Oviedo NJ, Newmark PA, Sánchez Alvarado A. Allometric scaling and proportion regulation in the freshwater planarian Schmidtea mediterranea.
Dev Dyn 2003;
226:326-33. [PMID:
12557210 DOI:
10.1002/dvdy.10228]
[Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The regulation of scale and proportion in living organisms is an intriguing and enduring problem of biology. Regulatory mechanisms for controlling body size and proportion are clearly illustrated by the regeneration of missing body parts after amputation, in which the newly regenerated tissues ultimately attain a size that is anatomically congruent with the size of the rest of the organism. Understanding the molecular processes underpinning scaling would have deep consequences for our comprehension of tissue regeneration, developmental ontogeny, growth, and evolution. Although many theories have been put forward to explain this process, it is interesting that no satisfactory mechanistic explanation is currently available to explain scalar relationships. We chose to investigate the freshwater planarian, a commonly used model system for the study of metazoan regeneration, to delineate a strategy for the molecular dissection of scale and proportion mechanisms in metazoans. Here, we report on the cloning and discrete expression pattern of a novel planarian gene, which shares homology with the DEG/ENaC super-family of sodium channels. We have named H.112.3c cintillo ("head ribbon" in Spanish) and present a strategy for using the expression of this gene to monitor scale and proportion regulation during regeneration, growth and degrowth in the freshwater planarian Schmidtea mediterranea.
Collapse