101
|
McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 2003; 114:61-73. [PMID: 12859898 DOI: 10.1016/s0092-8674(03)00511-7] [Citation(s) in RCA: 586] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The vertebrate body plan has conserved handed left-right (LR) asymmetry that is manifested in the heart, lungs, and gut. Leftward flow of extracellular fluid at the node (nodal flow) is critical for normal LR axis determination in the mouse. Nodal flow is generated by motile node cell monocilia and requires the axonemal dynein, left-right dynein (lrd). In the absence of lrd, LR determination becomes random. The cation channel polycystin-2 is also required to establish LR asymmetry. We show that lrd localizes to a centrally located subset of node monocilia, while polycystin-2 is found in all node monocilia. Asymmetric calcium signaling appears at the left margin of the node coincident with nodal flow. These observations suggest that LR asymmetry is established by an entirely ciliary mechanism: motile, lrd-containing monocilia generate nodal flow, and nonmotile polycystin-2 containing cilia sense nodal flow initiating an asymmetric calcium signal at the left border of the node.
Collapse
Affiliation(s)
- James McGrath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
102
|
Zhang Q, Murcia NS, Chittenden LR, Richards WG, Michaud EJ, Woychik RP, Yoder BK. Loss of the Tg737 protein results in skeletal patterning defects. Dev Dyn 2003; 227:78-90. [PMID: 12701101 DOI: 10.1002/dvdy.10289] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tg737 mutant mice exhibit pathologic conditions in numerous tissues along with skeletal patterning defects. Herein, we characterize the skeletal pathologic conditions and confirm a role for Tg737 in skeletal patterning through transgenic rescue. Analyses were conducted in both the hypomorphic Tg737(orpk) allele that results in duplication of digit one and in the null Tg737(delta2-3betaGal) allele that is an embryonic lethal mutation exhibiting eight digits per limb. In early limb buds, Tg737 expression is detected throughout the mesenchyme becoming concentrated in precartilage condensations at later stages. In situ analyses indicate that the Tg737(orpk) mutant limb defects are not associated with changes in expression of Shh, Ihh, HoxD11-13, Patched, BMPs, or Glis. Likewise, in Tg737(delta2-3betaGal) mutant embryos, there was no change in Shh expression. However, in both alleles, Fgf4 was ectopically expressed on the anterior apical ectodermal ridge. Collectively, the data argue for a dosage effect of Tg737 on the limb phenotypes and that the polydactyly is independent of Shh misexpression.
Collapse
Affiliation(s)
- Qihong Zhang
- The University of Alabama at Birmingham, Department of Cell Biology, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
The primary cilium is a generally non-motile cilium that occurs singly on most cells in the vertebrate body. The function of this organelle, which has been the subject of much speculation but little experimentation, has been unknown. Recent findings reveal that the primary cilium is an antenna displaying specific receptors and relaying signals from these receptors to the cell body. For example, kidney primary cilia display polycystin-2, which forms part of a Ca2+ channel that initiates a signal that controls cell differentiation and proliferation. Kidney primary cilia also are mechanosensors that, when bent, initiate a Ca2+ signal that spreads throughout the cell and to neighboring cells. Primary cilia on other cell types specifically display different receptors, including those for somatostatin and serotonin.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
104
|
Affiliation(s)
- Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
105
|
Affiliation(s)
- Deepak Srivastava
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex 75390-9148, USA.
| |
Collapse
|
106
|
Abstract
Intraflagellar transport involves the movement of large protein particles along ciliary microtubules and is required for the assembly and maintenance of eukaryotic cilia and flagella. Intraflagellar-transport defects in the mouse cause a range of diseases including polycystic kidney disease, retinal degeneration and the laterality abnormality situs inversus, highlighting the important role that motile, sensory and primary cilia play in vertebrates.
Collapse
Affiliation(s)
- Gregory J Pazour
- Dept Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
107
|
Samant SA, Ogunkua O, Hui L, Fossella J, Pilder SH. The T complex distorter 2 candidate gene, Dnahc8, encodes at least two testis-specific axonemal dynein heavy chains that differ extensively at their amino and carboxyl termini. Dev Biol 2002; 250:24-43. [PMID: 12297094 DOI: 10.1006/dbio.2002.0769] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homozygosity for the t haplotype allele of the testis-specifically expressed axonemal dynein heavy chain (axDHC) gene, Dnahc8, has been linked to male sterility resulting from aberrant sperm motility. However, the near absence of Dnahc8 expression has been associated with male sterility resulting from an early breakdown in sperm flagellar development. Although axDHCs are integral participants in flagellar motility, a role in flagellar morphogenesis has never been attributed to a member of this highly conserved gene family. To gain a better understanding of this presumed novel role for Dnahc8, we have studied the organization and expression of full-length Dnahc8(+) and Dnahc8(t) transcripts. Our results demonstrate the existence of at least two alternatively spliced, testis-specific Dnahc8 mRNAs transcribed from both the + and t alleles. A highly expressed isoform encodes a protein with significant homology nearly throughout to the gamma heavy chain of the Chlamydomonas axonemal outer arm dynein, while a more poorly expressed isoform codes for a protein whose sequence diverges significantly from that of other axDHCs at both its N and C termini. While in situ hybridization studies demonstrate that both mRNA species accumulate exclusively in mid to late spermatocytes, each isoform shows spatial independence. Additional experiments demonstrate the existence of a testis-expressed mRNA with no significant open reading frame, a portion of which is antisense to the 5'-untranslated region of the highly divergent Dnahc8 isoform. The cumulative data imply that Dnahc8 may have acquired functional plasticity in the testis through the tightly controlled expression of both typical and unusual isoforms.
Collapse
Affiliation(s)
- Sadhana A Samant
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, USA
| | | | | | | | | |
Collapse
|
108
|
Abstract
Eukaryotic cilia and flagella, including primary cilia and sensory cilia, are highly conserved organelles that project from the surfaces of many cells. The assembly and maintenance of these nearly ubiquitous structures are dependent on a transport system--known as 'intraflagellar transport' (IFT)--which moves non-membrane-bound particles from the cell body out to the tip of the cilium or flagellum, and then returns them to the cell body. Recent results indicate that defects in IFT might be a primary cause of some human diseases.
Collapse
Affiliation(s)
- Joel L Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
109
|
Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M. Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 2002; 111:77-89. [PMID: 12372302 DOI: 10.1016/s0092-8674(02)00939-x] [Citation(s) in RCA: 309] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A pharmacological screen identified the H+ and K+ ATPase transporter as obligatory for normal orientation of the left-right body axis in Xenopus. Maternal H+/K+-ATPase mRNA is symmetrically expressed in the 1-cell Xenopus embryo but becomes localized during the first two cell divisions, demonstrating that asymmetry is generated within two hours postfertilization. Although H+/K+-ATPase subunit mRNAs are symmetrically localized in chick embryos, an endogenous H+/K+-ATPase-dependent difference in membrane voltage potential exists between the left and right sides of the primitive streak. In both species, pharmacologic or genetic perturbation of endogenous H+/K+-ATPase randomized the sided pattern of asymmetrically expressed genes and induced organ heterotaxia. Thus, LR asymmetry determination depends on a very early differential ion flux created by H+/K+-ATPase activity.
Collapse
Affiliation(s)
- Michael Levin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
110
|
Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M, Mitchison HM, Chung EMK, Delozier-Blanchet CD, Craigen WJ, Antonarakis SE. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci U S A 2002; 99:10282-6. [PMID: 12142464 PMCID: PMC124905 DOI: 10.1073/pnas.152337699] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD; MIM 242650) is an autosomal recessive disorder of ciliary dysfunction with extensive genetic heterogeneity. PCD is characterized by bronchiectasis and upper respiratory tract infections, and half of the patients with PCD have situs inversus (Kartagener syndrome). We characterized the transcript and the genomic organization of the axonemal heavy chain dynein type 11 (DNAH11) gene, the human homologue of murine Dnah11 or lrd, which is mutated in the iv/iv mouse model with situs inversus. To assess the role of DNAH11, which maps on chromosome 7p21, we searched for mutations in the 82 exons of this gene in a patient with situs inversus totalis, and probable Kartagener syndrome associated with paternal uniparental disomy of chromosome 7 (patUPD7). We identified a homozygous nonsense mutation (R2852X) in the DNAH11 gene. This patient is remarkable because he is also homozygous for the F508del allele of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Sequence analysis of the DNAH11 gene in an additional 6 selected PCD sibships that shared DNAH11 alleles revealed polymorphic variants and an R3004Q substitution in a conserved position that might be pathogenic. We conclude that mutations in the coding region of DNAH11 account for situs inversus totalis and probably a minority of cases of PCD.
Collapse
Affiliation(s)
- Lucia Bartoloni
- Division of Medical Genetics, University of Geneva Medical School, and University Hospitals, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Essner JJ, Vogan KJ, Wagner MK, Tabin CJ, Yost HJ, Brueckner M. Conserved function for embryonic nodal cilia. Nature 2002; 418:37-8. [PMID: 12097899 DOI: 10.1038/418037a] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How left right handedness originates in the body plan of the developing vertebrate embryo is a subject of considerable debate. In mice, a left right bias is thought to arise from a directional extracellular flow (nodal flow) that is generated by dynein-dependent rotation of monocilia on the ventral surface of the embryonic node. Here we show that the existence of node monocilia and the expression of a dynein gene that is implicated in ciliary function are conserved across a wide range of vertebrate classes, indicating that a similar ciliary mechanism may underlie the establishment of handedness in all vertebrates.
Collapse
Affiliation(s)
- Jeffrey J Essner
- Center for Children, Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112-5550, USA
| | | | | | | | | | | |
Collapse
|
112
|
Nonaka S, Shiratori H, Saijoh Y, Hamada H. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 2002; 418:96-9. [PMID: 12097914 DOI: 10.1038/nature00849] [Citation(s) in RCA: 473] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Substantial insight has recently been achieved into the mechanisms responsible for the generation of left-right (L-R) asymmetry in the vertebrate body plan. However, the mechanism that underlies the initial breaking of symmetry has remained unclear. In the mouse, a leftward fluid flow on the ventral side of the node caused by the vortical motion of cilia (referred to as nodal flow) is implicated in symmetry breaking, but direct evidence for the role of this flow has been lacking. Here we describe the development of a system in which mouse embryos are cultured under an artificial fluid flow and with which we have examined how flow affects L-R patterning. An artificial rightward flow that was sufficiently rapid to reverse the intrinsic leftward nodal flow resulted in reversal of situs in wild-type embryos. The artificial flow was also able to direct the situs of mutant mouse embryos with immotile cilia. These results provide the first direct evidence for the role of mechanical fluid flow in L-R patterning.
Collapse
Affiliation(s)
- Shigenori Nonaka
- Graduate School of Frontier Biosciences, Osaka University, 1 3 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
113
|
Sloboda RD. A healthy understanding of intraflagellar transport. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:1-8. [PMID: 11977078 DOI: 10.1002/cm.10035] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A microtubule-dependent motility process called intraflagellar transport (IFT) occurs beneath the plasma membrane of cilia and flagella. IFT was first observed in Chlamydomonas, and orthologs of some of the polypeptides involved in IFT have recently been identified in other organisms, including C. elegans and the mouse. In addition to a role in the assembly and maintenance of cilia and flagella, evidence is reviewed here that indicates defects in the process of IFT may be related to problems with human health. Moreover, recent data suggest the possibility of two new roles for IFT in cell function. The first is in transcriptional control of the genes encoding ciliary and flagellar proteins. IFT could provide a mechanism whereby the cell senses the presence or absence of its cilia or flagella and responds by turning on gene transcription resulting in replacement of the missing organelle. The second role is in signal transduction, whereby cilia act as sensors of the external cellular environment and transduce information about the surroundings into intracellular signals that are sent via IFT to the cell body, thus inducing an appropriate cellular response to the environment.
Collapse
Affiliation(s)
- Roger D Sloboda
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
114
|
Abstract
Chlamydomonas is a biflagellate unicellular green alga that has proven especially amenable for the analysis of microtubule (MT)-based molecular motors, notably dyneins. These enzymes form the inner and outer arms of the flagellum and are also required for intraflagellar transport. Dyneins have masses of approximately 1-2 MDa and consist of up to 15 different polypeptides. Nucleotide binding/hydrolysis and MT motor activity are associated with the heavy chains, and we detail here our current model for the substructural organization of these approximately 520-kDa proteins. The remaining polypeptides play a variety of roles in dynein function, including attachment of the motor to cargo, regulation of motor activity in response to specific inputs, and their necessity for the assembly and/or stability of the entire complex. The combination of genetic, physiological, structural, and biochemical approaches has made the Chlamydomonas flagellum a very powerful model system in which to dissect the function of these fascinating molecular motors.
Collapse
Affiliation(s)
- L M DiBella
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA
| | | |
Collapse
|
115
|
Faisst AM, Alvarez-Bolado G, Treichel D, Gruss P. Rotatin is a novel gene required for axial rotation and left-right specification in mouse embryos. Mech Dev 2002; 113:15-28. [PMID: 11900971 DOI: 10.1016/s0925-4773(02)00003-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genetic cascade that governs left-right (L-R) specification is starting to be elucidated. In the mouse, the lateral asymmetry of the body axis is revealed first by the asymmetric expression of nodal, lefty2 and pitx2 in the left lateral plate mesoderm of the neurulating embryo. Here we describe a novel gene, rotatin, essential for the correct expression of the key L-R specification genes nodal, lefty and Pitx2. Embryos deficient in rotatin show also randomized heart looping and delayed neural tube closure, and fail to undergo the critical morphogenetic step of axial rotation. The amino acid sequence deduced from the cDNA is predicted to contain at least three transmembrane domains. Our results show a novel key player in the genetic cascade that determines L-R specification, and suggest a causal link between this process and axial rotation.
Collapse
Affiliation(s)
- Anja M Faisst
- Department of Molecular Cell Biology, Max-Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | | | | | | |
Collapse
|
116
|
Hamada H, Meno C, Watanabe D, Saijoh Y. Establishment of vertebrate left-right asymmetry. Nat Rev Genet 2002; 3:103-13. [PMID: 11836504 DOI: 10.1038/nrg732] [Citation(s) in RCA: 404] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The generation of morphological, such as left-right, asymmetry during development is an integral part of the establishment of a body plan. Until recently, the molecular basis of left-right asymmetry was a mystery, but studies indicate that Nodal and the Lefty proteins, transforming growth factor-beta-related molecules, have a central role in generating asymmetric signals. Although the initial mechanism of symmetry breaking remains unknown, developmental biologists are beginning to analyse the pathway that leads to left-right asymmetry establishment and maintenance.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Division of Molecular Biology, Institute for Molecular and Cellular Biology, Osaka University, and CREST, Japan.
| | | | | | | |
Collapse
|
117
|
|
118
|
Bisgrove BW, Yost HJ. Classification of left-right patterning defects in zebrafish, mice, and humans. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 101:315-23. [PMID: 11471153 DOI: 10.1002/ajmg.1180] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Numerous genes and developmental processes have been implicated in the establishment of the vertebrate left-right axis. Although the mechanisms that initiate left-right patterning may be distinct in different classes of vertebrates, it is clear that the asymmetric gene expression patterns of nodal, lefty, and pitx2 in the left lateral plate mesoderm are conserved and that left-right development of the brain, heart, and gut is tightly linked to the development of the embryonic midline. This review categorizes left-right patterning defects based on asymmetric gene expression patterns, midline phenotypes, and situs phenotypes. In so doing, we hope to provide a framework to assess the genetic bases of laterality defects in humans and other vertebrates.
Collapse
Affiliation(s)
- B W Bisgrove
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
119
|
Abstract
Cilia have long been suspected to play a role in the determination of left-right asymmetry. Humans with the dominantly inherited condition Kartagener syndrome have defective cilia and a 50% incidence of mirror-image positioning of their organs (situs inversus). Analysis of mouse mutations affecting ciliary biogenesis and motility has demonstrated that the molecular motors kinesin and dynein are required to establish normal handed organismal asymmetry. The cilia that propel formation of the embryonic left-right axis are not conventional cilia, but monocilia. They are found on the node, or organizer, of the gastrulation-stage mouse embryo where they drive net leftward movement of the fluid surrounding the node, and initiate left-right asymmetry.
Collapse
Affiliation(s)
- M Brueckner
- Department of Pediatrics/Cardiology, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
120
|
Abstract
The requirements for building flagellar axonemes and centrioles are beginning to be uncovered. The carboxyl terminus of a specific beta tubulin isoform plays an important role in forming the '9 + 2' structure of the axoneme; delta tubulin plays an essential role in forming the triplet microtubules of centrioles and basal bodies.
Collapse
Affiliation(s)
- S K Dutcher
- Department of Genetics, Washington University School of Medicine, 660 s. Euclid, St. Louis, Missouri 63110, USA.
| |
Collapse
|
121
|
Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, Lalau G, Bouvagnet P. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 2001; 68:1030-5. [PMID: 11231901 PMCID: PMC1275621 DOI: 10.1086/319511] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2000] [Accepted: 01/29/2001] [Indexed: 01/26/2023] Open
Abstract
Kartagener syndrome (KS) is a trilogy of symptoms (nasal polyps, bronchiectasis, and situs inversus totalis) that is associated with ultrastructural anomalies of cilia of epithelial cells covering the upper and lower respiratory tracts and spermatozoa flagellae. The axonemal dynein intermediate-chain gene 1 (DNAI1), which has been demonstrated to be responsible for a case of primary ciliary dyskinesia (PCD) without situs inversus, was screened for mutation in a series of 34 patients with KS. We identified compound heterozygous DNAI1 gene defects in three independent patients and in two of their siblings who presented with PCD and situs solitus (i.e., normal position of inner organs). Strikingly, these five patients share one mutant allele (splice defect), which is identical to one of the mutant DNAI1 alleles found in the patient with PCD, reported elsewhere. Finally, this study demonstrates a link between ciliary function and situs determination, since compound mutation heterozygosity in DNAI1 results in PCD with situs solitus or situs inversus (KS).
Collapse
Affiliation(s)
- Cécile Guichard
- Laboratoire de Génétique Moléculaire Humaine, Equipe d'Accueil 3088, Université C. Bernard Lyon 1, and Consultation de Génétique, Hôpital Cardiologique, Lyon; Centre de Recherche de Biochimie Macromoléculaire UPR 1086, Centre National de la Recherche Scientifique, and Université Montpellier I and Service des Maladies Respiratoires, Hôpital A. de Villeneuve, Montpellier, France; Département de Pneumologie and Laboratoire de Biochimie, Hôpital Albert Calmette, Lille, France; Service de Pneumologie, Hôpital Fontenoy, Chartres, France; and Centre Hospitalier, Calais, France
| | - Marie-Cécile Harricane
- Laboratoire de Génétique Moléculaire Humaine, Equipe d'Accueil 3088, Université C. Bernard Lyon 1, and Consultation de Génétique, Hôpital Cardiologique, Lyon; Centre de Recherche de Biochimie Macromoléculaire UPR 1086, Centre National de la Recherche Scientifique, and Université Montpellier I and Service des Maladies Respiratoires, Hôpital A. de Villeneuve, Montpellier, France; Département de Pneumologie and Laboratoire de Biochimie, Hôpital Albert Calmette, Lille, France; Service de Pneumologie, Hôpital Fontenoy, Chartres, France; and Centre Hospitalier, Calais, France
| | - Jean-Jacques Lafitte
- Laboratoire de Génétique Moléculaire Humaine, Equipe d'Accueil 3088, Université C. Bernard Lyon 1, and Consultation de Génétique, Hôpital Cardiologique, Lyon; Centre de Recherche de Biochimie Macromoléculaire UPR 1086, Centre National de la Recherche Scientifique, and Université Montpellier I and Service des Maladies Respiratoires, Hôpital A. de Villeneuve, Montpellier, France; Département de Pneumologie and Laboratoire de Biochimie, Hôpital Albert Calmette, Lille, France; Service de Pneumologie, Hôpital Fontenoy, Chartres, France; and Centre Hospitalier, Calais, France
| | - Philippe Godard
- Laboratoire de Génétique Moléculaire Humaine, Equipe d'Accueil 3088, Université C. Bernard Lyon 1, and Consultation de Génétique, Hôpital Cardiologique, Lyon; Centre de Recherche de Biochimie Macromoléculaire UPR 1086, Centre National de la Recherche Scientifique, and Université Montpellier I and Service des Maladies Respiratoires, Hôpital A. de Villeneuve, Montpellier, France; Département de Pneumologie and Laboratoire de Biochimie, Hôpital Albert Calmette, Lille, France; Service de Pneumologie, Hôpital Fontenoy, Chartres, France; and Centre Hospitalier, Calais, France
| | - Marc Zaegel
- Laboratoire de Génétique Moléculaire Humaine, Equipe d'Accueil 3088, Université C. Bernard Lyon 1, and Consultation de Génétique, Hôpital Cardiologique, Lyon; Centre de Recherche de Biochimie Macromoléculaire UPR 1086, Centre National de la Recherche Scientifique, and Université Montpellier I and Service des Maladies Respiratoires, Hôpital A. de Villeneuve, Montpellier, France; Département de Pneumologie and Laboratoire de Biochimie, Hôpital Albert Calmette, Lille, France; Service de Pneumologie, Hôpital Fontenoy, Chartres, France; and Centre Hospitalier, Calais, France
| | - Vincent Tack
- Laboratoire de Génétique Moléculaire Humaine, Equipe d'Accueil 3088, Université C. Bernard Lyon 1, and Consultation de Génétique, Hôpital Cardiologique, Lyon; Centre de Recherche de Biochimie Macromoléculaire UPR 1086, Centre National de la Recherche Scientifique, and Université Montpellier I and Service des Maladies Respiratoires, Hôpital A. de Villeneuve, Montpellier, France; Département de Pneumologie and Laboratoire de Biochimie, Hôpital Albert Calmette, Lille, France; Service de Pneumologie, Hôpital Fontenoy, Chartres, France; and Centre Hospitalier, Calais, France
| | - Guy Lalau
- Laboratoire de Génétique Moléculaire Humaine, Equipe d'Accueil 3088, Université C. Bernard Lyon 1, and Consultation de Génétique, Hôpital Cardiologique, Lyon; Centre de Recherche de Biochimie Macromoléculaire UPR 1086, Centre National de la Recherche Scientifique, and Université Montpellier I and Service des Maladies Respiratoires, Hôpital A. de Villeneuve, Montpellier, France; Département de Pneumologie and Laboratoire de Biochimie, Hôpital Albert Calmette, Lille, France; Service de Pneumologie, Hôpital Fontenoy, Chartres, France; and Centre Hospitalier, Calais, France
| | - Patrice Bouvagnet
- Laboratoire de Génétique Moléculaire Humaine, Equipe d'Accueil 3088, Université C. Bernard Lyon 1, and Consultation de Génétique, Hôpital Cardiologique, Lyon; Centre de Recherche de Biochimie Macromoléculaire UPR 1086, Centre National de la Recherche Scientifique, and Université Montpellier I and Service des Maladies Respiratoires, Hôpital A. de Villeneuve, Montpellier, France; Département de Pneumologie and Laboratoire de Biochimie, Hôpital Albert Calmette, Lille, France; Service de Pneumologie, Hôpital Fontenoy, Chartres, France; and Centre Hospitalier, Calais, France
| |
Collapse
|
122
|
Monsoro-Burq A, Le Douarin NM. BMP4 plays a key role in left-right patterning in chick embryos by maintaining Sonic Hedgehog asymmetry. Mol Cell 2001; 7:789-99. [PMID: 11336702 DOI: 10.1016/s1097-2765(01)00223-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In chick embryos, the first signs of left-right asymmetry are detected in Hensen's node, essentially by left-sided Sonic Hedgehog (Shh) expression. After a gap of several hours, SHH induces polarized gene activities in the left paraxial mesoderm. We show that during this time period, BMP4 signaling is necessary and sufficient to maintain Shh asymmetry within the node. SHH and BMP4 proteins negatively regulate each other's transcription, resulting in a strict complementarity between these two gene patterns on each side of the node. Noggin, present in the midline at this stage, limits BMP4 spreading. Moreover, BMP4 is downstream to Activin signals and controls Fgf8. Thus, early BMP4 signaling coordinates left and right pathways in Hensen's node.
Collapse
Affiliation(s)
- A Monsoro-Burq
- Institut d'Embryologie Cellulaire et Moléculaire, FRE 2160, 49 bis avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France
| | | |
Collapse
|
123
|
Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK. Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 2001; 12:589-99. [PMID: 11251073 PMCID: PMC30966 DOI: 10.1091/mbc.12.3.589] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutations in Tg737 cause a wide spectrum of phenotypes, including random left-right axis specification, polycystic kidney disease, liver and pancreatic defects, hydrocephalus, and skeletal patterning abnormalities. To further assess the biological function of Tg737 and its role in the mutant pathology, we identified the cell population expressing Tg737 and determined the subcellular localization of its protein product called Polaris. Tg737 expression is associated with cells possessing either motile or immotile cilia and sperm. Similarly, Polaris concentrated just below the apical membrane in the region of the basal bodies and within the cilia or flagellar axoneme. The data suggest that Polaris functions in a ciliogenic pathway or in cilia maintenance, a role supported by the loss of cilia on the ependymal cell layer in ventricles of Tg737(orpk) brains and by the lack of node cilia in Tg737(Delta2-3betaGal) mutants.
Collapse
Affiliation(s)
- P D Taulman
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
124
|
Rupp G, O'Toole E, Porter ME. The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. Mol Biol Cell 2001; 12:739-51. [PMID: 11251084 PMCID: PMC30977 DOI: 10.1091/mbc.12.3.739] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2000] [Revised: 11/29/2000] [Accepted: 01/16/2000] [Indexed: 11/11/2022] Open
Abstract
Efficient motility of the eukaryotic flagellum requires precise temporal and spatial control of its constituent dynein motors. The central pair and its associated structures have been implicated as important members of a signal transduction cascade that ultimately regulates dynein arm activity. To identify central pair components involved in this process, we characterized a Chlamydomonas motility mutant (pf6-2) obtained by insertional mutagenesis. pf6-2 flagella twitch ineffectively and lack the 1a projection on the C1 microtubule of the central pair. Transformation with constructs containing a full-length, wild-type copy of the PF6 gene rescues the functional, structural, and biochemical defects associated with the pf6 mutation. Sequence analysis indicates that the PF6 gene encodes a large polypeptide that contains numerous alanine-rich, proline-rich, and basic domains and has limited homology to an expressed sequence tag derived from a human testis cDNA library. Biochemical analysis of an epitope-tagged PF6 construct demonstrates that the PF6 polypeptide is an axonemal component that cosediments at 12.6S with several other polypeptides. The PF6 protein appears to be an essential component required for assembly of some of these polypeptides into the C1-1a projection.
Collapse
Affiliation(s)
- G Rupp
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
125
|
Bartoloni L, Blouin JL, Maiti AK, Sainsbury A, Rossier C, Gehrig C, She JX, Marron MP, Lander ES, Meeks M, Chung E, Armengot M, Jorissen M, Scott HS, Delozier-Blanchet CD, Gardiner RM, Antonarakis SE. Axonemal beta heavy chain dynein DNAH9: cDNA sequence, genomic structure, and investigation of its role in primary ciliary dyskinesia. Genomics 2001; 72:21-33. [PMID: 11247663 DOI: 10.1006/geno.2000.6462] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dyneins are multisubunit protein complexes that couple ATPase activity with conformational changes. They are involved in the cytoplasmatic movement of organelles (cytoplasmic dyneins) and the bending of cilia and flagella (axonemal dyneins). Here we present the first complete cDNA and genomic sequences of a human axonemal dynein beta heavy chain gene, DNAH9, which maps to 17p12. The 14-kb-long cDNA is divided into 69 exons spread over 390 kb. The cDNA sequence of DNAH9 was determined using a combination of methods including 5' rapid amplification of cDNA ends, RT-PCR, and cDNA library screening. RT-PCR using nasal epithelium and testis RNA revealed several alternatively spliced transcripts. The genomic structure was determined using three overlapping BACs sequenced by the Whitehead Institute/MIT Center for Genome Research. The predicted protein, of 4486 amino acids, is highly homologous to sea urchin axonemal beta heavy chain dyneins (67% identity). It consists of an N-terminal stem and a globular C-terminus containing the four P-loops that constitute the motor domain. Lack of proper ciliary and flagellar movement characterizes primary ciliary dyskinesia (PCD), a genetically heterogeneous autosomal recessive disorder with respiratory tract infections, bronchiectasis, male subfertility, and, in 50% of cases, situs inversus (Kartagener syndrome, KS). Dyneins are excellent candidate genes for PCD and KS because in over 50% of cases the ultrastructural defects of cilia are related to the dynein complex. Genotype analysis was performed in 31 PCD families with two or more affected siblings using a highly informative dinucleotide polymorphism located in intron 26 of DNAH9. Two families with concordant inheritance of DNAH9 alleles in affected individuals were observed. A mutation search was performed in these two "candidate families," but only polymorphic variants were found. In the absence of pathogenic mutations, the DNAH9 gene has been excluded as being responsible for autosomal recessive PCD in these families.
Collapse
Affiliation(s)
- L Bartoloni
- Division of Medical Genetics, University of Geneva Medical School and, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Whitman M, Mercola M. TGF-beta superfamily signaling and left-right asymmetry. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752633 DOI: 10.1126/stke.2001.64.re1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an outwardly bilaterally symmetrical appearance, most internal organs of vertebrates display considerable left-right (LR) asymmetry in their anatomy and physiology. The orientation of LR asymmetry with respect to the dorsoventral and anteroposterior body axes is invariant such that fewer than 1 in 10,000 individuals exhibit organ reversals. The stereotypic orientation of LR asymmetry is ensured by distinct left- and right-side signal transduction pathways that are initiated by divergent members of the transforming growth factor-beta (TGF-beta) superfamily of secreted proteins. During early embryogenesis, the TGF-beta-like protein Nodal (or a Nodal-related ortholog) is expressed by the left lateral plate mesoderm and provides essential LR cues to the developing organs. In chick embryos at least, bone morphogenetic protein (BMP) signaling is active on the right side of the embryo and must be inhibited on the left in order for Nodal to be expressed. Thus, at a key point in the determination of LR asymmetry, left-sided signaling is mediated by the transcription factors Smad2 and Smad3 (regulated by Nodal), whereas signaling on the right depends on Smad1 and Smad5 (which are regulated by BMP). This review summarizes the considerable progress that has been made in recent years in understanding the complex network of feedback and feedforward circuitry that regulates both the left- and right-sided pathways. Also discussed is the problem of how signal transduction mediated by the Smad proteins can pattern LR asymmetry without interfering with coincident dorsoventral patterning, which relies on the same Smad proteins.
Collapse
Affiliation(s)
- M Whitman
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
127
|
|
128
|
Abstract
The vertebrate body plan has bilateral symmetry and left-right asymmetries that are highly conserved. The molecular pathways for left-right development are beginning to be elucidated. Several distinct mechanisms to initiate the vertebrate left-right axis have been proposed. These mechanisms appear to converge on highly conserved expression patterns of genes in the transforming growth factor-beta (TGFbeta) family of cell-cell signaling factors, nodal and lefty-2, and subsequently the expression of the transcription regulator Pitx2, in left lateral plate mesoderm. It is possible that downstream signaling pathways diverge in distinct classes of vertebrates.
Collapse
Affiliation(s)
- H J Yost
- Huntsman Cancer Institute, Center for Children, University of Utah, Salt Lake City 84112, USA
| |
Collapse
|
129
|
Aylsworth AS. Clinical aspects of defects in the determination of laterality. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/ajmg.1219] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
130
|
Schneider H, Brueckner M. Of mice and men: Dissecting the genetic pathway that controls left-right asymmetry in mice and humans. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1096-8628(200024)97:4<258::aid-ajmg1276>3.0.co;2-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
131
|
Wall NA, Craig EJ, Labosky PA, Kessler DS. Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene. Dev Biol 2000; 227:495-509. [PMID: 11071769 DOI: 10.1006/dbio.2000.9926] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TGFbeta signals play important roles in establishing the body axes and germ layers in the vertebrate embryo. Vg1 is a TGFbeta-related gene that, due to its maternal expression and vegetal localization in Xenopus, has received close examination as a potential regulator of development in Xenopus, zebrafish, and chick. However, a mammalian Vg1 ortholog has not been identified. To isolate mammalian Vg1 we screened a mouse expression library with a Vg1-specific monoclonal antibody and identified a single cross-reactive clone encoding mouse Gdf1. Gdf1 is expressed uniformly throughout the embryonic region at 5.5-6.5 days postcoitum and later in the node, midbrain, spinal cord, paraxial mesoderm, lateral plate mesoderm, and limb bud. When expressed in Xenopus embryos, native GDF1 is not processed, similar to Vg1. In contrast, a chimeric protein containing the prodomain of Xenopus BMP2 fused to the GDF1 mature domain is efficiently processed and signals via Smad2 to induce mesendoderm and axial duplication. Finally, right-sided expression of chimeric GDF1, but not native GDF1, reverses laterality and results in right-sided Xnr1 expression and reversal of intestinal and heart looping. Therefore, GDF1 can regulate left-right patterning, consistent with the Gdf1 loss-of-function analysis in the mouse (C. T. Rankin, T. Bunton, A. M. Lawler, and S. J. Lee, 2000, Nature Genet. 24, 262-265) and a proposed role for Vg1 in Xenopus. Our results establish that Gdf1 is posttranslationally regulated, that mature GDF1 activates a Smad2-dependent signaling pathway, and that mature GDF1 is sufficient to reverse the left-right axis. Moreover, these findings demonstrate that GDF1 and Vg1 are equivalent in biochemical and functional assays, suggesting that Gdf1 provides a Vg1-like function in the mammalian embryo.
Collapse
Affiliation(s)
- N A Wall
- Biology Department, Lawrence University, Appleton, Wisconsin 54912, USA
| | | | | | | |
Collapse
|
132
|
Fujinaga M, Lowe LA, Kuehn MR. alpha(1)-Adrenergic stimulation perturbs the left-right asymmetric expression pattern of nodal during rat embryogenesis. TERATOLOGY 2000; 62:317-24. [PMID: 11029149 DOI: 10.1002/1096-9926(200011)62:5<317::aid-tera5>3.0.co;2-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Normal development of the left/right (L/R) body axis leads to the characteristic sidedness of asymmetric body structures, e.g., the left-sided heart. Several genes are now known to be expressed with L/R asymmetry during embryogenesis, including nodal, a member of the transforming growth factor-beta (TGF-beta) family. Mutations or experimental treatments that affect L/R development, such as those that cause situs inversus (reversal of the sidedness of asymmetric body structures), have been shown to alter or abolish nodal's asymmetric expression. METHODS In the present study, we examined the effects on nodal expression of alpha(1)-adrenergic stimulation, known to cause a 50% incidence of situs inversus in rat embryos grown in culture, using reverse transcription-polymerase chain reaction assay and whole-mount in situ hybridization assay. RESULTS In embryos cultured with phenylephrine, an alpha(1)-adrenergic agonist, nodal's normal asymmetric expression only in the left lateral plate mesoderm was altered. In some treated embryos, nodal expression was detected in either the left or right lateral plate mesoderm. However, most treated embryos lacked lateral plate mesoderm expression. In addition, the embryos that did show expression were at a later stage than when nodal expression is normally found. CONCLUSIONS Our results demonstrate that alpha(1)-adrenergic stimulation delays the onset and perturbs the normal asymmetric pattern of nodal expression. Either of these effects might contribute to situs inversus.
Collapse
Affiliation(s)
- M Fujinaga
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
133
|
Abstract
The generation of distinct cell fates can require movement of specific molecules or organelles to particular locations within the cell. These subcellular movements are often the jobs of motor proteins. Seemingly disparate developmental processes--determination of right and left in vertebrates, setting up the axes of polarity in insect embryos, mating-type switching in yeast, and coordinated organelle movements in Drosophila--converge in their dependence on motor proteins. The extent of possible regulatory complexity is only beginning to emerge.
Collapse
Affiliation(s)
- J A Fischer
- The University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, Moffett Molecular Biology Building, 2500 Speedway, Austin, Texas 78712, USA.
| |
Collapse
|
134
|
Affiliation(s)
- F Kaplan
- McGill University-Montreal Children's Hospital Research Institute, McGill University, Montreal, Quebec, H3Z 2Z3, Canada.
| |
Collapse
|
135
|
Spencer JA, Eliazer S, Ilaria RL, Richardson JA, Olson EN. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol 2000; 150:771-84. [PMID: 10953002 PMCID: PMC2175279 DOI: 10.1083/jcb.150.4.771] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RING-finger domain is a novel zinc-binding Cys-His protein motif found in a growing number of proteins involved in signal transduction, ubiquitination, gene transcription, differentiation, and morphogenesis. We describe a novel muscle-specific RING-finger protein (MURF) expressed specifically in cardiac and skeletal muscle cells throughout pre- and postnatal mouse development. MURF belongs to the RING-B-box-coiled-coil subclass of RING-finger proteins, characterized by an NH(2)-terminal RING-finger followed by a zinc-finger domain (B-box) and a leucine-rich coiled-coil domain. Expression of MURF is required for skeletal myoblast differentiation and myotube fusion. The leucine-rich coiled-coil domain of MURF mediates association with microtubules, whereas the RING-finger domain is required for microtubule stabilization and an additional region is required for homo-oligomerization. Expression of MURF establishes a cellular microtubule network that is resistant to microtubule depolymerization induced by alkaloids, cold and calcium. These results identify MURF as a myogenic regulator of the microtubule network of striated muscle cells and reveal a link between microtubule organization and myogenesis.
Collapse
Affiliation(s)
- Jeffrey A. Spencer
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9148
| | - Susan Eliazer
- Department of Hematology and Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9148
| | - Robert L. Ilaria
- Department of Hematology and Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9148
| | - James A. Richardson
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9148
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9148
| |
Collapse
|
136
|
Abstract
Dyneins contain one-three microtubule motor units that are each derived from the C-terminal globular head of a heavy chain. The N-terminal regions of the heavy chains form stems that are required for intra-dynein associations. The microtubule-binding sites are located at the terminus of a short stalk that emanates from each globular head. Recent electron microscopic analysis indicates that the dynein head has a heptameric toroidal organization. This finding is echoed by the identification of six AAA (ATPases associated with cellular activities) domains and a seventh unrelated unit within this heavy chain region. At least two of these AAA domains can bind nucleotide, although only one appears able to hydrolyze ATP. Several other AAA domain proteins exhibit a similar annular organization of six AAA units. Detailed structural information is available for several AAA proteins, including N-ethylmaleimide-sensitive vesicle-fusion protein and the RuvB motor involved in DNA migration and resolution of Holliday junctions. The resulting structural parallels allow intriguing predictions to be made concerning dynein organization and motor function.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032-3305, USA.
| |
Collapse
|
137
|
|
138
|
Capdevila J, Vogan KJ, Tabin CJ, Izpisúa Belmonte JC. Mechanisms of left-right determination in vertebrates. Cell 2000; 101:9-21. [PMID: 10778851 DOI: 10.1016/s0092-8674(00)80619-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Capdevila
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
139
|
Abstract
Cilia on the ventral side of the mouse node have been implicated in initiating the left-right axis during embryonic development, but how cilia relate to other factors in the left-right pathway and the mechanism by which cilia convey patterning information remain uncertain.
Collapse
Affiliation(s)
- M K Wagner
- Huntsman Cancer Institute, Center for Children, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
140
|
Supp DM, Potter SS, Brueckner M. Molecular motors: the driving force behind mammalian left-right development. Trends Cell Biol 2000; 10:41-5. [PMID: 10652513 DOI: 10.1016/s0962-8924(99)01701-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The molecular motors dynein and kinesin are large protein complexes that convert the energy generated by ATP hydrolysis into directional movement along the microtubule cytoskeleton. They are required for a myriad of cellular processes, including mitotic spindle movement, axonal and vesicular transport, and ciliary beating. Recently, it has been shown that, in addition, they have a unique role during embryonic patterning: they are required to orient and establish the left-right axis in early vertebrate development.
Collapse
Affiliation(s)
- D M Supp
- Research Dept, Shriners Hospital for Children, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|