101
|
Li M, Dean ED, Zhao L, Nicholson WE, Powers AC, Chen W. Glucagon receptor inactivation leads to α-cell hyperplasia in zebrafish. J Endocrinol 2015; 227:93-103. [PMID: 26446275 PMCID: PMC4598637 DOI: 10.1530/joe-15-0284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucagon antagonism is a potential treatment for diabetes. One potential side effect is α-cell hyperplasia, which has been noted in several approaches to antagonize glucagon action. To investigate the molecular mechanism of the α-cell hyperplasia and to identify the responsible factor, we created a zebrafish model in which glucagon receptor (gcgr) signaling has been interrupted. The genetically and chemically tractable zebrafish, which provides a robust discovery platform, has two gcgr genes (gcgra and gcgrb) in its genome. Sequence, phylogenetic, and synteny analyses suggest that these are co-orthologs of the human GCGR. Similar to its mammalian counterparts, gcgra and gcgrb are mainly expressed in the liver. We inactivated the zebrafish gcgra and gcgrb using transcription activator-like effector nuclease (TALEN) first individually and then both genes, and assessed the number of α-cells using an α-cell reporter line, Tg(gcga:GFP). Compared to WT fish at 7 days postfertilization, there were more α-cells in gcgra-/-, gcgrb-/-, and gcgra-/-;gcgrb-/- fish and there was an increased rate of α-cell proliferation in the gcgra-/-;gcgrb-/- fish. Glucagon levels were higher but free glucose levels were lower in gcgra-/-, gcgrb-/-, and gcgra-/-;gcgrb-/- fish, similar to Gcgr-/- mice. These results indicate that the compensatory α-cell hyperplasia in response to interruption of glucagon signaling is conserved in zebrafish. The robust α-cell hyperplasia in gcgra-/-;gcgrb-/- larvae provides a platform to screen for chemical and genetic suppressors, and ultimately to identify the stimulus of α-cell hyperplasia and its signaling mechanism.
Collapse
Affiliation(s)
- Mingyu Li
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - E Danielle Dean
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Liyuan Zhao
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Wendell E Nicholson
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Alvin C Powers
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Wenbiao Chen
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| |
Collapse
|
102
|
Tiwari S, Roel C, Wills R, Casinelli G, Tanwir M, Takane KK, Fiaschi-Taesch NM. Early and Late G1/S Cyclins and Cdks Act Complementarily to Enhance Authentic Human β-Cell Proliferation and Expansion. Diabetes 2015; 64:3485-98. [PMID: 26159177 PMCID: PMC4876788 DOI: 10.2337/db14-1885] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/20/2015] [Indexed: 12/20/2022]
Abstract
β-Cell regeneration is a key goal of diabetes research. Progression through the cell cycle is associated with retinoblastoma protein (pRb) inactivation via sequential phosphorylation by the "early" cyclins and cyclin-dependent kinases (cdks) (d-cyclins cdk4/6) and the "late" cyclins and cdks (cyclin A/E and cdk1/2). In β-cells, activation of either early or late G1/S cyclins and/or cdks is an efficient approach to induce cycle entry, but it is unknown whether the combined expression of early and late cyclins and cdks might have synergistic or additive effects. Thus, we explored whether a combination of both early and late cyclins and cdks might more effectively drive human β-cell cell cycle entry than either group alone. We also sought to determine whether authentic replication with the expansion of adult human β-cells could be demonstrated. Late cyclins and cdks do not traffic in response to the induction of replication by early cyclins and cdks in human β-cells but are capable of nuclear translocation when overexpressed. Early plus late cyclins and cdks, acting via pRb phosphorylation on distinct residues, complementarily induce greater proliferation in human β-cells than either group alone. Importantly, the combination of early and late cyclins and cdks clearly increased human β-cell numbers in vitro. These findings provide additional insight into human β-cell expansion. They also provide a novel tool for assessing β-cell expansion in vitro.
Collapse
Affiliation(s)
- Shiwani Tiwari
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chris Roel
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rachel Wills
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gabriella Casinelli
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mansoor Tanwir
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Karen K Takane
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nathalie M Fiaschi-Taesch
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
103
|
Delaspre F, Beer RL, Rovira M, Huang W, Wang G, Gee S, Vitery MDC, Wheelan SJ, Parsons MJ. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration. Diabetes 2015; 64:3499-509. [PMID: 26153247 PMCID: PMC4587647 DOI: 10.2337/db15-0153] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis.
Collapse
Affiliation(s)
- Fabien Delaspre
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Rebecca L Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Wei Huang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Guangliang Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Stephen Gee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | | | - Sarah J Wheelan
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD Department of Surgery, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
104
|
Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration. BMC Biol 2015; 13:70. [PMID: 26329351 PMCID: PMC4556004 DOI: 10.1186/s12915-015-0179-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022] Open
Abstract
Background In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. Results Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. Conclusions We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In contrast to the mouse, pancreatic progenitor markers nkx6.1 and pdx1 continue to be expressed in adult ductal cells, a subset of which we show are still able to proliferate and undergo ductal and endocrine differentiation, providing robust evidence of the existence of pancreatic progenitor/stem cells in the adult zebrafish. Our findings support the hypothesis that nkx6.1+ pancreatic progenitors contribute to beta cell regeneration. Further characterization of these cells will open up new perspectives for anti-diabetic therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0179-4) contains supplementary material, which is available to authorized users.
Collapse
|
105
|
Mastracci TL, Robertson MA, Mirmira RG, Anderson RM. Polyamine biosynthesis is critical for growth and differentiation of the pancreas. Sci Rep 2015; 5:13269. [PMID: 26299433 PMCID: PMC4547391 DOI: 10.1038/srep13269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/30/2015] [Indexed: 02/03/2023] Open
Abstract
The pancreas, in most studied vertebrates, is a compound organ with both exocrine and endocrine functions. The exocrine compartment makes and secretes digestive enzymes, while the endocrine compartment, organized into islets of Langerhans, produces hormones that regulate blood glucose. High concentrations of polyamines, which are aliphatic amines, are reported in exocrine and endocrine cells, with insulin-producing β cells showing the highest concentrations. We utilized zebrafish as a model organism, together with pharmacological inhibition or genetic manipulation, to determine how polyamine biosynthesis functions in pancreatic organogenesis. We identified that inhibition of polyamine biosynthesis reduces exocrine pancreas and β cell mass, and that these reductions are at the level of differentiation. Moreover, we demonstrate that inhibition of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, phenocopies inhibition or knockdown of the enzyme deoxyhypusine synthase (DHS). These data identify that the pancreatic requirement for polyamine biosynthesis is largely mediated through a requirement for spermidine for the downstream posttranslational modification of eIF5A by its enzymatic activator DHS, which in turn impacts mRNA translation. Altogether, we have uncovered a role for polyamine biosynthesis in pancreatic organogenesis and identified that it may be possible to exploit polyamine biosynthesis to manipulate pancreatic cell differentiation.
Collapse
Affiliation(s)
- Teresa L Mastracci
- Department of Pediatrics, Indiana University School of Medicine, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, USA
| | - Morgan A Robertson
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, USA.,Department of Physiology, Indiana University School of Medicine, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, USA
| | - Ryan M Anderson
- Department of Pediatrics, Indiana University School of Medicine, USA.,Department of Physiology, Indiana University School of Medicine, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, USA
| |
Collapse
|