ) are expressed in complementary and partially overlapping regions of the orofacial prominences that fate mapping revealed contribute to the upper lip and primary palate. Decreased RALDH2 and RARγ result in a median cleft in the upper lip and primary palate. To further understand how retinoic acid regulates upper lip and palate morphogenesis we searched for genes downregulated in response to RARγ inhibition in orofacial tissue, and uncovered homeobox genes lhx8 and msx2. These genes are both expressed in overlapping domains with RARγ, and together their loss of function also results in a median cleft in the upper lip and primary palate. Inhibition of RARγ and decreased Lhx8/Msx2 function result in decreased cell proliferation and failure of dorsal anterior cartilages to form. These results suggest a model whereby retinoic acid signaling regulates Lhx8 and Msx2, which together direct the tissue growth and differentiation necessary for the upper lip and primary palate morphogenesis. This work has the potential to better understand the complex nature of the upper lip and primary palate development which will lead to important insights into the etiology of human orofacial clefts.
Collapse
Affiliation(s)
- Allyson E Kennedy
- Virginia Commonwealth University, 1000 West Cary St., Department of Biology, Richmond, VA 23284, USA
| | | |
Collapse
|
117
|
Jin YR, Han XH, Taketo MM, Yoon JK. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Development 2012; 139:1821-30. [PMID: 22461561 DOI: 10.1242/dev.075796] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Outgrowth and fusion of the lateral and medial nasal processes and of the maxillary process of the first branchial arch are integral to lip and primary palate development. Wnt9b mutations are associated with cleft lip and cleft palate in mice; however, the cause of these defects remains unknown. Here, we report that Wnt9b(-/-) mice show significantly retarded outgrowth of the nasal and maxillary processes due to reduced proliferation of mesenchymal cells, which subsequently results in a failure of physical contact between the facial processes that leads to cleft lip and cleft palate. These cellular defects in Wnt9b(-/-) mice are mainly caused by reduced FGF family gene expression and FGF signaling activity resulting from compromised canonical WNT/β-catenin signaling. Our study has identified a previously unknown regulatory link between WNT9B and FGF signaling during lip and upper jaw development.
Collapse
Affiliation(s)
- Yong-Ri Jin
- COBRE in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | | | | | | |
Collapse
|
118
|
Sun Y, Teng I, Huo R, Rosenfeld MG, Olson LE, Li X, Li X. Asymmetric requirement of surface epithelial β-catenin during the upper and lower jaw development. Dev Dyn 2012; 241:663-74. [PMID: 22354888 PMCID: PMC3308359 DOI: 10.1002/dvdy.23755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2012] [Indexed: 12/12/2022] Open
Abstract
Background: Intercellular communication between epithelial and mesenchymal cells is central to mammalian craniofacial development. β-catenin is the gateway of canonical Wnt signaling, one of the major evolutionarily conserved cell–cell communication pathways in metazoa. In this study, we report an unexpected stage- and tissue-specific function of β-catenin during mammalian jaw development. Results: Using a unique mouse genetic tool, we have discovered that epithelial β-catenin is essential for lower jaw formation, while attenuation of β-catenin is required for proper upper jaw development. Changes in β-catenin in vivo alter major epithelial Fgf8, Bmp4, Shh, and Edn1 signals, resulting in partial transcriptional reprogramming of the neural crest-derived mesenchyme, the primary source of jawbones. Conclusions: The Wnt/β-catenin signal coordinates expression of multiple epithelial signals and has stage-specific asymmetric functions during mammalian upper and lower jaw development. In addition, these findings suggest that evolutionary changes of the canonical Wnt/β-catenin signaling pathway may lead to innovation of jaws. Developmental Dynamics 241:663–674, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ye Sun
- Department of Urology, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Starbuck J, Reeves RH, Richtsmeier J. Morphological integration of soft-tissue facial morphology in Down Syndrome and siblings. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:560-8. [PMID: 21996933 DOI: 10.1002/ajpa.21583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/02/2011] [Indexed: 12/27/2022]
Abstract
Down syndrome (DS), resulting from trisomy of chromosome 21, is the most common live-born human aneuploidy. The phenotypic expression of trisomy 21 produces variable, though characteristic, facial morphology. Although certain facial features have been documented quantitatively and qualitatively as characteristic of DS (e.g., epicanthic folds, macroglossia, and hypertelorism), all of these traits occur in other craniofacial conditions with an underlying genetic cause. We hypothesize that the typical DS face is integrated differently than the face of non-DS siblings, and that the pattern of morphological integration unique to individuals with DS will yield information about underlying developmental associations between facial regions. We statistically compared morphological integration patterns of immature DS faces (N = 53) with those of non-DS siblings (N = 54), aged 6-12 years using 31 distances estimated from 3D coordinate data representing 17 anthropometric landmarks recorded on 3D digital photographic images. Facial features are affected differentially in DS, as evidenced by statistically significant differences in integration both within and between facial regions. Our results suggest a differential affect of trisomy on facial prominences during craniofacial development.
Collapse
Affiliation(s)
- John Starbuck
- The Pennsylvania State University-Anthropology, University Park, PA 16802, USA.
| | | | | |
Collapse
|
120
|
Aldridge K, George ID, Cole KK, Austin JR, Takahashi TN, Duan Y, Miles JH. Facial phenotypes in subgroups of prepubertal boys with autism spectrum disorders are correlated with clinical phenotypes. Mol Autism 2011; 2:15. [PMID: 21999758 PMCID: PMC3212884 DOI: 10.1186/2040-2392-2-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/14/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The brain develops in concert and in coordination with the developing facial tissues, with each influencing the development of the other and sharing genetic signaling pathways. Autism spectrum disorders (ASDs) result from alterations in the embryological brain, suggesting that the development of the faces of children with ASD may result in subtle facial differences compared to typically developing children. In this study, we tested two hypotheses. First, we asked whether children with ASD display a subtle but distinct facial phenotype compared to typically developing children. Second, we sought to determine whether there are subgroups of facial phenotypes within the population of children with ASD that denote biologically discrete subgroups. METHODS The 3dMD cranial System was used to acquire three-dimensional stereophotogrammetric images for our study sample of 8- to 12-year-old boys diagnosed with essential ASD (n = 65) and typically developing boys (n = 41) following approved Institutional Review Board protocols. Three-dimensional coordinates were recorded for 17 facial anthropometric landmarks using the 3dMD Patient software. Statistical comparisons of facial phenotypes were completed using Euclidean Distance Matrix Analysis and Principal Coordinates Analysis. Data representing clinical and behavioral traits were statistically compared among groups by using χ2 tests, Fisher's exact tests, Kolmogorov-Smirnov tests and Student's t-tests where appropriate. RESULTS First, we found that there are significant differences in facial morphology in boys with ASD compared to typically developing boys. Second, we also found two subgroups of boys with ASD with facial morphology that differed from the majority of the boys with ASD and the typically developing boys. Furthermore, membership in each of these distinct subgroups was correlated with particular clinical and behavioral traits. CONCLUSIONS Boys with ASD display a facial phenotype distinct from that of typically developing boys, which may reflect alterations in the prenatal development of the brain. Subgroups of boys with ASD defined by distinct facial morphologies correlated with clinical and behavioral traits, suggesting potentially different etiologies and genetic differences compared to the larger group of boys with ASD. Further investigations into genes involved in neurodevelopment and craniofacial development of these subgroups will help to elucidate the causes and significance of these subtle facial differences.
Collapse
Affiliation(s)
- Kristina Aldridge
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr, M309 Med Sci Bldg, Columbia, MO 65212, USA
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, 205 Portland St, Columbia, MO 65211, USA
| | - Ian D George
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr, M309 Med Sci Bldg, Columbia, MO 65212, USA
| | - Kimberly K Cole
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr, M309 Med Sci Bldg, Columbia, MO 65212, USA
| | - Jordan R Austin
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr, M309 Med Sci Bldg, Columbia, MO 65212, USA
| | - T Nicole Takahashi
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, 205 Portland St, Columbia, MO 65211, USA
| | - Ye Duan
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, 205 Portland St, Columbia, MO 65211, USA
- Department of Computer Science, University of Missouri, 209 Engineering Building West, Columbia, MO 65211, USA
| | - Judith H Miles
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, 205 Portland St, Columbia, MO 65211, USA
- Department of Child Health, University of Missouri School of Medicine, One Hospital Dr, N712, Columbia, MO 65212, USA
| |
Collapse
|
121
|
Ferretti E, Li B, Zewdu R, Wells V, Hebert JM, Karner C, Anderson MJ, Williams T, Dixon J, Dixon MJ, Depew MJ, Selleri L. A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell 2011; 21:627-41. [PMID: 21982646 DOI: 10.1016/j.devcel.2011.08.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/20/2011] [Accepted: 08/02/2011] [Indexed: 12/29/2022]
Abstract
Morphogenesis of mammalian facial processes requires coordination of cellular proliferation, migration, and apoptosis to develop intricate features. Cleft lip and/or palate (CL/P), the most frequent human craniofacial birth defect, can be caused by perturbation of any of these programs. Mutations of WNT, P63, and IRF6 yield CL/P in humans and mice; however, how these genes are regulated remains elusive. We generated mouse lines lacking Pbx genes in cephalic ectoderm and demonstrated that they exhibit fully penetrant CL/P and perturbed Wnt signaling. We also characterized a midfacial regulatory element that Pbx proteins bind to control the expression of Wnt9b-Wnt3, which in turn regulates p63. Altogether, we establish a Pbx-dependent Wnt-p63-Irf6 regulatory module in midfacial ectoderm that is conserved within mammals. Dysregulation of this network leads to localized suppression of midfacial apoptosis and CL/P. Ectopic Wnt ectodermal expression in Pbx mutants rescues the clefting, opening avenues for tissue repair.
Collapse
Affiliation(s)
- Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Levi B, Brugman S, Wong VW, Grova M, Longaker MT, Wan DC. Palatogenesis: engineering, pathways and pathologies. Organogenesis 2011; 7:242-54. [PMID: 21964245 DOI: 10.4161/org.7.4.17926] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cleft palate represents the second most common birth defect and carries substantial physiologic and social challenges for affected patients, as they often require multiple surgical interventions during their lifetime. A number of genes have been identified to be associated with the cleft palate phenotype, but etiology in the majority of cases remains elusive. In order to better understand cleft palate and both surgical and potential tissue engineering approaches for repair, we have performed an in-depth literature review into cleft palate development in humans and mice, as well as into molecular pathways underlying these pathologic developments. We summarize the multitude of pathways underlying cleft palate development, with the transforming growth factor beta superfamily being the most commonly studied. Furthermore, while the majority of cleft palate studies are performed using a mouse model, studies focusing on tissue engineering have also focused heavily on mouse models. A paucity of human randomized controlled studies exists for cleft palate repair, and so far, tissue engineering approaches are limited. In this review, we discuss the development of the palate, explain the basic science behind normal and pathologic palate development in humans as well as mouse models and elaborate on how these studies may lead to future advances in palatal tissue engineering and cleft palate treatments.
Collapse
Affiliation(s)
- Benjamin Levi
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
123
|
Lin C, Fisher AV, Yin Y, Maruyama T, Veith GM, Dhandha M, Huang GJ, Hsu W, Ma L. The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus. Dev Biol 2011; 356:40-50. [PMID: 21600200 PMCID: PMC3130801 DOI: 10.1016/j.ydbio.2011.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/08/2011] [Accepted: 05/03/2011] [Indexed: 01/31/2023]
Abstract
Proper patterning and growth of oral structures including teeth, tongue, and palate rely on epithelial-mesenchymal interactions involving coordinated regulation of signal transduction. Understanding molecular mechanisms underpinning oral-facial development will provide novel insights into the etiology of common congenital defects such as cleft palate. In this study, we report that ablating Wnt signaling in the oral epithelium blocks the formation of palatal rugae, which are a set of specialized ectodermal appendages serving as Shh signaling centers during development and niches for sensory cells and possibly neural crest related stem cells in adults. Lack of rugae is also associated with retarded anteroposterior extension of the hard palate and precocious mid-line fusion. These data implicate an obligatory role for canonical Wnt signaling in rugae development. Based on this complex phenotype, we propose that the sequential addition of rugae and its morphogen Shh, is intrinsically coupled to the elongation of the hard palate, and is critical for modulating the growth orientation of palatal shelves. In addition, we observe a unique cleft palate phenotype at the anterior end of the secondary palate, which is likely caused by the severely underdeveloped primary palate in these mutants. Last but not least, we also discover that both Wnt and Shh signalings are essential for tongue development. We provide genetic evidence that disruption of either signaling pathway results in severe microglossia. Altogether, we demonstrate a dynamic role for Wnt-β-Catenin signaling in the development of the oral apparatus.
Collapse
Affiliation(s)
- Congxing Lin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110
| | - Alexander V. Fisher
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110
| | - Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110
| | - Takamitsu Maruyama
- Department of Biomedical Genetics & Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 U.S.A
| | - G. Michael Veith
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110
| | - Maulik Dhandha
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110
| | - Genkai J. Huang
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110
| | - Wei Hsu
- Department of Biomedical Genetics & Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 U.S.A
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110
| |
Collapse
|
124
|
Geetha-Loganathan P, Nimmagadda S, Hafez I, Fu K, Cullis PR, Richman JM. Development of high-concentration lipoplexes for in vivo gene function studies in vertebrate embryos. Dev Dyn 2011; 240:2108-19. [PMID: 21805533 DOI: 10.1002/dvdy.22708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2011] [Indexed: 12/23/2022] Open
Abstract
Here we report that highly concentrated cationic lipid/helper lipid-nucleic acid complexes (lipoplexes) can facilitate reproducible delivery of a variety of oligonucleotides and plasmids to chicken embryos or to mouse embryonic mesenchyme. Specifically, liposomes composed of N,N-dioleyl-N,N-dimethylammonium chloride (DODAC)/1,2 dioleoyl glycero-3-phosphorylethanolamine (DOPE) prepared at 18-mM concentrations produced high levels of transfection of exogenous genes in vivo and in vitro. Furthermore, we report sufficient uptake of plasmids expressing interference RNA to decrease expression of both exogenous and endogenous genes. The simplicity of preparation, implementation, and relatively low toxicity of this transfection reagent make it an attractive alternative for developmental studies in post-gastrulation vertebrate embryos.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- Department of Oral Health Sciences, Life Sciences Centre, The University of British Columbia, Vancouver Canada
| | | | | | | | | | | |
Collapse
|
125
|
Liu Y, Huang T, Zhao X, Cheng L. MicroRNAs modulate the Wnt signaling pathway through targeting its inhibitors. Biochem Biophys Res Commun 2011; 408:259-64. [PMID: 21501592 DOI: 10.1016/j.bbrc.2011.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 04/02/2011] [Indexed: 11/25/2022]
Abstract
Increasing evidence indicates that microRNAs (miRNAs) play important roles in mouse brain development. We and several other reports recently have demonstrated that Wnt1-cre-mediated loss of Dicer, the key enzyme for miRNA biosynthesis, results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation. The underlying mechanisms, however, remain poorly understood. The resemblance of some of the phenotypes in the Wnt1-cre Dicer conditional knockout embryos and Wnt1(-/-), Wnt1(-/-);Wnt3(-/-) and Wnt1-cre;β-catenin(flox/flox) knockout embryos reminds us that loss of miRNA may disrupt the Wnt-β-catenin signaling. Here we provide evidence that miRNAs modulate the Wnt signaling pathway through targeting its inhibitors. First, we predicted miRNA binding sites in the 3' UTRs of candidate inhibitors of the Wnt signaling pathway and luciferase assays revealed that several inhibitors of Wnt signaling pathway were targeted by miRNAs. Second, we demonstrated that several miRNAs could modulate the expression of Gsk3b, an inhibitor of Wnt signaling, post-transcriptional in 293T cells. Third, we found that several miRNAs were able to regulate the Wnt-β-catenin signaling activity in 293T cells. More interestingly, the expression of β-catenin protein was dramatically reduced in the Wnt1-cre-meidiated Dicer knockout brain tissue compared with control. Our studies therefore suggest that miRNAs might exert their functions, at least in part, by modulating the Wnt signaling pathway through targeting its inhibitors.
Collapse
Affiliation(s)
- Yueguang Liu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
126
|
Nikopensius T, Kempa I, Ambrozaitytė L, Jagomägi T, Saag M, Matulevičienė A, Utkus A, Krjutškov K, Tammekivi V, Piekuse L, Akota I, Barkane B, Krumina A, Klovins J, Lace B, Kučinskas V, Metspalu A. Variation in FGF1, FOXE1, and TIMP2 genes is associated with nonsyndromic cleft lip with or without cleft palate. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:218-25. [PMID: 21462296 DOI: 10.1002/bdra.20791] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/19/2011] [Accepted: 01/23/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (CL/P) is a common complex birth defect caused by the interaction between multiple genes and environmental factors. METHODS Five hundred and eighty-seven single nucleotide polymorphisms in 40 candidate genes related to orofacial clefting were tested for association with CL/P in a clefting sample composed of 300 patients and 606 controls from Estonian, Latvian, and Lithuanian populations. RESULTS In case-control comparisons, the minor alleles of FGF1 rs34010 (p = 4.56 × 10(-4) ), WNT9B rs4968282 (p = 0.0013), and FOXE1 rs7860144 (p = 0.0021) were associated with a decreased risk of CL/P. Multiple haplotypes in FGF1, FOXE1, and TIMP2 and haplotypes in WNT9B, PVRL2, and LHX8 were associated with CL/P. The strongest association was found for protective haplotype rs250092/rs34010 GT in the FGF1 gene (p = 5.01 × 10(-4) ). The strongest epistatic interaction was observed between the COL2A1 and WNT3 genes. CONCLUSIONS Our results provide for the first time evidence implicating FGF1 in the occurrence of CL/P, and support TIMP2 and WNT9B as novel loci predisposing to CL/P. We have also replicated recently reported significant associations between variants in or near FOXE1 and CL/P. It is likely that variation in FOXE1, TIMP2, and the FGF and Wnt signaling pathway genes confers susceptibility to nonsyndromic CL/P in Northeastern European populations.
Collapse
Affiliation(s)
- Tiit Nikopensius
- Institute of Molecular and Cell Biology, University of Tartu, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Zaghloul NA, Brugmann SA. The emerging face of primary cilia. Genesis 2011; 49:231-46. [PMID: 21305689 DOI: 10.1002/dvg.20728] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 01/01/2023]
Abstract
Primary cilia are microtubule-based organelles that serve as hubs for the transduction of various developmental signaling pathways including Hedgehog, Wnt, FGF, and PDGF. Ciliary dysfunction contributes to a range of disorders, collectively known as the ciliopathies. Recently, interest has grown in these syndromes, particularly among craniofacial biologists, as many known and putative ciliopathies have severe craniofacial defects. Herein we discuss the current understanding of ciliary biology and craniofacial development in an attempt to gain insight into the molecular etiology for craniofacial ciliopathies, and uncover a characteristic ciliopathic craniofacial gestalt.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
128
|
Fuchs A, Inthal A, Herrmann D, Cheng S, Nakatomi M, Peters H, Neubüser A. Regulation of Tbx22 during facial and palatal development. Dev Dyn 2011; 239:2860-74. [PMID: 20845426 DOI: 10.1002/dvdy.22421] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the gene encoding the T-box transcription factor TBX22 cause X-linked cleft palate and ankyloglossia in humans. Here we show that Tbx22 expression during facial and palatal development is regulated by FGF and BMP signaling. Our results demonstrate that FGF8 induces Tbx22 in the early face while BMP4 represses and thus restricts its expression. This regulation is conserved between chicken and mouse, although the Tbx22-expression patterns differ considerably between these two species. We suggest that these species-specific differences may result at least in part from differences in the spatiotemporal patterns of BMP activity, but we exclude a direct repression of Tbx22 by the BMP-inducible transcriptional repressor MSX1. Together these findings help to integrate Tbx22 into the molecular network of factors regulating facial development.
Collapse
Affiliation(s)
- Alisa Fuchs
- Developmental Biology, Institute of Biology 1, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
129
|
Gitton Y, Benouaiche L, Vincent C, Heude E, Soulika M, Bouhali K, Couly G, Levi G. Dlx5 and Dlx6 expression in the anterior neural fold is essential for patterning the dorsal nasal capsule. Development 2011; 138:897-903. [PMID: 21270050 DOI: 10.1242/dev.057505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis of the vertebrate facial skeleton depends upon inductive interactions between cephalic neural crest cells (CNCCs) and cephalic epithelia. The nasal capsule is a CNCC-derived cartilaginous structure comprising a ventral midline bar (mesethmoid) overlaid by a dorsal capsule (ectethmoid). Although Shh signalling from the anterior-most region of the endoderm (EZ-I) patterns the mesethmoid, the cues involved in ectethmoid induction are still undefined. Here, we show that ectethmoid formation depends upon Dlx5 and Dlx6 expression in a restricted ectodermal territory of the anterior neural folds, which we name NF-ZA. In both chick and mouse neurulas, Dlx5 and Dlx6 expression is mostly restricted to NF-ZA. Simultaneous Dlx5 and Dlx6 inactivation in the mouse precludes ectethmoid formation, while the mesethmoid is still present. Consistently, siRNA-mediated downregulation of Dlx5 and Dlx6 in the cephalic region of the early avian neurula specifically prevents ectethmoid formation, whereas other CNCC-derived structures, including the mesethmoid, are not affected. Similarly, NF-ZA surgical removal in chick neurulas averts ectethmoid development, whereas grafting a supernumerary NF-ZA results in an ectopic ectethmoid. Simultaneous ablation or grafting of both NF-ZA and EZ-I result, respectively, in the absence or duplication of both dorsal and ventral nasal capsule components. The present work shows that early ectodermal and endodermal signals instruct different contingents of CNCCs to form the ectethmoid and the mesethmoid, which then assemble to form a complete nasal capsule.
Collapse
Affiliation(s)
- Yorick Gitton
- Evolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Jin YR, Turcotte TJ, Crocker AL, Han XH, Yoon JK. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction. Dev Biol 2011; 352:1-13. [PMID: 21237142 DOI: 10.1016/j.ydbio.2011.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 12/21/2022]
Abstract
R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm-mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2(-/-) embryos is likely responsible for increased cell apoptosis. Additionally, we found that the cleft palate in Rspo2(-/-) mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal-mesenchymal interaction and a novel genetic factor for cleft palate.
Collapse
Affiliation(s)
- Yong-Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME 04074, USA
| | | | | | | | | |
Collapse
|
131
|
Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression. Dev Biol 2010; 350:511-9. [PMID: 21185284 DOI: 10.1016/j.ydbio.2010.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 01/23/2023]
Abstract
The canonical Wnt/β-catenin signaling plays essential role in development and diseases. Previous studies have implicated the canonical Wnt/β-catenin signaling in the regulation of normal palate development, but functional Wnt/β-catenin signaling and its tissue-specific activities remain to be accurately elucidated. In this study, we show that functional Wnt/β-catenin signaling operates primarily in the palate epithelium, particularly in the medial edge epithelium (MEE) of the developing mouse palatal shelves, consistent with the expression patterns of β-catenin and several Wnt ligands and receptors. Epithelial specific inactivation of β-catenin by the K14-Cre transgenic allele abolishes the canonical Wnt signaling activity in the palatal epithelium and leads to an abnormal persistence of the medial edge seam (MES), ultimately causing a cleft palate formation, a phenotype resembling that in Tgfβ3 mutant mice. Consistent with this phenotype is the down-regulation of Tgfβ3 and suppression of apoptosis in the MEE of the β-catenin mutant palatal shelves. Application of exogenous Tgfβ3 to the mutant palatal shelves in organ culture rescues the midline seam phenotype. On the other hand, expression of stabilized β-catenin in the palatal epithelium also disrupts normal palatogenesis by activating ectopic Tgfβ3 expression in the palatal epithelium and causing an aberrant fusion between the palate shelf and mandible in addition to severely deformed palatal shelves. Collectively, our results demonstrate an essential role for Wnt/β-catenin signaling in the epithelial component at the step of palate fusion during palate development by controlling the expression of Tgfβ3 in the MEE.
Collapse
|
132
|
Cordero DR, Brugmann S, Chu Y, Bajpai R, Jame M, Helms JA. Cranial neural crest cells on the move: their roles in craniofacial development. Am J Med Genet A 2010; 155A:270-9. [PMID: 21271641 DOI: 10.1002/ajmg.a.33702] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/17/2010] [Indexed: 12/15/2022]
Abstract
The craniofacial region is assembled through the active migration of cells and the rearrangement and sculpting of facial prominences and pharyngeal arches, which consequently make it particularly susceptible to a large number of birth defects. Genetic, molecular, and cellular processes must be temporally and spatially regulated to culminate in the three-dimension structures of the face. The starting constituent for the majority of skeletal and connective tissues in the face is a pluripotent population of cells, the cranial neural crest cells (NCCs). In this review we discuss the newest scientific findings in the development of the craniofacial complex as related to NCCs. Furthermore, we present recent findings on NCC diseases called neurocristopathies and, in doing so, provide clinicians with new tools for understanding a growing number of craniofacial genetic disorders.
Collapse
Affiliation(s)
- Dwight R Cordero
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
133
|
Lyashenko N, Weissenböck M, Sharir A, Erben RG, Minami Y, Hartmann C. Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded. Dev Dyn 2010; 239:2266-77. [PMID: 20593419 DOI: 10.1002/dvdy.22362] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ror1 is a member of the Ror-family receptor tyrosine kinases. Ror1 is broadly expressed in various tissues and organs during mouse embryonic development. However, so far little is known about its function. The closely related family member Ror2 was shown to play a crucial role in skeletogenesis and has been shown to act as a co-receptor for Wnt5a mediating non-canonical Wnt-signaling. Previously, it has been shown that during embryonic development Ror1 acts in part redundantly with Ror2 in the skeletal and cardiovascular systems. In this study, we report that loss of the orphan receptor Ror1 results in a variety of phenotypic defects within the skeletal and urogenital systems and that Ror1 mutant mice display a postnatal growth retardation phenotype.
Collapse
|
134
|
Curtin E, Hickey G, Kamel G, Davidson AJ, Liao EC. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development. Mech Dev 2010; 128:104-15. [PMID: 21093584 DOI: 10.1016/j.mod.2010.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/06/2010] [Accepted: 11/11/2010] [Indexed: 12/11/2022]
Abstract
Wnt activity is critical in craniofacial morphogenesis. Dysregulation of Wnt/β-catenin signaling results in significant alterations in the facial form, and has been implicated in cleft palate phenotypes in mouse and man. In zebrafish, we show that wnt9a is expressed in the pharyngeal arch, oropharyngeal epithelium that circumscribes the ethmoid plate, and ectodermal cells superficial to the lower jaw structures. Alcian blue staining of morpholino-mediated knockdown of wnt9a results in loss of the ethmoid plate, absence of lateral and posterior parachordals, and significant abrogation of the lower jaw structures. Analysis of cranial neural crest cells in the sox10:eGFP transgenic demonstrates that the wnt9a is required early during pharyngeal development, and confirms that the absence of Alcian blue staining is due to absence of neural crest derived chondrocytes. Molecular analysis of genes regulating cranial neural crest migration and chondrogenic differentiation suggest that wnt9a is dispensable for early cranial neural crest migration, but is required for chondrogenic development of major craniofacial structures. Taken together, these data corroborate the central role for Wnt signaling in vertebrate craniofacial development, and reveal that wnt9a provides the signal from the pharyngeal epithelium to support craniofacial chondrogenic morphogenesis in zebrafish.
Collapse
Affiliation(s)
- Eugene Curtin
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
135
|
Ectodermal Wnt/β-catenin signaling shapes the mouse face. Dev Biol 2010; 349:261-9. [PMID: 21087601 DOI: 10.1016/j.ydbio.2010.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/14/2010] [Accepted: 11/05/2010] [Indexed: 01/11/2023]
Abstract
The canonical Wnt/β-catenin pathway is an essential component of multiple developmental processes. To investigate the role of this pathway in the ectoderm during facial morphogenesis, we generated conditional β-catenin mouse mutants using a novel ectoderm-specific Cre recombinase transgenic line. Our results demonstrate that ablating or stabilizing β-catenin in the embryonic ectoderm causes dramatic changes in facial morphology. There are accompanying alterations in the expression of Fgf8 and Shh, key molecules that establish a signaling center critical for facial patterning, the frontonasal ectodermal zone (FEZ). These data indicate that Wnt/β-catenin signaling within the ectoderm is critical for facial development and further suggest that this pathway is an important mechanism for generating the diverse facial shapes of vertebrates during evolution.
Collapse
|
136
|
Wang Y, Song L, Zhou CJ. The canonical Wnt/β-catenin signaling pathway regulates Fgf signaling for early facial development. Dev Biol 2010; 349:250-60. [PMID: 21070765 DOI: 10.1016/j.ydbio.2010.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 12/11/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway has implications in early facial development; yet, its function and signaling mechanism remain poorly understood. We report here that the frontonasal and upper jaw primordia cannot be formed after conditional ablation of β-catenin with Foxg1-Cre mice in the facial ectoderm and the adjacent telencephalic neuroepithelium. Gene expression of several cell-survival and patterning factors, including Fgf8, Fgf3, and Fgf17, is dramatically diminished in the anterior neural ridge (ANR, a rostral signaling center) and/or the adjacent frontonasal ectoderm of the β-catenin conditional mutant mice. In addition, Shh expression is diminished in the ventral telencephalon of the mutants, while Tcfap2a expression is less affected in the facial primordia. Apoptosis occurs robustly in the rostral head tissues following inactivation of Fgf signaling in the conditional mutants. Consequently, the upper jaw, nasal, ocular and telencephalic structures are absent, but the tongue and mandible are relatively developed in the conditional mutants at birth. Using molecular biological approaches, we demonstrate that the Fgf8 gene is transcriptionally targeted by Wnt/β-catenin signaling during early facial and forebrain development. Furthermore, we show that conditional gain-of-function of β-catenin signaling causes drastic upregulation of Fgf8 mRNA in the ANR and the entire facial ectoderm, which also arrests facial and forebrain development. Taken together, our results suggest that canonical Wnt/β-catenin signaling is required for early development of the mammalian face and related head structures, which mainly or partly acts through the initiation and modulation of balanced Fgf signaling activity.
Collapse
Affiliation(s)
- Yongping Wang
- Department of Cell Biology and Human Anatomy, University of California, Davis, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
137
|
Current perspectives on the etiology of agnathia-otocephaly. Eur J Med Genet 2010; 53:358-66. [DOI: 10.1016/j.ejmg.2010.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 09/05/2010] [Indexed: 11/20/2022]
|
138
|
Popelut A, Rooker SM, Leucht P, Medio M, Brunski JB, Helms JA. The acceleration of implant osseointegration by liposomal Wnt3a. Biomaterials 2010; 31:9173-81. [PMID: 20864159 DOI: 10.1016/j.biomaterials.2010.08.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/19/2010] [Indexed: 11/29/2022]
Abstract
The strength of a Wnt-based strategy for tissue regeneration lies in the central role that Wnts play in healing. Tissue injury triggers local Wnt activation at the site of damage, and this Wnt signal is required for the repair and/or regeneration of almost all tissues including bone, neural tissues, myocardium, and epidermis. We developed a biologically based approach to create a transient elevation in Wnt signaling in peri-implant tissues, and in doing so, accelerated bone formation around the implant. Our subsequent molecular and cellular analyses provide mechanistic insights into the basis for this pro-osteogenic effect. Given the essential role of Wnt signaling in bone formation, this protein-based approach may have widespread application in implant osseointegration.
Collapse
Affiliation(s)
- Antoine Popelut
- Department of Periodontology, Service of Odontology, Hotel-Dieu Hospital, AP-HP, U.F.R. of Odontology, Paris 7 Denis Diderot University, Paris, France
| | | | | | | | | | | |
Collapse
|
139
|
Levi B, Brugmann S, Longaker MT. Discussion: Hes1 is required for the development of craniofacial structures derived from ectomesenchymal neural crest cells. J Craniofac Surg 2010; 21:1450-1. [PMID: 20818250 DOI: 10.1097/scs.0b013e3181ecc54b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
140
|
Currier N, Chea K, Hlavacova M, Sussman DJ, Seldin DC, Dominguez I. Dynamic expression of a LEF-EGFP Wnt reporter in mouse development and cancer. Genesis 2010; 48:183-94. [PMID: 20146356 DOI: 10.1002/dvg.20604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have characterized a transgenic mouse line in which enhanced green fluorescent protein (EGFP) is expressed under the control of multimerized LEF-1 responsive elements. In embryos, EGFP was detected in known sites of Wnt activation, including the primitive streak, mesoderm, neural tube, somites, heart, limb buds, mammary placodes, and whisker follicles. In vitro cultured transgenic embryonic fibroblasts upregulated EGFP expression in response to activation of Wnt signaling by GSK3beta inhibition. Mammary tumor cell lines derived from female LEF-EGFP transgenic mice treated with the carcinogen 7, 12-dimethylbenz[a]anthracene (DMBA) also express EGFP. Thus, this transgenic line is useful for ex vivo and in vitro studies of Wnt signaling in development and cancer.
Collapse
Affiliation(s)
- Nicolas Currier
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
141
|
Nikopensius T, Jagomägi T, Krjutskov K, Tammekivi V, Saag M, Prane I, Piekuse L, Akota I, Barkane B, Krumina A, Ambrozaityte L, Matuleviciene A, Kucinskiene ZA, Lace B, Kucinskas V, Metspalu A. Genetic variants in COL2A1, COL11A2, and IRF6 contribute risk to nonsyndromic cleft palate. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:748-56. [PMID: 20672350 DOI: 10.1002/bdra.20700] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Orofacial clefts are among the most common birth defects with a strong genetic component. Nonsyndromic cleft palate (NSCP) is a complex malformation determined by the interaction between multiple genes and environmental risk factors. METHODS We conducted a case-control association study to investigate the role of 40 candidate genes in predisposition to orofacial clefting. Five hundred ninety-one haplotype tagging single nucleotide polymorphism (tagSNPs) were genotyped in a clefting sample from the Baltic region, composed of 104 patients with nonsyndromic cleft palate and 606 controls from an Estonian, Latvian, and Lithuanian population. RESULTS In case-control comparisons, the minor alleles of IRF6 rs17389541 (p = 5.45 × 10(-4)) and COL2A1 rs1793949 (p = 7.26 × 10(-4)) were associated with increased risk of NSCP. Multiple haplotypes in COL2A1 and COL11A2 and haplotypes in WNT3, FGFR1, and CLPTM1were associated with NSCP. The strongest associations were found for IRF6 haplotype rs17389541/rs9430018 GT (p = 2.23 × 10(-4)) and COL2A1 haplotype rs12822608/rs6823 GC (p = 3.68 × 10(-4)). The strongest epistatic interactions were observed between MSX1 and BMP2, FGF1 and PVRL2, and COL2A1 and FGF2 genes. CONCLUSIONS This study provides for the first time evidence of the implication of IRF6, COL2A1, and WNT3 in the occurrence of NSCP. It is likely that variation in cartilage collagen II and XI genes, IRF6, and the Wnt and FGF signaling pathway genes contributes susceptibility to nonsyndromic cleft palate in Northeastern European populations.
Collapse
Affiliation(s)
- Tiit Nikopensius
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, Schleiffarth JR, Billington CJ, van Bokhoven H, Hoogeboom JM, Mazzeu JF, Petryk A, Schimmenti LA, Brunner HG, Ekker SC, Lohr JL. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn 2010; 239:327-37. [PMID: 19918918 DOI: 10.1002/dvdy.22156] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Robinow syndrome is a skeletal dysplasia with both autosomal dominant and autosomal recessive inheritance patterns. It is characterized by short stature, limb shortening, genital hypoplasia, and craniofacial abnormalities. The etiology of dominant Robinow syndrome is unknown; however, the phenotypically more severe autosomal recessive form of Robinow syndrome has been associated with mutations in the orphan tyrosine kinase receptor, ROR2, which has recently been identified as a putative WNT5A receptor. Here, we show that two different missense mutations in WNT5A, which result in amino acid substitutions of highly conserved cysteines, are associated with autosomal dominant Robinow syndrome. One mutation has been found in all living affected members of the original family described by Meinhard Robinow and another in a second unrelated patient. These missense mutations result in decreased WNT5A activity in functional assays of zebrafish and Xenopus development. This work suggests that a WNT5A/ROR2 signal transduction pathway is important in human craniofacial and skeletal development and that proper formation and growth of these structures is sensitive to variations in WNT5A function.
Collapse
Affiliation(s)
- Anthony D Person
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Rooker SM, Liu B, Helms JA. Role of Wnt signaling in the biology of the periodontium. Dev Dyn 2010; 239:140-7. [PMID: 19530172 DOI: 10.1002/dvdy.22003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Continuously erupting teeth have associated with them a continuously regenerating periodontal ligament, but the factors that control this amazing regenerative potential are unknown. We used genetic strategies to show that the periodontal ligament arises from the cranial neural crest. Despite their histological similarity, the periodontal ligament of continuously erupting incisor teeth differs dramatically from the periodontal ligament of molar teeth. The most notable difference was in the distribution of Wnt responsive cells in the incisor periodontal ligament, which coincided with regions of periodontal ligament cell proliferation. We discuss these findings in the context of dental tissue regeneration.
Collapse
Affiliation(s)
- Scott M Rooker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
144
|
Fuerer C, Nusse R. Lentiviral vectors to probe and manipulate the Wnt signaling pathway. PLoS One 2010; 5:e9370. [PMID: 20186325 PMCID: PMC2826402 DOI: 10.1371/journal.pone.0009370] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/03/2010] [Indexed: 01/19/2023] Open
Abstract
Background The Wnt signaling pathway plays key roles in development, adult tissue homeostasis and stem cell maintenance. Further understanding of the function of Wnt signaling in specific cell types could benefit from lentiviral vectors expressing reporters for the Wnt pathway or vectors interfering with signaling. Methodology/Principal Findings We have developed a set of fluorescent and luminescent lentiviral vectors that report Wnt signaling activity and discriminate between negative and uninfected cells. These vectors possess a 7xTcf-eGFP or 7xTcf-FFluc (Firefly Luciferase) reporter cassette followed by either an SV40-mCherry or SV40-PuroR (puromycin N-acetyltransferase) selection cassette. We have also constructed a vector that allows drug-based selection of cells with activated Wnt signaling by placing PuroR under the control of the 7xTcf promoter. Lastly, we have expressed dominant-negative Tcf4 (dnTcf4) or constitutively active beta-catenin (β-catenin4A) from the hEF1α promoter in a SV40-PuroR or SV40-mCherry backbone to create vectors that inhibit or activate the Wnt signaling pathway. These vectors will be made available to the scientific community through Addgene. Conclusions These novel lentiviruses are efficient tools to probe and manipulate Wnt signaling. The use of a selection cassette in Wnt-reporter viruses enables discriminating between uninfected and non-responsive cells, an important requirement for experiments where selection of clones is not possible. The use of a chemiluminescent readout enables quantification of signaling. Finally, selectable vectors can be used to either inhibit or activate the Wnt signaling pathway. Altogether, these vectors can probe and modulate the Wnt signaling pathway in experimental settings where persistence of the transgene or gene transfer cannot be accomplished by non-viral techniques.
Collapse
Affiliation(s)
- Christophe Fuerer
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
145
|
Brugmann SA, Allen NC, James AW, Mekonnen Z, Madan E, Helms JA. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet 2010; 19:1577-92. [PMID: 20106874 DOI: 10.1093/hmg/ddq030] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human faces exhibit enormous variation. When pathological conditions are superimposed on normal variation, a nearly unbroken series of facial morphologies is produced. When viewed in full, this spectrum ranges from cyclopia and hypotelorism to hypertelorism and facial duplications. Decreased Hedgehog pathway activity causes holoprosencephaly and hypotelorism. Here, we show that excessive Hedgehog activity, caused by truncating the primary cilia on cranial neural crest cells, causes hypertelorism and frontonasal dysplasia (FND). Elimination of the intraflagellar transport protein Kif3a leads to excessive Hedgehog responsiveness in facial mesenchyme, which is accompanied by broader expression domains of Gli1, Ptc and Shh, and reduced expression domains of Gli3. Furthermore, broader domains of Gli1 expression correspond to areas of enhanced neural crest cell proliferation in the facial prominences of Kif3a conditional knockouts. Avian Talpid embryos that lack primary cilia exhibit similar molecular changes and similar facial phenotypes. Collectively, these data support our hypothesis that a severe narrowing of the facial midline and excessive expansion of the facial midline are both attributable to disruptions in Hedgehog pathway activity. These data also raise the possibility that genes encoding ciliary proteins are candidates for human conditions of hypertelorism and FNDs.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
146
|
Mani P, Jarrell A, Myers J, Atit R. Visualizing canonical Wnt signaling during mouse craniofacial development. Dev Dyn 2010; 239:354-63. [PMID: 19718763 PMCID: PMC2921970 DOI: 10.1002/dvdy.22072] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling is critical for proper development of the head and face in the mouse embryo, playing important roles in various aspects of craniofacial development ranging from axis formation to survival of cranial neural crest cells to patterning of the brain. The signaling requirements for the development of different cell lineages in the head and face are active areas of investigation. In this study, we use a recently developed TCF/Lef-LacZ transgenic reporter mouse to characterize the expression of canonical Wnt signaling activity during craniofacial development. We present an atlas of representative sections to show embryonic craniofacial development. Our results demonstrate a pattern of sustained Wnt signaling reporter activity in most tissues which suggests sequential roles in craniofacial development.
Collapse
Affiliation(s)
- Preethi Mani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
147
|
Brugmann SA, Powder KE, Young NM, Goodnough LH, Hahn SM, James AW, Helms JA, Lovett M. Comparative gene expression analysis of avian embryonic facial structures reveals new candidates for human craniofacial disorders. Hum Mol Genet 2009; 19:920-30. [PMID: 20015954 DOI: 10.1093/hmg/ddp559] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammals and birds have common embryological facial structures, and appear to employ the same molecular genetic developmental toolkit. We utilized natural variation found in bird beaks to investigate what genes drive vertebrate facial morphogenesis. We employed cross-species microarrays to describe the molecular genetic signatures, developmental signaling pathways and the spectrum of transcription factor (TF) gene expression changes that differ between cranial neural crest cells in the developing beaks of ducks, quails and chickens. Surprisingly, we observed that the neural crest cells established a species-specific TF gene expression profile that predates morphological differences between the species. A total of 232 genes were differentially expressed between the three species. Twenty-two of these genes, including Fgfr2, Jagged2, Msx2, Satb2 and Tgfb3, have been previously implicated in a variety of mammalian craniofacial defects. Seventy-two of the differentially expressed genes overlap with un-cloned loci for human craniofacial disorders, suggesting that our data will provide a valuable candidate gene resource for human craniofacial genetics. The most dramatic changes between species were in the Wnt signaling pathway, including a 20-fold up-regulation of Dkk2, Fzd1 and Wnt1 in the duck compared with the other two species. We functionally validated these changes by demonstrating that spatial domains of Wnt activity differ in avian beaks, and that Wnt signals regulate Bmp pathway activity and promote regional growth in facial prominences. This study is the first of its kind, extending on previous work in Darwin's finches and provides the first large-scale insights into cross-species facial morphogenesis.
Collapse
Affiliation(s)
- S A Brugmann
- Department of Plastic and Reconstructive Surgery, Hagey Laboratory, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
New directions in craniofacial morphogenesis. Dev Biol 2009; 341:84-94. [PMID: 19941846 DOI: 10.1016/j.ydbio.2009.11.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/29/2009] [Accepted: 11/17/2009] [Indexed: 01/15/2023]
Abstract
The vertebrate head is an extremely complicated structure: development of the head requires tissue-tissue interactions between derivates of all the germ layers and coordinated morphogenetic movements in three dimensions. In this review, we highlight a number of recent embryological studies, using chicken, frog, zebrafish and mouse, which have identified crucial signaling centers in the embryonic face. These studies demonstrate how small variations in growth factor signaling can lead to a diversity of phenotypic outcomes. We also discuss novel genetic studies, in human, mouse and zebrafish, which describe cell biological mechanisms fundamental to the growth and morphogenesis of the craniofacial skeleton. Together, these findings underscore the complex interactions leading to species-specific morphology. These and future studies will improve our understanding of the genetic and environmental influences underlying human craniofacial anomalies.
Collapse
|
149
|
Song L, Li Y, Wang K, Wang YZ, Molotkov A, Gao L, Zhao T, Yamagami T, Wang Y, Gan Q, Pleasure DE, Zhou CJ. Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development 2009; 136:3161-71. [PMID: 19700620 DOI: 10.1242/dev.037440] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neither the mechanisms that govern lip morphogenesis nor the cause of cleft lip are well understood. We report that genetic inactivation of Lrp6, a co-receptor of the Wnt/beta-catenin signaling pathway, leads to cleft lip with cleft palate. The activity of a Wnt signaling reporter is blocked in the orofacial primordia by Lrp6 deletion in mice. The morphological dynamic that is required for normal lip formation and fusion is disrupted in these mutants. The expression of the homeobox genes Msx1 and Msx2 is dramatically reduced in the mutants, which prevents the outgrowth of orofacial primordia, especially in the fusion site. We further demonstrate that Msx1 and Msx2 (but not their potential regulator Bmp4) are the downstream targets of the Wnt/beta-catenin signaling pathway during lip formation and fusion. By contrast, a ;fusion-resistant' gene, Raldh3 (also known as Aldh1a3), that encodes a retinoic acid-synthesizing enzyme is ectopically expressed in the upper lip primordia of Lrp6-deficient embryos, indicating a region-specific role of the Wnt/beta-catenin signaling pathway in repressing retinoic acid signaling. Thus, the Lrp6-mediated Wnt signaling pathway is required for lip development by orchestrating two distinctively different morphogenetic movements.
Collapse
Affiliation(s)
- Lanying Song
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Liu B, Rooker SM, Helms JA. Molecular control of facial morphology. Semin Cell Dev Biol 2009; 21:309-13. [PMID: 19747977 DOI: 10.1016/j.semcdb.2009.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 12/31/2022]
Abstract
We present a developmental perspective on the concept of phylotypic and phenotypic stages of craniofacial development. Within orders of avians and mammals, a phylotypic period exists when the morphology of the facial prominences is minimally divergent. We postulate that species-specific facial variations arise as a result of subtle shifts in the timing and the duration of molecular pathway activity (e.g., heterochrony), and present evidence demonstrating a critical role for Wnt and FGF signaling in this process. The same molecular pathways that shape the vertebrate face are also implicated in craniofacial deformities, indicating that comparisons between and among animal species may represent a novel method for the identification of human craniofacial disease genes.
Collapse
Affiliation(s)
- B Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA 94305, United States
| | | | | |
Collapse
|