101
|
Mor A, Shav-Tal Y. Dynamics and kinetics of nucleo-cytoplasmic mRNA export. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:388-401. [PMID: 21956938 DOI: 10.1002/wrna.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation of the gene expression pathway in eukaryotic cells results in the nuclear transcription of mRNA molecules, many of which are destined for translation into protein by cytoplasmic ribosomes. mRNA transcripts are exported from the nucleus to the cytoplasm via passage through nuclear pore complexes (NPCs), ∼125 MDa supramolecular complexes set in the double-membraned nuclear envelope. Understanding the kinetics of mRNA translocation, from the point of transcription through export, localization, translation, and degradation, is of fundamental interest since gene expression is regulated at all the different levels of this pathway. In this review, we delineate the steps taken by an mRNA molecule in transit to the nuclear envelope and during mRNA export, with specific focus on the dynamic aspects of nucleo-cytoplasmic mRNA transport as revealed by electron microscopy and live-cell imaging.
Collapse
Affiliation(s)
- Amir Mor
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
102
|
Mor A, Ben-Yishay R, Shav-Tal Y. On the right track: following the nucleo-cytoplasmic path of an mRNA. Nucleus 2010; 1:492-8. [PMID: 21327092 DOI: 10.4161/nucl.1.6.13515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022] Open
Abstract
The transcription machinery in the eukaryotic nucleus generates messenger RNA molecules that translocate through the nucleoplasm, anchor to a nuclear pore, and find their way out into the cytoplasm. The dynamic aspects of these steps in the expression pathway were examined in order to understand the kinetic time-frames of gene activation and message dissemination. Utilizing live-cell imaging and tracking of single mRNPs containing different sized mRNAs and varying numbers of introns and exons, it was possible to quantify the temporal and spatial characteristics of the nucleoplasmic travels of mRNPs as well as the kinetics of translocation through the nuclear pore.
Collapse
Affiliation(s)
- Amir Mor
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
103
|
Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol 2010; 30:4808-17. [PMID: 20713443 DOI: 10.1128/mcb.00460-10] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomeres are transcribed into telomeric repeat-containing RNA (TERRA), large, heterogeneous, noncoding transcripts which form part of the telomeric heterochromatin. Despite a large number of functions that have been ascribed to TERRA, little is known about its biogenesis. Here, we present the first comprehensive analysis of the molecular structure of TERRA. We identify biochemically distinct TERRA complexes, and we describe TERRA regulation during the cell cycle. Moreover, we demonstrate that TERRA 5' ends contain 7-methylguanosine cap structures and that the poly(A) tail, present on a fraction of TERRA transcripts, contributes to their stability. Poly(A)(-) TERRA, but not poly(A)(+) TERRA, is associated with chromatin, possibly reflecting distinct biological roles of TERRA ribonucleoprotein complexes. In support of this idea, poly(A)(-) and poly(A)(+) TERRA molecules end with distinct sequence registers. We also determine that the bulk of 3'-terminal UUAGGG repeats have an average length of 200 bases, indicating that the length heterogeneity of TERRA likely stems from its subtelomeric regions. Finally, we find that TERRA is regulated during the cell cycle, being lowest in late S phase and peaking in early G(1). Our analyses offer the basis for investigating multiple regulatory pathways that affect TERRA synthesis, processing, turnover, and function.
Collapse
|
104
|
Splice-site mutations cause Rrp6-mediated nuclear retention of the unspliced RNAs and transcriptional down-regulation of the splicing-defective genes. PLoS One 2010; 5:e11540. [PMID: 20634951 PMCID: PMC2902512 DOI: 10.1371/journal.pone.0011540] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/16/2010] [Indexed: 12/18/2022] Open
Abstract
Background Eukaryotic cells have developed surveillance mechanisms to prevent the expression of aberrant transcripts. An early surveillance checkpoint acts at the transcription site and prevents the release of mRNAs that carry processing defects. The exosome subunit Rrp6 is required for this checkpoint in Saccharomyces cerevisiae, but it is not known whether Rrp6 also plays a role in mRNA surveillance in higher eukaryotes. Methodology/Principal Findings We have developed an in vivo system to study nuclear mRNA surveillance in Drosophila melanogaster. We have produced S2 cells that express a human β-globin gene with mutated splice sites in intron 2 (mut β-globin). The transcripts encoded by the mut β-globin gene are normally spliced at intron 1 but retain intron 2. The levels of the mut β-globin transcripts are much lower than those of wild type (wt) ß-globin mRNAs transcribed from the same promoter. We have compared the expression of the mut and wt β-globin genes to investigate the mechanisms that down-regulate the production of defective mRNAs. Both wt and mut β-globin transcripts are processed at the 3′, but the mut β-globin transcripts are less efficiently cleaved than the wt transcripts. Moreover, the mut β-globin transcripts are less efficiently released from the transcription site, as shown by FISH, and this defect is restored by depletion of Rrp6 by RNAi. Furthermore, transcription of the mut β-globin gene is significantly impaired as revealed by ChIP experiments that measure the association of the RNA polymerase II with the transcribed genes. We have also shown that the mut β-globin gene shows reduced levels of H3K4me3. Conclusions/Significance Our results show that there are at least two surveillance responses that operate cotranscriptionally in insect cells and probably in all metazoans. One response requires Rrp6 and results in the inefficient release of defective mRNAs from the transcription site. The other response acts at the transcription level and reduces the synthesis of the defective transcripts through a mechanism that involves histone modifications.
Collapse
|
105
|
Wiebe NJP, Meyer IM. TRANSAT-- method for detecting the conserved helices of functional RNA structures, including transient, pseudo-knotted and alternative structures. PLoS Comput Biol 2010; 6:e1000823. [PMID: 20589081 PMCID: PMC2891591 DOI: 10.1371/journal.pcbi.1000823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 05/19/2010] [Indexed: 12/20/2022] Open
Abstract
The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure and also do not predict functional features required for in vivo folding. In order to understand how functional RNA structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few, experimentally validated transient RNA structures. On the computational side, there exist several computer programs which aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold in a similar way in vivo. To this end, we have developed a new computational method, Transat, which detects conserved helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and show that Transat is able to predict the structural features of known reference structures including pseudo-knotted ones as well as those of known alternative structural configurations. Transat can also identify unstructured sub-sequences bound by other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that the structural features predicted by Transat differ from those assuming thermodynamic equilibrium. Unlike the existing methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of not requiring a detailed knowledge of the cellular environment. Many non-coding genes exert their function via an RNA structure which starts emerging while the RNA sequence is being transcribed from the genome. The resulting folding pathway is known to depend on a variety of features such as the transcription speed, the concentration of various ions and the binding of proteins and other molecules. Not all of these influences can be adequately captured by the existing computational methods which try to replicate what happens in vivo. So far, it has been challenging to experimentally investigate co-transcriptional folding pathways in vivo and only little data from in vitro experiments exists. In order to investigate if functionally similar RNA sequences from different organisms fold in a similar way, we have developed a new computational method, called Transat, which does not require the detailed computational modeling of the cellular environment. We show in a comprehensive analysis that our method is capable of detecting known structural features and provide evidence that structural features of the in vivo folding pathways have been conserved for several biologically interesting classes of RNA sequences.
Collapse
Affiliation(s)
- Nicholas J. P. Wiebe
- Centre for High-Throughput Biology & Department of Computer Science and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Irmtraud M. Meyer
- Centre for High-Throughput Biology & Department of Computer Science and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
106
|
Anthony K, Gallo JM. Aberrant RNA processing events in neurological disorders. Brain Res 2010; 1338:67-77. [DOI: 10.1016/j.brainres.2010.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 12/12/2022]
|
107
|
Ben-Ari Y, Brody Y, Kinor N, Mor A, Tsukamoto T, Spector DL, Singer RH, Shav-Tal Y. The life of an mRNA in space and time. J Cell Sci 2010; 123:1761-74. [PMID: 20427315 DOI: 10.1242/jcs.062638] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear transcribed genes produce mRNA transcripts destined to travel from the site of transcription to the cytoplasm for protein translation. Certain transcripts can be further localized to specific cytoplasmic regions. We examined the life cycle of a transcribed beta-actin mRNA throughout gene expression and localization, in a cell system that allows the in vivo detection of the gene locus, the transcribed mRNAs and the cytoplasmic beta-actin protein that integrates into the actin cytoskeleton. Quantification showed that RNA polymerase II elongation progressed at a rate of 3.3 kb/minute and that transactivator binding to the promoter was transient (40 seconds), and demonstrated the unique spatial structure of the coding and non-coding regions of the integrated gene within the transcription site. The rates of gene induction were measured during interphase and after mitosis, demonstrating that daughter cells were not synchronized in respect to transcription initiation of the studied gene. Comparison of the spatial and temporal kinetics of nucleoplasmic and cytoplasmic mRNA transport showed that the beta-actin-localization response initiates from the existing cytoplasmic mRNA pool and not from the newly synthesized transcripts arising after gene induction. It was also demonstrated that mechanisms of random movement were predominant in mediating the efficient translocation of mRNA in the eukaryotic cell.
Collapse
Affiliation(s)
- Ya'ara Ben-Ari
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J 2010; 29:1629-36. [PMID: 20407423 DOI: 10.1038/emboj.2010.71] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/26/2010] [Indexed: 12/11/2022] Open
Abstract
How are short exonic sequences recognized within the vast intronic oceans in which they reside? Despite decades of research, this remains one of the most fundamental, yet enigmatic, questions in the field of pre-mRNA splicing research. For many years, studies aiming to shed light on this process were focused at the RNA level, characterizing the manner by which splicing factors and auxiliary proteins interact with splicing signals, thereby enabling, facilitating and regulating splicing. However, we increasingly understand that splicing is not an isolated process; rather it occurs co-transcriptionally and is presumably also regulated by transcription-related processes. In fact, studies by our group and others over the past year suggest that DNA structure in terms of nucleosome positioning and specific histone modifications, which have a well established role in transcription, may also have a role in splicing. In this review we discuss evidence for the coupling between transcription and splicing, focusing on recent findings suggesting a link between chromatin structure and splicing, and highlighting challenges this emerging field is facing.
Collapse
|
109
|
Hashimoto K, Ishida E, Miura A, Ozawa A, Shibusawa N, Satoh T, Okada S, Yamada M, Mori M. A liver X receptor (LXR)-β alternative splicing variant (LXRBSV) is preferentially expressed in the pituitary. Biochem Biophys Res Commun 2010; 394:548-52. [DOI: 10.1016/j.bbrc.2010.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/03/2010] [Indexed: 11/16/2022]
|
110
|
Abstract
The occupancy of nucleosomes along chromosome is a key factor for gene regulation. However, except promoter regions, genome-wide properties and functions of nucleosome organization remain unclear in mammalian genomes. Using the computational model of Increment of Diversity with Quadratic Discriminant (IDQD) trained from the microarray data, the nucleosome occupancy score (NOScore) was defined and applied to splice junction regions of constitutive, cassette exon, alternative 3′ and 5′ splicing events in the human genome. We found an interesting relation between NOScore and RNA splicing: exon regions have higher NOScores compared with their flanking intron sequences in both constitutive and alternative splicing events, indicating the stronger nucleosome occupation potential of exon regions. In addition, NOScore valleys present at ∼25 bp upstream of the acceptor site in all splicing events. By defining folding diversity-to-energy ratio to describe RNA structural flexibility, we demonstrated that primary RNA transcripts from nucleosome occupancy regions are relatively rigid and those from nucleosome depleted regions are relatively flexible. The negative correlation between nucleosome occupation/depletion of DNA sequence and structural flexibility/rigidity of its primary transcript around splice junctions may provide clues to the deeper understanding of the unexpected role for nucleosome organization in the regulation of RNA splicing.
Collapse
Affiliation(s)
- Wei Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | | | | |
Collapse
|
111
|
Kim HS, Kim HL, Kim KH, Kim DJ, Lee SJ, Yoon JY, Yoon HJ, Lee HY, Park SB, Kim SJ, Lee JY, Suh SW. Crystal structure of Tpa1 from Saccharomyces cerevisiae, a component of the messenger ribonucleoprotein complex. Nucleic Acids Res 2009; 38:2099-110. [PMID: 20040577 PMCID: PMC2847220 DOI: 10.1093/nar/gkp1151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tpa1 (for termination and polyadenylation) from Saccharomyces cerevisiae is a component of a messenger ribonucleoprotein (mRNP) complex at the 3′ untranslated region of mRNAs. It comprises an N-terminal Fe(II)- and 2-oxoglutarate (2OG) dependent dioxygenase domain and a C-terminal domain. The N-terminal dioxygenase domain of a homologous Ofd1 protein from Schizosaccharomyces pombe was proposed to serve as an oxygen sensor that regulates the activity of the C-terminal degradation domain. Members of the Tpa1 family are also present in higher eukaryotes including humans. Here we report the crystal structure of S. cerevisiae Tpa1 as a representative member of the Tpa1 family. Structures have been determined as a binary complex with Fe(III) and as a ternary complex with Fe(III) and 2OG. The structures reveal that both domains of Tpa1 have the double-stranded β-helix fold and are similar to prolyl 4-hydroxylases. However, the binding of Fe(III) and 2OG is observed in the N-terminal domain only. We also show that Tpa1 binds to poly(rA), suggesting its direct interaction with mRNA in the mRNP complex. The structural and functional data reported in this study support a role of the Tpa1 family as a hydroxylase in the mRNP complex and as an oxygen sensor.
Collapse
Affiliation(s)
- Hyoun Sook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Sokolowska M, Wodz-Naskiewicz K, Cieslak M, Seta K, Bednarek AK, Pawliczak R. Variable expression of cysteinyl leukotriene type I receptor splice variants in asthmatic females with different promoter haplotypes. BMC Immunol 2009; 10:63. [PMID: 20003473 PMCID: PMC2805608 DOI: 10.1186/1471-2172-10-63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/15/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cysteinyl leukotrienes are potent inflammatory mediators implicated in the pathogenesis of asthma. Human cysteinyl leukotriene receptor 1 (CYSLTR1) gene contains five exons that are variably spliced. Within its promoter few polymorphisms were described. To date, there has been no evidence about the expression of different splice variants of CysLT1 in asthma and their association with CYSLTR1 promoter polymorphisms.The goal of our study was to investigate CysLT1 alternative transcripts expression in asthmatic patients with different CYSLTR1 promoter haplotypes.The study groups consisted of 44 patients with asthma, diagnosed according to GINA 2008 criteria and 18 healthy subjects. Genomic DNA and total RNA was extracted from peripheral blood mononuclear cells. Real-time PCR was performed with specific primers for transcript I [GenBank:DQ131799] and II [GenBank:DQ131800]. Fragments of the CYSLTR1 promoter were amplified by PCR and sequenced directly to identify four single nucleotide polymorphisms: C/T [SNP:rs321029], A/C [SNP:rs2637204], A/G [SNP:rs2806489] and C/T [SNP:rs7066737]. RESULTS The expression of CysLT1 transcript I and II in asthma did not differ from its expression in healthy control group. However, in major alleles homozygotic CAAC/CAAC women with asthma we found significantly higher expression of transcript I as compared to heterozygous CAAC/TCGC women in that loci. CysLT1 transcript I expression tended to negative correlation with episodes of acute respiratory infection in our asthmatic population. Moreover, expression of CysLT1 transcript II in CAAC/CAAC homozygotic women with asthma was significantly lower than in CAAC/CAAC healthy control females. CONCLUSIONS Genetic variants of CYSLTR1 promoter might be associated with gender specific expression of CysLT1 alternative transcripts in patients with asthma. CysLT1 splice variants expression might also correlate with the susceptibility to infection in asthmatic population.
Collapse
Affiliation(s)
- Milena Sokolowska
- Department of Immunopathology, Chair of Allergology, Immunology and Dermatology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Pomorska 251 str, 92-213 Lodz, Poland
| | - Karolina Wodz-Naskiewicz
- Department of Immunopathology, Chair of Allergology, Immunology and Dermatology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Pomorska 251 str, 92-213 Lodz, Poland
| | - Malgorzata Cieslak
- Department of Immunology, Rheumatology and Allergy, Chair of Clinical Immunology and Microbiology, Faculty of Medicine, Medical University of Lodz, Pomorska 251 str, 92-213 Lodz, Poland
| | - Karolina Seta
- Department of Molecular Carcinogenesis, Chair of Molecular Medicine and Biotechnology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Mazowiecka 6/8 str, 92-215 Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Chair of Molecular Medicine and Biotechnology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Mazowiecka 6/8 str, 92-215 Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Chair of Allergology, Immunology and Dermatology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Pomorska 251 str, 92-213 Lodz, Poland
| |
Collapse
|
113
|
Pawlicki JM, Steitz JA. Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol 2009; 20:52-61. [PMID: 20004579 DOI: 10.1016/j.tcb.2009.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
The expression of protein-coding genes is enhanced by the exquisite coupling of transcription by RNA polymerase II with pre-messenger RNA processing reactions, such as 5'-end capping, splicing and 3'-end formation. Integration between cotranscriptional processing events extends beyond the nucleus, as proteins that bind cotranscriptionally can affect the localization, translation and degradation of the mature messenger RNA. MicroRNAs are RNA polymerase II transcripts with crucial roles in the regulation of gene expression. Recent data demonstrate that processing of primary microRNA transcripts might be yet another cotranscriptional event that is woven into this elaborate nuclear network. This review discusses the extensive molecular interactions that couple the earliest steps in gene expression and therefore influence the final fate and function of the mature messenger RNA or microRNA produced.
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
114
|
Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae. Genetics 2009; 184:107-18. [PMID: 19884310 DOI: 10.1534/genetics.109.110031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae SEN1 gene codes for a nuclear-localized superfamily I helicase. SEN1 is an ortholog of human SETX (senataxin), which has been implicated in the neurological disorders ataxia-ocular apraxia type 2 and juvenile amyotrophic lateral sclerosis. Pleiotropic phenotypes conferred by sen1 mutations suggest that Sen1p affects multiple steps in gene expression. Sen1p is embedded in a protein-protein interaction network involving direct binding to multiple partners. To test whether the interactions occur independently or in a dependent sequence, we examined interactions with the RNA polymerase II subunit Rpb1p, which is required for transcription, and Rnt1p, which is required for 3'-end maturation of many noncoding RNAs. Mutations were identified that impair one of the two interactions without impairing the other interaction. The effects of the mutants on the synthesis of U5 small nuclear RNA were analyzed. Two defects were observed, one in transcription termination and one in 3'-end maturation. Impairment of the Sen1p-Rpb1p interaction resulted in a termination defect. Impairment of the Sen1p-Rnt1p interaction resulted in a processing defect. The results suggest that the Sen1p-Rpb1p and Sen1p-Rnt1p interactions occur independently of each other and serve genetically separable purposes in targeting Sen1p to function in two temporally overlapping steps in gene expression.
Collapse
|
115
|
Kylberg K, Björk P, Fomproix N, Ivarsson B, Wieslander L, Daneholt B. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport. Exp Cell Res 2009; 316:1028-38. [PMID: 19853599 DOI: 10.1016/j.yexcr.2009.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/16/2009] [Indexed: 12/18/2022]
Abstract
We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.
Collapse
Affiliation(s)
- Karin Kylberg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
116
|
Kandul NP, Noor MAF. Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3. BMC Genet 2009; 10:67. [PMID: 19840385 PMCID: PMC2767349 DOI: 10.1186/1471-2156-10-67] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/19/2009] [Indexed: 01/12/2023] Open
Abstract
Background Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution.
Collapse
Affiliation(s)
- Nikolai P Kandul
- Biology Department, Duke University, PO Box 90338, FFSC 4244, Durham, NC 27708, USA.
| | | |
Collapse
|
117
|
Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009; 16:1128-33. [PMID: 19820712 PMCID: PMC2783620 DOI: 10.1038/nsmb.1666] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 08/11/2009] [Indexed: 12/26/2022]
Abstract
Transcription and splicing must proceed over genomic distances of hundreds of kilobases in many human genes. However, the rates and mechanisms of these processes are poorly understood. We have used the compound 5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside (DRB) that reversibly blocks gene transcription in vivo combined with quantitative RT-PCR to analyze the transcription and RNA processing of several long human genes. We found that the rate of RNA polymerase II transcription over long genomic distances is about 3.8 kb per minute and is nearly the same whether transcribing long introns or exon rich regions. We also determined that co-transcriptional pre-mRNA splicing of U2-dependent introns occurs within 5–10 minutes of synthesis irrespective of intron length between 1 kb and 240 kb. Similarly, U12-dependent introns were co-transcriptionally spliced within 10 minutes of synthesis confirming that these introns are spliced within the nuclear compartment. These results show that the expression of large genes is surprisingly rapid and efficient.
Collapse
|
118
|
Aleksandrova A, Galkin O, Koneni R, Fontes JD. An N- and C-terminal truncated isoform of zinc finger X-linked duplicated C protein represses MHC class II transcription. Mol Cell Biochem 2009; 337:1-7. [PMID: 19777325 DOI: 10.1007/s11010-009-0280-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/16/2009] [Indexed: 11/30/2022]
Abstract
The zinc finger X-linked duplicated A (ZXDA) and ZXDC proteins are both required for robust transcription of major histocompatibility complex class II (MHC II) genes. Aside from the full length ZXDC mRNA transcript, at least one additional mRNA is produced by the ZXDC gene, in which transcription initiates within the first exon and terminates within the seventh intron. The protein product produced from this transcript, which we have named ZXDC2, is truncated on both the N- and C-terminus. We demonstrate here that ZXDC2 functions to repress MHC II transcription induced in HeLa cells treated with IFN-gamma. We further demonstrate that ZXDC2 interacts with both ZXDA and ZXDC, suggesting a mechanism by which ZXDC2 may inhibit MHC II transcription. These studies not only provide additional support for the role of ZXD proteins in regulating MHC II transcription, but also demonstrate a unique mechanism for the synthesis of a mRNA isoform.
Collapse
Affiliation(s)
- Anastasiia Aleksandrova
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
119
|
Giri P, Suresh Kumar G. Molecular recognition of poly(A) targeting by protoberberine alkaloids: in vitro biophysical studies and biological perspectives. MOLECULAR BIOSYSTEMS 2009; 6:81-8. [PMID: 20024069 DOI: 10.1039/b910706a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The use of small molecules to specifically control important cellular functions through binding to nucleic acids is an area of major current interest at the interface of chemical biology and medicinal chemistry. The polyadenylic acid [poly(A)] tail of mRNA has been recently established as a potential drug target due to its significant role in the initiation of translation, maturation and stability of mRNA as well as in the production of alternate proteins in eukaryotic cells. Very recently some small molecule alkaloids of the isoquinoline group have been found to bind poly(A) with remarkably high affinity leading to self-structure formation. Plant alkaloids are small molecules known to have important traditional roles in medicinal chemistry due to their extensive biological activity. Especially, noteworthy are the protoberberine alkaloids that are widely distributed in several botanical families exhibiting myriad therapeutic applications. This review focuses on the structural and biological significance of poly(A) and interaction of protoberberine alkaloids with this RNA structure for the development of new small molecule alkaloids targeted to poly(A) structures as futuristic therapeutic agents.
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India.
| | | |
Collapse
|
120
|
Andersson R, Enroth S, Rada-Iglesias A, Wadelius C, Komorowski J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 2009; 19:1732-41. [PMID: 19687145 DOI: 10.1101/gr.092353.109] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The genomes of higher organisms are packaged in nucleosomes with functional histone modifications. Until now, genome-wide nucleosome and histone modification studies have focused on transcription start sites (TSSs) where nucleosomes in RNA polymerase II (RNAPII) occupied genes are well positioned and have histone modifications that are characteristic of expression status. Using public data, we here show that there is a higher nucleosome-positioning signal in internal human exons and that this positioning is independent of expression. We observed a similarly strong nucleosome-positioning signal in internal exons of Caenorhabditis elegans. Among the 38 histone modifications analyzed in man, H3K36me3, H3K79me1, H2BK5me1, H3K27me1, H3K27me2, and H3K27me3 had evidently higher signals in internal exons than in the following introns and were clearly related to exon expression. These observations are suggestive of roles in splicing. Thus, exons are not only characterized by their coding capacity, but also by their nucleosome organization, which seems evolutionarily conserved since it is present in both primates and nematodes.
Collapse
Affiliation(s)
- Robin Andersson
- The Linnaeus Centre for Bioinformatics, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
121
|
Percipalle P. The long journey of actin and actin-associated proteins from genes to polysomes. Cell Mol Life Sci 2009; 66:2151-65. [PMID: 19300907 PMCID: PMC11115535 DOI: 10.1007/s00018-009-0012-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/13/2009] [Accepted: 02/24/2009] [Indexed: 12/11/2022]
Abstract
During gene expression, multiple regulatory steps make sure that alterations of chromatin structure are synchronized with RNA synthesis, co-transcriptional assembly of ribonucleoprotein complexes, transport to the cytoplasm and localized translation. These events are controlled by large multiprotein complexes commonly referred to as molecular machines, which are specialized and at the same time display a highly dynamic protein composition. The crosstalk between these molecular machines is essential for efficient RNA biogenesis. Actin has been recently proposed to be an important factor throughout the entire RNA biogenesis pathway as a component of chromatin remodeling complexes, associated with all eukaryotic RNA polymerases as well as precursor and mature ribonucleoprotein complexes. The aim of this review is to present evidence on the involvement of actin and actin-associated proteins in RNA biogenesis and propose integrative models supporting the view that actin facilitates coordination of the different steps in gene expression.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, 171 77, Stockholm, Sweden.
| |
Collapse
|
122
|
Sapra AK, Ankö ML, Grishina I, Lorenz M, Pabis M, Poser I, Rollins J, Weiland EM, Neugebauer KM. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 2009; 34:179-90. [PMID: 19394295 DOI: 10.1016/j.molcel.2009.02.031] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/19/2008] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
Abstract
The SR proteins are a family of pre-mRNA splicing factors with additional roles in gene regulation. To investigate individual family members in vivo, we generated a comprehensive panel of stable cell lines expressing GFP-tagged SR proteins under endogenous promoter control. Recruitment of SR proteins to nascent FOS RNA was transcription dependent and RNase sensitive, with unique patterns of accumulation along the gene specified by the RNA recognition motifs (RRMs). In addition, all SR protein interactions with Pol II were RNA dependent, indicating that SR proteins are not preassembled with Pol II. SR protein interactions with RNA were confirmed in situ by FRET/FLIM. Interestingly, SC35-GFP also exhibited FRET with DNA and failed to associate with cytoplasmic mRNAs, whereas all other SR proteins underwent nucleocytoplasmic shuttling and associated with specific nuclear and cytoplasmic mRNAs. Because different constellations of SR proteins bound nascent, nuclear, and cytoplasmic mRNAs, mRNP remodeling must occur throughout an mRNA's lifetime.
Collapse
Affiliation(s)
- Aparna K Sapra
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs. Mol Cell 2009; 34:322-32. [PMID: 19450530 DOI: 10.1016/j.molcel.2009.04.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/14/2009] [Accepted: 04/24/2009] [Indexed: 11/23/2022]
Abstract
Metazoan histone mRNAs are unique: their pre-mRNAs contain no introns, and the mRNAs are not polyadenylated, ending instead in a conserved stem-loop structure. In Drosophila, canonical poly(A) signals are located downstream of the normal cleavage site of each histone gene and are utilized when histone 3' end formation is inhibited. Here we define a subcomplex of poly(A) factors that are required for histone pre-mRNA processing. We demonstrate that Symplekin, CPSF73, and CPSF100 are present in a stable complex and interact with histone-specific processing factors. We use chromatin immunoprecipitation to show that Symplekin and CPSF73, but not CstF50, cotranscriptionally associate with histone genes. Depletion of SLBP recruits CstF50 to histone genes. Knockdown of CPSF160 or CstF64 downregulates Symplekin but does not affect histone pre-mRNA processing or association of Symplekin with the histone locus. These results suggest that a common core cleavage factor is required for processing of histone and polyadenylated pre-mRNAs.
Collapse
|
124
|
Tyagi A, Ryme J, Brodin D, Östlund Farrants AK, Visa N. SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet 2009; 5:e1000470. [PMID: 19424417 PMCID: PMC2669885 DOI: 10.1371/journal.pgen.1000470] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 04/07/2009] [Indexed: 12/02/2022] Open
Abstract
The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced.
Collapse
Affiliation(s)
- Anu Tyagi
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Jessica Ryme
- Department of Cell Biology at the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - David Brodin
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | | | - Neus Visa
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
125
|
Abstract
In eukaryotes, mRNA molecules are transcribed from nuclear DNA and commute through a labyrinth of nucleoplasmic passageways to the nuclear envelope where they are exported to the cytoplasm. New findings provide tools and insights into the biophysical properties that govern mRNA translocations en route to the cytoplasm and suggest that mRNA molecules move in a discontinuous manner due to transient interactions with the nuclear environment.
Collapse
Affiliation(s)
- Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel.
| | | |
Collapse
|
126
|
Ryan K, Khleborodova A, Pan J, Ryan XP. Small molecule activators of pre-mRNA 3' cleavage. RNA (NEW YORK, N.Y.) 2009; 15:483-92. [PMID: 19155323 PMCID: PMC2657006 DOI: 10.1261/rna.1262509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/08/2008] [Indexed: 05/27/2023]
Abstract
3' Cleavage and polyadenylation are obligatory steps in the biogenesis of most mammalian pre-mRNAs. In vitro reconstitution of the 3' cleavage reaction from human cleavage factors requires high concentrations of creatine phosphate (CP), though how CP activates cleavage is not known. Previously, we proposed that CP might work by competitively inhibiting a cleavage-suppressing serine/threonine (S/T) phosphatase. Here we show that fluoride/EDTA, a general S/T phosphatase inhibitor, activates in vitro cleavage in place of CP. Subsequent testing of inhibitors specific for different S/T phosphatases showed that inhibitors of the PPM family of S/T phosphatases, which includes PP2C, but not the PPP family, which includes PP1, PP2A, and PP2B, activated 3' cleavage in vitro. In particular, NCI 83633, an inhibitor of PP2C, activated extensive 3' cleavage at a concentration 50-fold below that required by fluoride or CP. The testing of structural analogs led to the identification of a more potent compound that activated 3' cleavage at 200 microM. While testing CP analogs to understand the origin of its cleavage activation effect, we found phosphocholine to be a more effective activator than CP. The minimal structural determinants of 3' cleavage activation by phosphocholine were identified. Our results describe a much improved small molecule activator of in vitro pre-mRNA cleavage, identify the molecular determinants of cleavage activation by phosphoamines such as phosphocholine, and suggest that a PPM family phosphatase is involved in the negative regulation of mammalian pre-mRNA 3' cleavage.
Collapse
Affiliation(s)
- Kevin Ryan
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, USA.
| | | | | | | |
Collapse
|
127
|
Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci U S A 2009; 106:4325-30. [PMID: 19251664 DOI: 10.1073/pnas.0810666106] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In search for physiological pathways affecting alternative splicing through its kinetic coupling with transcription, we found that membrane depolarization of neuronal cells triggers the skipping of exon 18 from the neural cell adhesion molecule (NCAM) mRNA, independently of the calcium/calmodulin protein kinase IV pathway. We show that this exon responds to RNA polymerase II elongation, because its inclusion is increased by a slow polymerase II mutant. Depolarization affects the chromatin template in a specific way, by causing H3K9 hyper-acetylation restricted to an internal region of the NCAM gene surrounding the alternative exon. This intragenic histone hyper-acetylation is not paralleled by acetylation at the promoter, is associated with chromatin relaxation, and is linked to H3K36 tri-methylation. The effects on acetylation and splicing fully revert when the depolarizing conditions are withdrawn and can be both duplicated and potentiated by the histone deacetylase inhibitor trichostatin A. Our results are consistent with a mechanism involving the kinetic coupling of splicing and transcription in response to depolarization through intragenic epigenetic changes on a gene that is relevant for the differentiation and function of neuronal cells.
Collapse
|
128
|
Pawlicki JM, Steitz JA. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci. Cell Cycle 2009; 8:345-56. [PMID: 19177009 DOI: 10.4161/cc.8.3.7494] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate expression of their target messenger RNAs. We recently demonstrated that primary miRNA transcripts (pri-miRNAs) retained at transcription sites are processed with enhanced efficiency, suggesting that pri-miRNA processing is coupled to transcription in mammalian cells. We also observed that transiently expressed pri-miRNAs accumulate in nuclear foci with splicing factor SC35 and Microprocessor components, Drosha and DGCR8. Here, we show that pri-miRNAs containing a self-cleaving hepatitis delta ribozyme accumulate in the nucleoplasm after release from their transcription sites, but are not efficiently processed. Pri-miRNAs with ribozyme-generated 3' ends do not localize to SC35-containing foci, whereas cleaved and polyadenylated pri-miRNA transcripts with or without the pre-miRNA hairpin do. Pri-miRNA/SC35 foci contain a number of proteins normally associated with SC35 domains, including ASF/SF2, PABII, and the prolyl isomerase, Pin1. In contrast, RNA polymerase II and PM/Scl-100 do not strongly colocalize with pri-miRNAs in SC35-containing foci. These data argue that pri-miRNA/SC35-containing foci are not major sites of pri-miRNA processing and that pri-miRNA processing is coupled to transcription. We discuss the implications of our findings relative to recent insights into miRNA biogenesis, mRNA metabolism, and the nuclear organization of gene expression.
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Pharmacology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
129
|
Natalizio BJ, Robson-Dixon ND, Garcia-Blanco MA. The Carboxyl-terminal Domain of RNA Polymerase II Is Not Sufficient to Enhance the Efficiency of Pre-mRNA Capping or Splicing in the Context of a Different Polymerase. J Biol Chem 2009; 284:8692-702. [PMID: 19176527 DOI: 10.1074/jbc.m806919200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic messenger RNA precursors (pre-mRNAs) synthesized by RNA polymerase II (RNAP II) are processed co-transcriptionally. The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II is thought to mediate the coupling of transcription with pre-mRNA processing by coordinating the recruitment of processing factors during synthesis of nascent transcripts. Previous studies have demonstrated that the phosphorylated CTD is required for efficient co-transcriptional processing. In the study presented here we investigated whether the CTD is sufficient to coordinate transcription with pre-mRNA capping and splicing in the context of two other DNA-dependent RNA polymerases, mammalian RNAP III and bacteriophage T7 RNAP. Our results indicate that the CTD fused to the largest subunit of RNAP III (POLR3A) is not sufficient to enhance co-transcriptional pre-mRNA splicing or capping in vivo. Additionally, we analyzed a T7 RNAP-CTD fusion protein and examined its ability to enhance pre-mRNA splicing and capping of both constitutively and alternatively spliced substrates. We observed that the CTD in the context of T7 RNAP was not sufficient to enhance pre-mRNA splicing or capping either in vitro or in vivo. We propose that the efficient coupling of transcription to pre-mRNA processing requires not only the phosphorylated CTD but also other RNAP II specific subunits or associated factors.
Collapse
Affiliation(s)
- Barbara J Natalizio
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
130
|
Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure 2009; 16:1605-15. [PMID: 19000813 DOI: 10.1016/j.str.2008.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 12/14/2022]
Abstract
Most eukaryotic pre-mRNAs contain non-coding sequences (introns) that must be removed in order to accurately place the coding sequences (exons) in the correct reading frame. This critical regulatory pre-mRNA splicing event is fundamental in development and cancer. It occurs within a mega-Dalton multicomponent machine composed of RNA and proteins, which undergoes dynamic changes in RNA-RNA, RNA-protein, and protein-protein interactions during the splicing reaction. Recent years have seen progress in functional and structural analyses of the splicing machine and its subcomponents, and this review is focused on structural aspects of the pre-mRNA splicing machine and their mechanistic implications on the splicing of multi-intronic pre-mRNAs. It brings together, in a comparative manner, structural information on spliceosomes and their intermediates in the stepwise assembly process in vitro, and on the preformed supraspliceosomes, which are isolated from living cell nuclei, with a view of portraying a consistent picture.
Collapse
Affiliation(s)
- Joseph Sperling
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
131
|
|
132
|
The influence of calcium signaling on the regulation of alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:979-84. [PMID: 19133299 DOI: 10.1016/j.bbamcr.2008.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 02/07/2023]
Abstract
In this review the influence of calcium signaling on the regulation of alternative splicing is discussed with respect to its influence on cell- and developmental-specific expression of different isoforms of the plasma membrane calcium pump (PMCA). In a second part the possibility is discussed that due to the interaction of the calcium-binding protein ALG-2 with a spliceosomal regulator of alternative splicing, RBM22, Ca2+-signaling may thus influence its regulatory property.
Collapse
|
133
|
Bracken CP, Wall SJ, Barré B, Panov KI, Ajuh PM, Perkins ND. Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res 2008; 68:7621-8. [PMID: 18794151 DOI: 10.1158/0008-5472.can-08-1217] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclin D1 expression represents one of the key mitogen-regulated events during the G(1) phase of the cell cycle, whereas Cyclin D1 overexpression is frequently associated with human malignancy. Here, we describe a novel mechanism regulating Cyclin D1 levels. We find that SNIP1, previously identified as a regulator of Cyclin D1 expression, does not, as previously thought, primarily function as a transcriptional coactivator for this gene. Rather, SNIP1 plays a critical role in cotranscriptional or posttranscriptional Cyclin D1 mRNA stability. Moreover, we show that the majority of nucleoplasmic SNIP1 is present within a previously undescribed complex containing SkIP, THRAP3, BCLAF1, and Pinin, all proteins with reported roles in RNA processing and transcriptional regulation. We find that this complex, which we have termed the SNIP1/SkIP-associated RNA-processing complex, is coordinately recruited to both the 3' end of the Cyclin D1 gene and Cyclin D1 RNA. Significantly, SNIP1 is required for the further recruitment of the RNA processing factor U2AF65 to both the Cyclin D1 gene and RNA. This study shows a novel mechanism regulating Cyclin D1 expression and offers new insight into the role of SNIP1 and associated proteins as regulators of proliferation and cancer.
Collapse
Affiliation(s)
- Cameron P Bracken
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | | | | | | | | | | |
Collapse
|
134
|
Pawlicki JM, Steitz JA. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. ACTA ACUST UNITED AC 2008; 182:61-76. [PMID: 18625843 PMCID: PMC2447899 DOI: 10.1083/jcb.200803111] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with important roles in regulating gene expression. In studying the earliest nuclear steps of miRNA biogenesis, we observe that primary miRNA (pri-miRNA) transcripts retained at transcription sites due to the deletion of 3′-end processing signals are converted more efficiently into precursor miRNAs (pre-miRNAs) than pri-miRNAs that are cleaved, polyadenylated, and released. Flanking exons, which also increase retention at transcription sites, likewise contribute to increased levels of intronic pri-miRNAs. Consistently, efficiently processed endogenous pri-miRNAs are enriched in chromatin-associated nuclear fractions. In contrast, pri-miRNAs that accumulate to high nuclear levels after cleavage and polyadenylation because of the presence of a viral RNA element (the ENE of the Kaposi's sarcoma–associated herpes virus polyadenylated nuclear RNA) are not efficiently processed to precursor or mature miRNAs. Exogenous pri-miRNAs unexpectedly localize to nuclear foci containing splicing factor SC35; yet these foci are unlikely to represent sites of miRNA transcription or processing. Together, our results suggest that pri-miRNA processing is enhanced by coupling to transcription.
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Pharmacology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
135
|
Rogic S, Montpetit B, Hoos HH, Mackworth AK, Ouellette BF, Hieter P. Correlation between the secondary structure of pre-mRNA introns and the efficiency of splicing in Saccharomyces cerevisiae. BMC Genomics 2008; 9:355. [PMID: 18664289 PMCID: PMC2536676 DOI: 10.1186/1471-2164-9-355] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 07/29/2008] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Secondary structure interactions within introns have been shown to be essential for efficient splicing of several yeast genes. The nature of these base-pairing interactions and their effect on splicing efficiency were most extensively studied in ribosomal protein gene RPS17B (previously known as RP51B). It was determined that complementary pairing between two sequence segments located downstream of the 5' splice site and upstream of the branchpoint sequence promotes efficient splicing of the RPS17B pre-mRNA, presumably by shortening the branchpoint distance. However, no attempts were made to compute a shortened, 'structural' branchpoint distance and thus the functional relationship between this distance and the splicing efficiency remains unknown. RESULTS In this paper we use computational RNA secondary structure prediction to analyze the secondary structure of the RPS17B intron. We show that it is necessary to consider suboptimal structure predictions and to compute the structural branchpoint distances in order to explain previously published splicing efficiency results. Our study reveals that there is a tight correlation between this distance and splicing efficiency levels of intron mutants described in the literature. We experimentally test this correlation on additional RPS17B mutants and intron mutants within two other yeast genes. CONCLUSION The proposed model of secondary structure requirements for efficient splicing is the first attempt to specify the functional relationship between pre-mRNA secondary structure and splicing. Our findings provide further insights into the role of pre-mRNA secondary structure in gene splicing in yeast and also offer basis for improvement of computational methods for splice site identification and gene-finding.
Collapse
Affiliation(s)
- Sanja Rogic
- Department of Computer Science, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | |
Collapse
|
136
|
Cotranscriptional splicing potentiates the mRNA production from a subset of estradiol-stimulated genes. Mol Cell Biol 2008; 28:5811-24. [PMID: 18644870 DOI: 10.1128/mcb.02231-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
While early steps of gene expression, such as transcription preinitiation, are known to often be rate limiting and to be regulated by such stimuli as steroid hormones, the potential impact of downstream steps, including splicing, on the mRNA production rate is unknown. In this work, we studied the effects of the transcriptional stimulus estradiol on cyclin D1, PS2, and c-fos gene expression by measuring the levels of RNA polymerase II on the DNA templates, the levels of nascent transcripts associated with RNA polymerase II, and the levels of unspliced, partially spliced, and fully spliced RNAs. We demonstrated that the efficiency of cotranscriptional splicing of the first intron was higher in the case of cyclin D1 than with PS2 and potentiated the cyclin D1 mRNA production rate. The mechanism involved in cotranscriptional splicing depended on the level of serine 5 phosphorylation of RNA polymerase II at the gene 5' end and on the recruitment of CBP80, one of the two subunits of the cap binding complex, which stimulates splicing of the promoter-proximal intron. Our data indicate that mRNA production from a subset of estradiol-stimulated genes, such as cyclin D1, could occur in a very efficient "assembly line." In contrast, we demonstrated for the first time that despite a strong transcriptional activation of the PS2 gene, the production of mRNA is not optimized owing to inefficient cotranscriptional RNA processing.
Collapse
|
137
|
Voss PG, Gray RM, Dickey SW, Wang W, Park JW, Kasai KI, Hirabayashi J, Patterson RJ, Wang JL. Dissociation of the carbohydrate-binding and splicing activities of galectin-1. Arch Biochem Biophys 2008; 478:18-25. [PMID: 18662664 DOI: 10.1016/j.abb.2008.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 06/28/2008] [Accepted: 07/08/2008] [Indexed: 01/12/2023]
Abstract
Galectin-1 (Gal1) and galectin-3 (Gal3) are two members of a family of carbohydrate-binding proteins that are found in the nucleus and that participate in pre-mRNA splicing assayed in a cell-free system. When nuclear extracts (NE) of HeLa cells were subjected to adsorption on a fusion protein containing glutathione S-transferase (GST) and Gal3, the general transcription factor II-I (TFII-I) was identified by mass spectrometry as one of the polypeptides specifically bound. Lactose and other saccharide ligands of the galectins inhibited GST-Gal3 pull-down of TFII-I while non-binding carbohydrates failed to yield the same effect. Similar results were also obtained using GST-Gal1. Site-directed mutants of Gal1, expressed and purified as GST fusion proteins, were compared with the wild-type (WT) in three assays: (a) binding to asialofetuin-Sepharose as a measure of the carbohydrate-binding activity; (b) pull-down of TFII-I from NE; and (c) reconstitution of splicing in NE depleted of galectins as a test of the in vitro splicing activity. The binding of GST-Gal1(N46D) to asialofetuin-Sepharose was less than 10% of that observed for GST-Gal1(WT), indicating that the mutant was deficient in carbohydrate-binding activity. In contrast, both GST-Gal1(WT) and GST-Gal1(N46D) were equally efficient in pull-down of TFII-I and in reconstitution of splicing activity in the galectin-depleted NE. Moreover, while the splicing activity of the wild-type protein can be inhibited by saccharide ligands, the carbohydrate-binding deficient mutant was insensitive to such inhibition. Together, all of the results suggest that the carbohydrate-binding and the splicing activities of Gal1 can be dissociated and therefore, saccharide-binding, per se, is not required for the splicing activity.
Collapse
Affiliation(s)
- Patricia G Voss
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Jeffares DC, Penkett CJ, Bähler J. Rapidly regulated genes are intron poor. Trends Genet 2008; 24:375-8. [PMID: 18586348 DOI: 10.1016/j.tig.2008.05.006] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
We show that genes with rapidly changing expression levels in response to stress contain significantly lower intron densities in yeasts, thale cress and mice. Therefore, we propose that introns can delay regulatory responses and are selected against in genes whose transcripts require rapid adjustment for survival of environmental challenges. These findings could provide an explanation for the apparent extensive intron loss during the evolution of some eukaryotic lineages.
Collapse
|
139
|
Stanek D, Pridalová-Hnilicová J, Novotný I, Huranová M, Blazíková M, Wen X, Sapra AK, Neugebauer KM. Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol Biol Cell 2008; 19:2534-43. [PMID: 18367544 DOI: 10.1091/mbc.e07-12-1259] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6.U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.
Collapse
Affiliation(s)
- David Stanek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Allemand E, Batsché E, Muchardt C. Splicing, transcription, and chromatin: a ménage à trois. Curr Opin Genet Dev 2008; 18:145-51. [PMID: 18372167 DOI: 10.1016/j.gde.2008.01.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 01/31/2023]
Abstract
Alternative splicing allows for one gene to encode multiple proteins. This mechanism is regulated by dedicated splicing factors. However, recent data have shown that these factors contact the RNA polymerase II as well as transcription factors and chromatin remodeling enzymes present inside the coding region of the gene. These observations favor a model where cotranscriptional splice decisions are assisted by factors recruited at the promoter or by the elongating polymerase. We also suggest that chromatin could function as an RNA-binding matrix displaying the immature transcripts to the spliceosomes.
Collapse
Affiliation(s)
- Eric Allemand
- Institut Pasteur, CNRS URA2578, Unité de Régulation Epigénétique, Avenir INSERM, Département de Biologie du Développement, Paris, France
| | | | | |
Collapse
|
141
|
Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides. PLoS One 2008; 3:e1844. [PMID: 18365002 PMCID: PMC2267000 DOI: 10.1371/journal.pone.0001844] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/08/2008] [Indexed: 11/19/2022] Open
Abstract
Antisense oligonucleotides (AONs) mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a “window of analysis” that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered “engaged” if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency) of 94% of 176 previously reported AONs. Four novel insights are inferred: (1) the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2) engaged nucleotides at 3′ or 5′ ends of the target site attenuate AON performance more than at other sites; (3) the performance of longer AONs is less attenuated by engaged nucleotides at 3′ or 5′ ends of the target site compared to shorter AONs; (4) engaged nucleotides at 3′ end of a short target site attenuates AON efficiency more than at 5′ end.
Collapse
|
142
|
Kylberg K, Björkroth B, Ivarsson B, Fomproix N, Daneholt B. Close coupling between transcription and exit of mRNP from the cell nucleus. Exp Cell Res 2008; 314:1708-20. [PMID: 18374333 DOI: 10.1016/j.yexcr.2008.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 12/27/2022]
Abstract
Transcription is intimately coupled to co-transcriptional formation of mRNP particles and their preparation for export. In the dipteran Chironomus tentans we have now investigated whether on-going transcription is closely linked also to the ensuing transfer of the mRNPs from genes to cytoplasm. The assembly and nucleocytoplasmic transport of a specific mRNP particle, the Balbiani ring (BR) RNP granule, were visualized in larval salivary glands by electron microscopy. When transcription was inhibited with DRB or actinomycin D (AMD), the growing BR mRNPs disappeared from the genes. The two inhibitors affected the distribution of BR mRNPs in the nucleoplasm and in the nuclear pores in essentially the same way. At the nuclear pore complexes (NPCs) the basket-associated and translocating mRNPs were substantially reduced in number, the translocating RNPs being essentially absent after 90 min treatment. Remarkably, the amount of BR mRNPs in the nucleoplasm did not change. We conclude that on-going transcription is required for the mRNPs to exit from the cell nucleus. Interruption of transcription seems to primarily affect the intranuclear movement of BR mRNPs and/or prevent the binding of mRNPs to the NPCs rather than to directly interfere with translocation per se.
Collapse
Affiliation(s)
- Karin Kylberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
143
|
Redox and heavy metal effects on the biochemical activities of an Arabidopsis polyadenylation factor subunit. Arch Biochem Biophys 2008; 473:88-95. [PMID: 18331819 DOI: 10.1016/j.abb.2008.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/08/2008] [Accepted: 02/16/2008] [Indexed: 11/20/2022]
Abstract
The Arabidopsis CPSF30 ortholog (AtCPSF30) is an RNA-binding endonuclease that is part of the plant polyadenylation complex. Previous work (B. Addepalli, A.G. Hunt, Nucleic Acids Res. 35 (2007) 4453-4463) demonstrated that different zinc finger motifs in the protein were responsible for RNA-binding and nuclease activity, respectively. In this study, a more detailed functional map of AtCPSF30 is presented, a map that includes descriptions of novel biochemical activities. Elevated temperatures, the specific zinc chelator 1,10-phenanthroline, and the sulfhydryl reagent dithiothreitol all had differential inhibitory effects on the RNA-binding and nuclease activities. The endonuclease activity of AtCPSF30 was inhibited by relatively high (>100muM) concentrations of zinc, and this inhibition required a plant-specific N-terminal domain apart from the zinc finger core of the protein. ATP stimulated the nuclease activity in the presence of zinc, and this stimulation required a plant-specific C-terminal domain, again apart from the zinc finger core. These studies reveal a subtle and unexpected complexity to AtCPSF30, and raise the possibility that multiple avenues of regulation may impinge on this protein through different functional domains.
Collapse
|
144
|
Mirkin N, Fonseca D, Mohammed S, Cevher MA, Manley JL, Kleiman FE. The 3' processing factor CstF functions in the DNA repair response. Nucleic Acids Res 2008; 36:1792-804. [PMID: 18252771 PMCID: PMC2330234 DOI: 10.1093/nar/gkn005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Following DNA damage, mRNA levels decrease, reflecting a coordinated interaction of the DNA repair, transcription and RNA processing machineries. In this study, we provide evidence that transcription and polyadenylation of mRNA precursors are both affected in vivo by UV treatment. We next show that the polyadenylation factor CstF, plays a direct role in the DNA damage response. Cells with reduced levels of CstF display decreased viability following UV treatment, reduced ability to ubiquitinate RNA polymerase II (RNAP II), and defects in repair of DNA damage. Furthermore, we show that CstF, RNAP II and BARD1 are all found at sites of repaired DNA. Our results indicate that CstF plays an active role in the response to DNA damage, providing a link between transcription-coupled RNA processing and DNA repair.
Collapse
Affiliation(s)
- Nurit Mirkin
- Chemistry Department, Hunter College, City University of New York, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
145
|
Danker T, Dreesen B, Offermann S, Horst I, Peterhänsel C. Developmental information but not promoter activity controls the methylation state of histone H3 lysine 4 on two photosynthetic genes in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:465-74. [PMID: 18179650 DOI: 10.1111/j.1365-313x.2007.03352.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We have investigated the establishment of histone H3 methylation with respect to environmental and developmental signals for two key genes associated with C4 photosynthesis in maize. Tri-methylation of histone H3 lysine 4 (H3K4) in roots and leaves was shown to be controlled by autonomous cell-type-specific developmental signals that are independent of illumination and therefore independent of the initiation of transcription. Di- and mono-methylation of H3K4 act antagonistically to this process. The modifications were already established in etiolated seedlings, and remained stable when genes were inactivated by dark treatment or pharmaceutical inhibition of transcription. Constitutive di-methylation of H3K9 was concomitantly detected at specific gene positions. The data support a histone code model whereby cell-type-specific signals induce the formation of a chromatin structure that potentiates gene activation by environmental cues.
Collapse
Affiliation(s)
- Tanja Danker
- Rheinisch-Westfälische Hochschule Aachen, Biology I, 52056 Aachen, Germany
| | | | | | | | | |
Collapse
|
146
|
Friend K, Lovejoy AF, Steitz JA. U2 snRNP binds intronless histone pre-mRNAs to facilitate U7-snRNP-dependent 3' end formation. Mol Cell 2008; 28:240-52. [PMID: 17964263 PMCID: PMC2149891 DOI: 10.1016/j.molcel.2007.09.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/08/2007] [Accepted: 09/14/2007] [Indexed: 11/17/2022]
Abstract
In metazoa, pre-mRNA 3' end formation occurs via two pathways: cleavage/polyadenylation for the majority of RNA polymerase II transcripts and U7-snRNP-dependent cleavage for replication-dependent histone pre-mRNAs. An RNA element derived from a replication-dependent histone gene affects multiple steps of pre-mRNA processing. Here, we demonstrate that a portion of this RNA element, present in the majority of histone mRNAs, stimulates U7-snRNP-dependent cleavage. Surprisingly, this element binds U2 snRNP, although it is derived from an intronless mRNA. Specifically, SF3b, a U2 and U12-snRNP component, contacts the RNA element both in vitro and in vivo in conjunction with hPrp43, a DEAH-box helicase. Tethering either U2 or U12 snRNP to histone pre-mRNA substrates stimulates U7-snRNP-dependent cleavage in vitro and in vivo. Finally, we show that U2 snRNP associates with histone pre-mRNAs in vivo. We conclude that U2 snRNP plays a nonsplicing role in histone mRNA maturation.
Collapse
Affiliation(s)
- Kyle Friend
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
147
|
Localized co-transcriptional recruitment of the multifunctional RNA-binding protein CELF1 by lampbrush chromosome transcription units. Chromosome Res 2007; 15:985-1000. [PMID: 18095176 DOI: 10.1007/s10577-007-1179-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
The highly-extended transcription units of lampbrush chromosomes (LBCs) offer unique opportunities to study the co-transcriptional events occurring on nascent transcripts. Using LBCs from amphibian oocytes, I investigated whether CELF1, an RNA binding protein involved in the regulation of alternative splicing, mRNA stability and translation, is localized to active transcription units. Antibodies raised against mammalian (CUG-BP1) and amphibian (EDEN-BP) CELF1 were used to immunostain LBC spreads prepared from several species, including Xenopus laevis and the axolotl Ambystoma mexicanum. Up to about 50 separate LBC loci were convincingly immunostained and it was clear that CELF1 was present in the nascent RNPs of lateral loops. Furthermore, myc-tagged CUG-BP1 expressed in microinjected axolotl oocytes was specifically targeted to nascent transcripts of loops that recruit endogenous CELF1. In many active transcription units CELF1 was distinctly localized, being first recruited by nascent transcripts only far downstream of the transcription start site and remaining associated until the end of transcription. Overall it appears possible that the multiple functions of CELF1 in regulating posttranscriptional gene expression could all be predetermined during transcription by virtue of a region-specific binding to the nascent transcripts of target genes.
Collapse
|
148
|
Patel SB, Novikova N, Bellini M. Splicing-independent recruitment of spliceosomal small nuclear RNPs to nascent RNA polymerase II transcripts. ACTA ACUST UNITED AC 2007; 178:937-49. [PMID: 17846169 PMCID: PMC2064619 DOI: 10.1083/jcb.200706134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In amphibian oocytes, most lateral loops of the lampbrush chromosomes correspond to active transcriptional sites for RNA polymerase II. We show that newly assembled small nuclear ribonucleoprotein (RNP [snRNP]) particles, which are formed upon cytoplasmic injection of fluorescently labeled spliceosomal small nuclear RNAs (snRNAs), target the nascent transcripts of the chromosomal loops. With this new targeting assay, we demonstrate that nonfunctional forms of U1 and U2 snRNAs still associate with the active transcriptional units. In particular, we find that their association with nascent RNP fibrils is independent of their base pairing with pre–messenger RNAs. Additionally, stem loop I of the U1 snRNA is identified as a discrete domain that is both necessary and sufficient for association with nascent transcripts. Finally, in oocytes deficient in splicing, the recruitment of U1, U4, and U5 snRNPs to transcriptional units is not affected. Collectively, these data indicate that the recruitment of snRNPs to nascent transcripts and the assembly of the spliceosome are uncoupled events.
Collapse
MESH Headings
- Animals
- Female
- Nucleic Acid Conformation
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splicing
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Ribonucleoprotein, U7 Small Nuclear/genetics
- Ribonucleoprotein, U7 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Spliceosomes/genetics
- Spliceosomes/physiology
- Xenopus
Collapse
Affiliation(s)
- Snehal Bhikhu Patel
- Department of Biochemistry, College of Medicine, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
149
|
Del Mastro RG, Turenne L, Giese H, Keith TP, Van Eerdewegh P, May KJW, Little RD. Mechanistic role of a disease-associated genetic variant within the ADAM33 asthma susceptibility gene. BMC MEDICAL GENETICS 2007; 8:46. [PMID: 17640346 PMCID: PMC1955437 DOI: 10.1186/1471-2350-8-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/17/2007] [Indexed: 01/06/2023]
Abstract
BACKGROUND ADAM33 has been identified as an asthma-associated gene in an out-bred population. Genetic studies suggested that the functional role of this metalloprotease was in airway remodeling. However, the mechanistic roles of the disease-associated SNPs have yet to be elucidated especially in the context of the pathophysiology of asthma. One disease-associated SNP, BC+1, which resides in intron BC toward the 5' end of ADAM33, is highly associated with the disease. METHODS The region surrounding this genetic variant was cloned into a model system to determine if there is a regulatory element within this intron that influences transcription. RESULTS The BC+1 protective allele did not impose any affect on the transcription of the reporter gene. However, the at-risk allele enforced such a repressive affect on the promoter that no protein product from the reporter gene was detected. These results indicated that there exists within intron BC a regulatory element that acts as a repressor for gene expression. Moreover, since SNP BC+1 is a common genetic variant, this region may interact with other undefined regulatory elements within ADAM33 to provide a rheostat effect, which modulates pre-mRNA processing. Thus, SNP BC+1 may have an important role in the modulation of ADAM33 gene expression. CONCLUSION These data provide for the first time a functional role for a disease-associated SNP in ADAM33 and begin to shed light on the deregulation of this gene in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Richard G Del Mastro
- Molecular Therapeutics Division, AmberGen Incorporated, Waltham, Massachusetts 02453, USA
| | | | - Heidi Giese
- Molecular Therapeutics Division, AmberGen Incorporated, Waltham, Massachusetts 02453, USA
| | - Tim P Keith
- Genomatix Software GmbH, D-80335 Munich, Germany
| | | | | | | |
Collapse
|
150
|
Dong X, Sweet J, Challis JRG, Brown T, Lye SJ. Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb. Mol Cell Biol 2007; 27:4863-75. [PMID: 17452459 PMCID: PMC1951499 DOI: 10.1128/mcb.02144-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/16/2007] [Accepted: 04/11/2007] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors regulate gene activation or repression through dynamic interactions with coregulators. The interactions between nuclear receptors and RNA splicing factors link gene transcription initiation with pre-mRNA splicing, providing a coordinated control of the products of gene transcription. Here we report that two RNA splicing factors, PTB-associated splicing factor (PSF) and p54nrb, synergistically form protein complexes with the androgen receptor (AR) in a ligand-independent manner and inhibit its transcriptional activity. PSF does not affect AR protein stability, as in the case of the progesterone receptor, but impedes the interaction of AR with the androgen response element. Both splicing factors interact directly with mSin3A and attract mSin3A to the AR complex in a synergistic manner. The suppression of AR transcriptional activity by PSF and p54nrb is reversed by the inhibition of histone deacetylase activity. These data demonstrated that PSF and p54nrb complex with AR and play a key role in modulating AR-mediated gene transcription.
Collapse
Affiliation(s)
- Xuesen Dong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, Canada
| | | | | | | | | |
Collapse
|