101
|
Ikuta T. Evolution of invertebrate deuterostomes and Hox/ParaHox genes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2011; 9:77-96. [PMID: 21802045 PMCID: PMC5054439 DOI: 10.1016/s1672-0229(11)60011-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Transcription factors encoded by Antennapedia-class homeobox genes play crucial roles in controlling development of animals, and are often found clustered in animal genomes. The Hox and ParaHox gene clusters have been regarded as evolutionary sisters and evolved from a putative common ancestral gene complex, the ProtoHox cluster, prior to the divergence of the Cnidaria and Bilateria (bilaterally symmetrical animals). The Deuterostomia is a monophyletic group of animals that belongs to the Bilateria, and a sister group to the Protostomia. The deuterostomes include the vertebrates (to which we belong), invertebrate chordates, hemichordates, echinoderms and possibly xenoturbellids, as well as acoelomorphs. The studies of Hox and ParaHox genes provide insights into the origin and subsequent evolution of the bilaterian animals. Recently, it becomes apparent that among the Hox and ParaHox genes, there are significant variations in organization on the chromosome, expression pattern, and function. In this review, focusing on invertebrate deuterostomes, I first summarize recent findings about Hox and ParaHox genes. Next, citing unsolved issues, I try to provide clues that might allow us to reconstruct the common ancestor of deuterostomes, as well as understand the roles of Hox and ParaHox genes in the development and evolution of deuterostomes.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Uruma, Japan.
| |
Collapse
|
102
|
Abstract
The tunicates, or urochordates, constitute a large group of marine animals whose recent common ancestry with vertebrates is reflected in the tadpole-like larvae of most tunicates. Their diversity and key phylogenetic position are enhanced, from a research viewpoint, by anatomically simple and transparent embryos, compact rapidly evolving genomes, and the availability of powerful experimental and computational tools with which to study these organisms. Tunicates are thus a powerful system for exploring chordate evolution and how extreme variation in genome sequence and gene regulatory network architecture is compatible with the preservation of an ancestral chordate body plan.
Collapse
Affiliation(s)
- Patrick Lemaire
- Institut du Biologie de Développement de Marseille Luminy (IBDML, UMR 6216, CNRS, Université de la Méditerranée), Parc Scientifique de Luminy Case 907, F-13288, Marseille Cedex 9, France
- Centre de Recherches en Biochimie Macromoléculaire (CRBM, UMR5237, CNRS, Universités Montpellier 1 and 2), 1919 route de Mende, F-34293, Montpellier Cedex 05, France
| |
Collapse
|
103
|
D'Aniello E, Pezzotti MR, Locascio A, Branno M. Onecut is a direct neural-specific transcriptional activator of Rx in Ciona intestinalis. Dev Biol 2011; 355:358-71. [PMID: 21600895 DOI: 10.1016/j.ydbio.2011.05.584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 11/28/2022]
Abstract
Retinal homeobox (Rx) genes play a crucial and conserved role in the development of the anterior neural plate of metazoans. During chordate evolution, they have also acquired a novel function in the control of eye formation and neurogenesis. To characterize the Rx genetic cascade and shed light on the mechanisms that led to the acquisition of this new role in eye development, we studied Rx transcriptional regulation using the ascidian, Ciona intestinalis. Through deletion analysis of the Ci-Rx promoter, we have identified two distinct enhancer elements able to induce Ci-Rx specific expression in the anterior part of the CNS and in the photosensory organ at tailbud and larva stages. Bioinformatic analysis highlighted the presence of two Onecut binding sites contained in these enhancers, so we explored the role of this transcription factor in the regulation of Ci-Rx. By in situ hybridization, we first confirmed that these genes are co-expressed in the same cells. Through a series of in vivo and in vitro experiments, we then demonstrated that the two Onecut sites are responsible for enhancer activation in Ci-Rx endogenous territories. We also demonstrated in vivo that Onecut misexpression is able to induce ectopic activation of the Rx promoter. Finally, we demonstrated that Ci-Onecut is able to promote Ci-Rx expression in the sensory vesicle. Together, these results support the conclusion that in Ciona embryogenesis, Ci-Rx expression is under the control of the Onecut transcription factor and that this factor is necessary and sufficient to specifically activate Ci-Rx through two enhancer elements.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | | | |
Collapse
|
104
|
Hudson C, Ba M, Rouvière C, Yasuo H. Divergent mechanisms specify chordate motoneurons: evidence from ascidians. Development 2011; 138:1643-52. [DOI: 10.1242/dev.055426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ascidians are members of the vertebrate sister group Urochordata. Their larvae exhibit a chordate body plan, which forms by a highly accelerated embryonic strategy involving a fixed cell lineage and small cell numbers. We report a detailed analysis of the specification of three of the five pairs of motoneurons in the ascidian Ciona intestinalis and show that despite well-conserved gene expression patterns and embryological outcomes compared with vertebrates, key signalling molecules have adopted different roles. We employed a combination of cell ablation and gene manipulation to analyse the function of two signalling molecules with key roles in vertebrate motoneuron specification that are known to be expressed equivalently in ascidians: the inducer Sonic hedgehog, produced ventrally by the notochord and floorplate; and the inhibitory BMP2/4, produced on the lateral/dorsal side of the neural plate. Our surprising conclusion is that neither BMP2/4 signalling nor the ventral cell lineages expressing hedgehog play crucial roles in motoneuron formation in Ciona. Furthermore, BMP2/4 overexpression induced ectopic motoneurons, the opposite of its vertebrate role. We suggest that the specification of motoneurons has been modified during ascidian evolution, such that BMP2/4 has adopted a redundant inductive role rather than a repressive role and Nodal, expressed upstream of BMP2/4 in the dorsal neural tube precursors, acts as a motoneuron inducer during normal development. Thus, our results uncover significant differences in the mechanisms used for motoneuron specification within chordates and also highlight the dangers of interpreting equivalent expression patterns as indicative of conserved function in evo-devo studies.
Collapse
Affiliation(s)
- Clare Hudson
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Moly Ba
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Christian Rouvière
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| | - Hitoyoshi Yasuo
- UPMC University of Paris 06, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, BP28, 06230, Villefranche-sur-mer, France
- CNRS, UMR7009, Developmental Biology Unit, Observatoire Océanologique de Villefranche-sur-mer, 06230, BP28, Villefranche-sur-mer, France
| |
Collapse
|
105
|
Squarzoni P, Parveen F, Zanetti L, Ristoratore F, Spagnuolo A. FGF/MAPK/Ets signaling renders pigment cell precursors competent to respond to Wnt signal by directly controlling Ci-Tcf transcription. Development 2011; 138:1421-32. [DOI: 10.1242/dev.057323] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FGF and Wnt pathways constitute two fundamental signaling cascades, which appear to crosstalk in cooperative or antagonistic fashions in several developmental processes. In vertebrates, both cascades are involved in pigment cell development, but the possible interplay between FGF and Wnt remains to be elucidated. In this study, we have investigated the role of FGF and Wnt signaling in development of the pigment cells in the sensory organs of C. intestinalis. This species possesses the basic features of an ancestral chordate, thus sharing conserved molecular developmental mechanisms with vertebrates. Chemical and targeted perturbation approaches revealed that a FGF signal, spreading in time from early gastrulation to neural tube closure, is responsible for pigment cell precursor induction. This signal is transmitted via the MAPK pathway, which activates the Ci-Ets1/2 transcription factor. Targeted perturbation of Ci-TCF, a downstream factor of the canonical Wnt pathway, indicated its contribution to pigment cell differentiation Furthermore, analyses of the Ci-Tcf regulatory region revealed the involvement of the FGF effector, Ci-Ets1/2, in Ci-Tcf transcriptional regulation in pigment cell precursors. Our results indicate that both FGF and the canonical Wnt pathways are involved in C. intestinalis pigment cell induction and differentiation. Moreover, we present a case of direct transcriptional regulation exerted by the FGF signaling cascade, via the MAPK-ERK-Ets1/2, on the Wnt downstream gene Ci-Tcf. Several examples of FGF/Wnt signaling crosstalk have been described in different developmental processes; however, to our knowledge, FGF-Wnt cross-interaction at the transcriptional level has never been previously reported. These findings further contribute to clarifying the multitude of FGF-Wnt pathway interactions.
Collapse
Affiliation(s)
- Paola Squarzoni
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Fateema Parveen
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Laura Zanetti
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Filomena Ristoratore
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Antonietta Spagnuolo
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
106
|
Yamamoto K, Vernier P. The evolution of dopamine systems in chordates. Front Neuroanat 2011; 5:21. [PMID: 21483723 PMCID: PMC3070214 DOI: 10.3389/fnana.2011.00021] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/15/2011] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) neurotransmission in the central nervous system (CNS) is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters, and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory–motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2) revealed new populations of DA-synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina, and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g., teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain–hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates.
Collapse
Affiliation(s)
- Kei Yamamoto
- Neurobiology and Development (UPR3294), Institute of Neurobiology Alfred Fessard, CNRS Gif-sur-Yvette, France
| | | |
Collapse
|
107
|
Stolfi A, Levine M. Neuronal subtype specification in the spinal cord of a protovertebrate. Development 2011; 138:995-1004. [DOI: 10.1242/dev.061507] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The visceral ganglion (VG) comprises the basic motor pool of the swimming ascidian tadpole and has been proposed to be homologous to the spinal cord of vertebrates. Here, we use cis-regulatory modules, or enhancers, from transcription factor genes expressed in single VG neuronal precursors to label and identify morphologically distinct moto- and interneuron subtypes in the Ciona intestinalis tadpole larva. We also show that the transcription factor complement present in each differentiating neuron correlates with its unique morphology. Forced expression of putative interneuron markers Dmbx and Vsx results in ectopic interneuron-like cells at the expense of motoneurons. Furthermore, by perturbing upstream signaling events, we can change the transcription factor expression profile and subsequent identity of the different precursors. Perturbation of FGF signaling transforms the entire VG into Vsx+/Pitx+ putative cholinergic interneurons, while perturbation of Notch signaling results in duplication of Dmbx+ decussating interneurons. These experiments demonstrate the connection between transcriptional regulation and the neuronal subtype diversity underlying swimming behavior in a simple chordate.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Integrative Genomics, Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Levine
- Center for Integrative Genomics, Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
108
|
Hamada M, Shimozono N, Ohta N, Satou Y, Horie T, Kawada T, Satake H, Sasakura Y, Satoh N. Expression of neuropeptide- and hormone-encoding genes in the Ciona intestinalis larval brain. Dev Biol 2011; 352:202-14. [PMID: 21237141 DOI: 10.1016/j.ydbio.2011.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023]
Abstract
Despite containing only approximately 330 cells, the central nervous system (CNS) of Ciona intestinalis larvae has an architecture that is similar to the vertebrate CNS. Although only vertebrates have a distinct hypothalamus-the source of numerous neurohormone peptides that play pivotal roles in the development, function, and maintenance of various neuronal and endocrine systems, it is suggested that the Ciona brain contains a region that corresponds to the vertebrate hypothalamus. To identify genes expressed in the brain, we isolated brain vesicles using transgenic embryos carrying Ci-β-tubulin(promoter)::Kaede, which resulted in robust Kaede expression in the larval CNS. The associated transcriptome was investigated using microarray analysis. We identified 565 genes that were preferentially expressed in the larval brain. Among these genes, 11 encoded neurohormone peptides including such hypothalamic peptides as gonadotropin-releasing hormone and oxytocin/vasopressin. Six of the identified peptide genes had not been previously described. We also found that genes encoding receptors for some of the peptides were expressed in the brain. Interestingly, whole-mount in situ hybridization showed that most of the peptide genes were expressed in the ventral brain. This catalog of the genes expressed in the larval brain should help elucidate the evolution, development, and functioning of the chordate brain.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa 904-0412, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 2011; 469:525-8. [PMID: 21196932 DOI: 10.1038/nature09631] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/27/2010] [Indexed: 12/27/2022]
Abstract
In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.
Collapse
|
110
|
Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 2010; 6:e1001259. [PMID: 21203442 PMCID: PMC3009687 DOI: 10.1371/journal.pgen.1001259] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022] Open
Abstract
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band") region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Collapse
Affiliation(s)
- Alexandra Saudemont
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Flavien Mekpoh
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Magali Quirin
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - François Lapraz
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Ryan Range
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Arnaud Oisel
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Patrick Wincker
- Génoscope (CEA), UMR8030, CNRS and Université d'Evry, Evry, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
111
|
Tulin S, Stathopoulos A. Extending the family table: Insights from beyond vertebrates into the regulation of embryonic development by FGFs. ACTA ACUST UNITED AC 2010; 90:214-27. [PMID: 20860061 DOI: 10.1002/bdrc.20182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the discovery of fibroblast growth factors (FGFs) much focus has been placed on elucidating the roles for each vertebrate FGF ligand, receptor, and regulating molecules in the context of vertebrate development, human disorders and cancer. Studies in human, mouse, frog, chick, and zebrafish have made great contributions to our understanding of the role of FGFs in specific processes. However, in recent years, as more genomes are sequenced, information is becoming available from many non-vertebrate models and a more complete picture of the FGF superfamily as a whole is emerging. In some cases, less redundancy in these FGF signaling systems may allow for more mechanistic insights. Studies in sea anemones have highlighted how ancient FGF signaling is and helped provide insight into the evolution of the FGF gene family. Work in nematodes has shown that different splice forms can be used for functional specificity in invertebrate FGF signaling. Comparing FGFs between urochordates and vertebrates as well as between different insect species reveals important clues into the process of gene loss, duplication and subfunctionalization of FGFs throughout evolution. Finally, comparing all members of the FGF ligand superfamily reveals variability in many properties, which may point to a feature of FGFs as being highly adaptable with regards to protein structure and signaling mechanism. Further studies on FGF signaling outside of vertebrates is likely to continue to complement work in vertebrates by contributing additional insights to the FGF field and providing unexpected information that could be used for medical applications.
Collapse
Affiliation(s)
- Sarah Tulin
- California Institute of Technology, Pasadena, USA.
| | | |
Collapse
|
112
|
Aerts S, Quan XJ, Claeys A, Naval Sanchez M, Tate P, Yan J, Hassan BA. Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification. PLoS Biol 2010; 8:e1000435. [PMID: 20668662 PMCID: PMC2910651 DOI: 10.1371/journal.pbio.1000435] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/14/2010] [Indexed: 01/08/2023] Open
Abstract
CisTarget X is a novel computational method that accurately predicts Atonal governed regulatory networks in the retina of the fruit fly. A comprehensive systems-level understanding of developmental programs requires the mapping of the underlying gene regulatory networks. While significant progress has been made in mapping a few such networks, almost all gene regulatory networks underlying cell-fate specification remain unknown and their discovery is significantly hampered by the paucity of generalized, in vivo validated tools of target gene and functional enhancer discovery. We combined genetic transcriptome perturbations and comprehensive computational analyses to identify a large cohort of target genes of the proneural and tumor suppressor factor Atonal, which specifies the switch from undifferentiated pluripotent cells to R8 photoreceptor neurons during larval development. Extensive in vivo validations of the predicted targets for the proneural factor Atonal demonstrate a 50% success rate of bona fide targets. Furthermore we show that these enhancers are functionally conserved by cloning orthologous enhancers from Drosophila ananassae and D. virilis in D. melanogaster. Finally, to investigate cis-regulatory cross-talk between Ato and other retinal differentiation transcription factors (TFs), we performed motif analyses and independent target predictions for Eyeless, Senseless, Suppressor of Hairless, Rough, and Glass. Our analyses show that cisTargetX identifies the correct motif from a set of coexpressed genes and accurately predicts target genes of individual TFs. The validated set of novel Ato targets exhibit functional enrichment of signaling molecules and a subset is predicted to be coregulated by other TFs within the retinal gene regulatory network. Tens of thousands of regulatory elements determine the spatiotemporal expression pattern of protein-coding genes in the metazoan genome. Each regulatory element, when bound by the appropriate transcription factors, can affect the temporal transcription of a nearby target gene in a particular cell type. Annotating the genome for regulatory elements, as well as determining the input transcription factors for each element, is a key challenge in genome biology. In this study, we introduce a computational method, cisTargetX, that predicts transcription factor binding motifs and their target genes through the integration of gene expression data and comparative genomics. We first validate this method in silico using public gene expression data and, then, apply cisTargetX to the developmental program governing photoreceptor neuron specification in the retina of Drosophila melanogaster. Particularly, we perturbed predicted key transcription factors during the initial steps of neurogenesis; measure gene expression by microarrays; identify motifs and predict target genes; validate the predictions in vivo using transgenic animals; and study several functional and evolutionary aspects of the validated regulatory elements for the proneural factor Atonal. Overall, we show that cisTargetX efficiently predicts genetic regulatory interactions and provides mechanistic insight into gene regulatory networks of postembryonic developmental systems.
Collapse
Affiliation(s)
- Stein Aerts
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory of Computational Biology, Katholieke Universiteit (K.U.) Leuven, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, K.U. Leuven Group Biomedicine, Leuven, Belgium
- * E-mail: (SA); (BAH)
| | - Xiao-Jiang Quan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Annelies Claeys
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Marina Naval Sanchez
- Laboratory of Computational Biology, Katholieke Universiteit (K.U.) Leuven, Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, K.U. Leuven Group Biomedicine, Leuven, Belgium
| | - Phillip Tate
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Jiekun Yan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Bassem A. Hassan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, K.U. Leuven Group Biomedicine, Leuven, Belgium
- * E-mail: (SA); (BAH)
| |
Collapse
|
113
|
The ANISEED database: digital representation, formalization, and elucidation of a chordate developmental program. Genome Res 2010; 20:1459-68. [PMID: 20647237 DOI: 10.1101/gr.108175.110] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.
Collapse
|
114
|
Rétaux S, Kano S. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol 2010; 50:98-109. [PMID: 21558191 DOI: 10.1093/icb/icq032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lampreys are agnathans (vertebrates without jaws). They occupy a key phylogenetic position in the emergence of novelties and in the diversification of morphology at the dawn of vertebrates. We have used lampreys to investigate the possibility that embryonic midline signaling systems have been a driving force for the evolution of the forebrain in vertebrates. We have focused on Sonic Hedgehog/Hedgehog (Shh/Hh) signaling. In this article, we first review and summarize our recent work on the comparative analysis of embryonic expression patterns for Shh/Hh, together with Fgf8 (fibroblast growth factor 8) and Wnt (wingless-Int) pathway components, in the embryonic lamprey forebrain. Comparison with nonvertebrate chordates on one hand, and jawed vertebrates on the other hand, shows that these morphogens/growth factors acquired new expression domains in the most rostral part of the neural tube in lampreys compared to nonvertebrate chordates, and in jawed vertebrates compared to lampreys. These data are consistent with the idea that changes in Shh, Fgf8 or Wnt signaling in the course of evolution have been instrumental for the emergence and diversification of the telencephalon, a part of the forebrain that is unique to vertebrates. We have then used comparative genomics on Shh/Hh loci to identify commonalities and differences in noncoding regulatory sequences across species and phyla. Conserved noncoding elements (CNEs) can be detected in lamprey Hh introns, even though they display unique structural features and need adjustments of parameters used for in silico alignments to be detected, because of lamprey-specific properties of the genome. The data also show conservation of a ventral midline enhancer located in Shh/Hh intron 2 of all chordates, the very species which possess a notochord and a floor plate, but not in earlier emerged deuterostomes or protostomes. These findings exemplify how the Shh/Hh locus is one of the best loci to study genome evolution with regards to developmental events.
Collapse
Affiliation(s)
- Sylvie Rétaux
- NeD-UPR3294, CNRS, Institut Alfred Fessard, avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
115
|
Islam AFMT, Moly PK, Miyamoto Y, Kusakabe TG. Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution. Zoolog Sci 2010; 27:84-90. [PMID: 20141412 DOI: 10.2108/zsj.27.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the Hedgehog (Hh) family are soluble ligands that orchestrate a wide spectrum of developmental processes ranging from left-right axis determination of the embryo to tissue patterning and organogenesis. Tunicates, including ascidians, are the closest relatives of vertebrates, and elucidation of Hh signaling in ascidians should provide an important clue towards better understanding the role of this pathway in development. In previous studies, expression patterns of genes encoding Hh and its downstream factor Gli have been examined up to the tailbud stage in the ascidian embryo, but their expression in the larva has not been reported. Here we show the spatial expression patterns of hedgehog (Ci-hh1, Ci-hh2), patched (Ci-ptc), smoothened (Ci-smo), and Gli (Ci-Gli) orthologs in larvae of the ascidian Ciona intestinalis. The expression patterns of Ci-hh2 and Ci-Gli dramatically change during the period between the late tailbud embryo and the swimming larva. At the larval stage, expression of Ci-Gli was found in a central part of the endoderm and in the visceral ganglion, while Ci-hh2 was expressed in two discrete endodermal regions, anteriorly and posteriorly adjacent to the cells expressing Gli. The expression patterns of these genes suggest that the Hh ligand controls postembryonic development of the endoderm and the central nervous system. Expression of a gene encoding Hh in the anterior and/or pharyngeal endoderm is probably an ancient chordate character; diversification of regulation and targets of the Hh signaling in this region may have played a major role in the evolution of chordate body structures.
Collapse
|
116
|
Kubo A, Suzuki N, Yuan X, Nakai K, Satoh N, Imai KS, Satou Y. Genomic cis-regulatory networks in the early Ciona intestinalis embryo. Development 2010; 137:1613-23. [PMID: 20392745 DOI: 10.1242/dev.046789] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Precise spatiotemporal gene expression during animal development is achieved through gene regulatory networks, in which sequence-specific transcription factors (TFs) bind to cis-regulatory elements of target genes. Although numerous cis-regulatory elements have been identified in a variety of systems, their global architecture in the gene networks that regulate animal development is not well understood. Here, we determined the structure of the core networks at the cis-regulatory level in early embryos of the chordate Ciona intestinalis by chromatin immunoprecipitation (ChIP) of 11 TFs. The regulatory systems of the 11 TF genes examined were tightly interconnected with one another. By combining analysis of the ChIP data with the results of previous comprehensive analyses of expression profiles and knockdown of regulatory genes, we found that most of the previously determined interactions are direct. We focused on cis-regulatory networks responsible for the Ciona mesodermal tissues by examining how the networks specify these tissues at the level of their cis-regulatory architecture. We also found many interactions that had not been predicted by simple gene knockdown experiments, and we showed that a significant fraction of TF-DNA interactions make major contributions to the regulatory control of target gene expression.
Collapse
Affiliation(s)
- Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
117
|
Ikuta T, Satoh N, Saiga H. Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis. Development 2010; 137:1505-13. [PMID: 20335361 DOI: 10.1242/dev.046938] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals, region specific morphological characters along the anteroposterior axis are controlled by a number of developmental genes, including Hox genes encoding homeodomain transcription factors. Although Hox genes have been regarded to play a key role in the evolution of morphological diversity, as well as in the establishment of the body plan, little is known about the function of Hox genes in invertebrates, except for in insects and nematodes. The present study addresses the role of Hox genes in body patterning during the larval development of the ascidian Ciona intestinalis conducting knockdown experiments of the seven Hox genes expressed during embryogenesis. Experimental results have demonstrated that Ci-Hox12 plays an important role in tail development through the maintenance of expression of Ci-Fgf8/17/18 and Ci-Wnt5 in the tail tip epidermis. Additionally, it has been shown that Ci-Hox10 is involved in the development of GABAergic neurons in the dorsal visceral ganglion. Surprisingly, knockdown of Ci-Hox1, Ci-Hox2, Ci-Hox3, Ci-Hox4 and Ci-Hox5 did not give rise to any consistent morphological defects in the larvae. Furthermore, expression of neuronal marker genes was not affected in larvae injected with MOs against Ci-Hox1, Ci-Hox3 or Ci-Hox5. In conclusion, we suggest that the contribution of Hox genes to the larval development of the ascidian C. intestinalis might be limited, despite the fact that Ci-Hox10 and Ci-Hox12 play important roles in neuronal and tail development.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
118
|
Shimozono N, Ohta N, Satoh N, Hamada M. Differential regional expression of genes in the developing brain of Ciona intestinalis embryos. Zoolog Sci 2010; 27:103-9. [PMID: 20141415 DOI: 10.2108/zsj.27.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previous transcriptome analysis identified 565 genes that are preferentially expressed in the developing brain of Ciona intestinalis larvae. Here, we show by in-situ hybridization that the spatial expression patterns of these brain-specific genes fall into different categories depending on the regions where the gene is expressed. For example, Ci-opsin3 and Ci-Dkk3 are expressed in the entire brain, Ci-tyrosinase and Ci-TYRP1 in the dorsal region, and Ci-synaptotagmin3, Ci-ZF399, and Ci-PTFb in the ventral region. Other genes are specific to the posterior, anterior, central, posterior and ventral, or anterior-ventral region of the brain. This regional expression of genes in the Ciona brain is not always associated with cell lineage, suggesting that complex mechanisms control the regionalized expression of brain-specific genes.
Collapse
Affiliation(s)
- Naoki Shimozono
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
119
|
Shimai K, Kitaura Y, Tamari Y, Nishikata T. Upstream Regulatory Sequences Required for Specific Gene Expression in the Ascidian Neural Tube. Zoolog Sci 2010; 27:76-83. [DOI: 10.2108/zsj.27.76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kotaro Shimai
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | | | | | | |
Collapse
|
120
|
Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior–posterior patterning of the chordate body plan. Dev Biol 2010; 338:98-106. [DOI: 10.1016/j.ydbio.2009.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 01/08/2023]
|
121
|
Noda T, Hamada M, Hamaguchi M, Fujie M, Satoh N. Early zygotic expression of transcription factors and signal molecules in fully dissociated embryonic cells of Ciona intestinalis: A microarray analysis. Dev Growth Differ 2009; 51:639-55. [PMID: 19712267 DOI: 10.1111/j.1440-169x.2009.01124.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specification of early embryonic cells of animals is established by maternally provided factors and interactions of neighboring cells. The present study addressed a question of autonomous versus non-autonomous specification of embryonic cells by using the Ciona intestinalis embryo, in particular the genetic cascade of zygotic expression of transcription factor genes responsible for notochord specification. To examine this issue, we combined the classic experiment of continuous dissociation of embryonic cells with the modern technique of oligonucleotide-based microarrays. We measured early zygotic expression of 389 core transcription factors genes and 118 major signal molecule genes in embryonic cells that were fully dissociated from the first cleavage. Our results indicated that even if cells are free from contact with neighbors, the major transcription factor genes that have primary roles in embryonic cell specification commence their zygotic expression at the same time as in normal embryos. Dissociation of embryonic cells did not affect extracellular signal-regulated kinases (ERK) activity. Although normal embryos treated with U0126 failed to express Bra and Twist-like-1, dissociated embryonic cells treated with U0126 expressed the genes. These results are discussed in relation to the grade of autonomous versus non-autonomous genetic cascades that are responsible for the specification of early Ciona embryonic cells.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
122
|
Kanda M, Wada H, Fujiwara S. Epidermal expression of Hox1 is directly activated by retinoic acid in the Ciona intestinalis embryo. Dev Biol 2009; 335:454-63. [PMID: 19782671 DOI: 10.1016/j.ydbio.2009.09.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/01/2009] [Accepted: 09/18/2009] [Indexed: 11/30/2022]
Abstract
Hox genes play important roles in the specification of spatial identity during development of vertebrate embryos. Retinoic acid regulates the transcription of Hox genes in vertebrates. We identified an epidermal enhancer in the 5' flanking region of an ortholog of Hox1 (Ci-Hox1) in the ascidian Ciona intestinalis. This enhancer element drives the transcription of a lacZ reporter gene in the epidermis in the posterior trunk and the anterior tail region of tailbud-stage embryos. Inhibition of retinoic acid synthesis resulted in inactivation of the expression of the reporter gene. The enhancer contains a putative retinoic acid response element. When this element was mutagenized, the expression of the reporter gene disappeared from the epidermis. This sequence was also required for the response to exogenously administered retinoic acid. A heterodimeric nuclear receptor, consisting of the retinoic acid receptor and retinoid X receptor, bound to this sequence. These results indicate that retinoic acid directly activates the epidermal enhancer of Ci-Hox1. This is the first demonstration that retinoic acid is necessary for endogenous gene expression in ascidian embryos.
Collapse
Affiliation(s)
- Miyuki Kanda
- Department of Applied Science, Kochi University, Akebono-cho, Kochi-shi, Japan.
| | | | | |
Collapse
|
123
|
Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat Rev Neurosci 2009; 10:736-46. [PMID: 19738625 DOI: 10.1038/nrn2703] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vertebrate brain is highly complex with millions to billions of neurons. During development, the neural plate border region gives rise to the neural crest, cranial placodes and, in anamniotes, to Rohon-Beard sensory neurons, whereas the boundary region of the midbrain and hindbrain develops organizer properties. Comparisons of developmental gene expression and neuroanatomy between vertebrates and the basal chordate amphioxus, which has only thousands of neurons and lacks a neural crest, most placodes and a midbrain-hindbrain organizer, indicate that these vertebrate features were built on a foundation already present in the ancestral chordate. Recent advances in genomics have provided insights into the elaboration of the molecular toolkit at the invertebrate-vertebrate transition that may have facilitated the evolution of these vertebrate characteristics.
Collapse
|
124
|
Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 2009; 332:48-60. [DOI: 10.1016/j.ydbio.2009.05.540] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 12/25/2022]
|
125
|
Kubo A, Imai KS, Satou Y. Gene-regulatory networks in the Ciona embryos. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:250-5. [PMID: 19535506 DOI: 10.1093/bfgp/elp018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ascidians belong to the subphylum Urochordata or Tunicata, which is the sister group of the vertebrates. The simple architecture of the ascidian larva represents the basic chordate body plan. Recent analyses have shown many instances of developmental mechanisms conserved during evolution, while these studies have also revealed a much larger number of instances of divergence. However, to precisely determine the degree of conservation and divergence, that is, how many ways are used to make tadpole-like larvae, we need a systems-level understanding of development. Because animal development is organized by the genome and the minimal functional unit of development is a cell, comprehensiveness and single-cell resolution are necessary for a systems-biological understanding of the development. In the ascidian Ciona intestinalis, gene-regulatory networks responsible for the embryonic development have been studied on a genome-wide scale and at single-cell resolution. The simplicity and compactness of the genome facilitates genome-wide studies. In the Ciona genome, only approximately 670 transcription factor genes are encoded, and their expression profiles during the embryonic development have been analyzed. Gene-knockdown analyses of the transcription factor genes expressed during the embryonic development have been performed. The simplicity of the embryo permits these analyses to be done at single-cell resolution. Actually, these simple embryos are now being modeled in the computer, which allows us to understand the gene-regulatory networks very precisely in three dimensions.
Collapse
Affiliation(s)
- Atsushi Kubo
- Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|