101
|
du Plessis SS, Kashou AH, Benjamin DJ, Yadav SP, Agarwal A. Proteomics: a subcellular look at spermatozoa. Reprod Biol Endocrinol 2011; 9:36. [PMID: 21426553 PMCID: PMC3071316 DOI: 10.1186/1477-7827-9-36] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Male-factor infertility presents a vexing problem for many reproductively active couples. Many studies have focused on abnormal sperm parameters. Recent advances in proteomic techniques, especially in mass spectrometry, have aided in the study of sperm and more specifically, sperm proteins. The aim of this study was to review the current literature on the various proteomic techniques, and their usefulness in diagnosing sperm dysfunction and potential applications in the clinical setting. METHODS Review of PubMed database. Key words: spermatozoa, proteomics, protein, proteome, 2D-PAGE, mass spectrometry. RESULTS Recently employed proteomic methods, such as two-dimensional polyacrylamide gel electrophoresis, mass spectrometry, and differential in gel electrophoresis, have identified numerous sperm-specific proteins. They also have provided a further understanding of protein function involved in sperm processes and for the differentiation between normal and abnormal states. In addition, studies on the sperm proteome have demonstrated the importance of post-translational modifications, and their ability to bring about physiological changes in sperm function. No longer do researchers believe that in order for them to elucidate the biochemical functions of genes, mere knowledge of the human genome sequence is sufficient. Moreover, a greater understanding of the physiological function of every protein in the tissue-specific proteome is essential in order to unravel the biological display of the human genome. CONCLUSION Recent advances in proteomic techniques have provided insight into sperm function and dysfunction. Several multidimensional separation techniques can be utilized to identify and characterize spermatozoa. Future developments in bioinformatics can further assist researchers in understanding the vast amount of data collected in proteomic studies. Moreover, such advances in proteomics may help to decipher metabolites which can act as biomarkers in the detection of sperm impairments and to potentially develop treatment for infertile couples.Further comprehensive studies on sperm-specific proteome, mechanisms of protein function and its proteolytic regulation, biomarkers and functional pathways, such as oxidative-stress induced mechanisms, will provide better insight into physiological functions of the spermatozoa. Large-scale proteomic studies using purified protein assays will eventually lead to the development of novel biomarkers that may allow for detection of disease states, genetic abnormalities, and risk factors for male infertility. Ultimately, these biomarkers will allow for a better diagnosis of sperm dysfunction and aid in drug development.
Collapse
Affiliation(s)
- Stefan S du Plessis
- Division of Medical Physiology, Stellenbosch University, Tygerberg, South Africa
| | - Anthony H Kashou
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - David J Benjamin
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Satya P Yadav
- Molecular Biotechnology Core Laboratory, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
102
|
Oliva R, De Mateo S, Castillo J, Azpiazu R, Oriola J, Ballescà JL. Methodological advances in sperm proteomics. HUM FERTIL 2011; 13:263-7. [PMID: 21117936 DOI: 10.3109/14647273.2010.516877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteomics is the study of the proteins of cells or tissues. Sperm proteomics aims to identify the proteins that compose the sperm cell and the study of their function. Recent developments in mass spectrometry (MS) have markedly increased the throughput to identify and study sperm proteins. Catalogues of hundreds to thousands of spermatozoan proteins in human and in model species are becoming available setting up the basis for subsequent research, diagnostic applications and the development of specific treatments. A wide range of MS techniques are also rapidly becoming available for researchers. The present review summarises the different methodological options to study the sperm cell using MS and to provide a summary of some of the ongoing proteomic studies.
Collapse
Affiliation(s)
- Rafael Oliva
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
103
|
Harayama H, Nishijima K, Murase T, Sakase M, Fukushima M. Relationship of protein tyrosine phosphorylation state with tolerance to frozen storage and the potential to undergo cyclic AMP-dependent hyperactivation in the spermatozoa of Japanese Black bulls. Mol Reprod Dev 2011; 77:910-21. [PMID: 20845370 DOI: 10.1002/mrd.21233] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to elucidate the relationship between protein tyrosine phosphorylation state and sperm characteristics in frozen-stored spermatozoa of Japanese Black bulls. The spermatozoa were washed with PBS containing polyvinyl alcohol and then incubated with cell-permeable cAMP analog cBiMPS to induce flagellar hyperactivation. Before and after incubation, the spermatozoa were used for immunodetection of tyrosine-phosphorylated proteins, assessment of morphological acrosome condition and evaluation of motility. In bulls whose frozen-stored spermatozoa were classified as having a high-grade acrosome condition before incubation, sperm tyrosine-phosphorylated proteins, including the 33-kDa tyrosine-phosphorylated SPACA1 protein, were localized in the anterior region of the acrosome and equatorial subsegment. The immunodetection level of the 41- and 33-kDa sperm tyrosine-phosphorylated proteins in the Western blots and the immunofluorescence of tyrosine-phosphorylated proteins and SPACA1 proteins in the anterior region of the sperm acrosome were lower in bulls whose frozen-stored sperm were classified as having a low-grade acrosome condition. On the other hand, after incubation with cBiMPS, immunodetection levels of at least 10 tyrosine-phosphorylated proteins increased in the connecting and principal pieces of spermatozoa, coincident with the induction of flagellar hyperactivation. Many of the spermatozoa also exhibited detection patterns similar to those of boar hyperactivated spermatozoa. These results are consistent with the suggestion that immunodetection levels of tyrosine-phosphorylated proteins are valid markers that can predict the level of tolerance to frozen storage and the potential to undergo cAMP-dependent hyperactivation for the spermatozoa of individual Japanese Black bulls.
Collapse
Affiliation(s)
- Hiroshi Harayama
- Laboratory of Reproductive Biology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | | | | | | | |
Collapse
|
104
|
Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 2011; 14:367-81. [PMID: 20522002 DOI: 10.1089/ars.2010.3186] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Defective sperm function is the largest single defined cause of human infertility and one of the major reasons we are witnessing an exponential increase in the uptake of assisted conception therapy in the developed world. A major characteristic of defective human spermatozoa is the presence of large amounts of DNA damage, which is, in turn, associated with reduced fertility, increased rates of miscarriage, and an enhanced risk of disease in the offspring. This DNA damage is largely oxidative and is closely associated with defects in spermiogenesis. To explain the origins of this DNA damage, we postulate that spermiogenesis is disrupted by oxidative stress, leading to the creation of defective gametes with poorly remodeled chromatin that are particularly susceptible to free radical attack. To compound the problem, these defective cells have a tendency to undergo an unusual truncated form of apoptosis associated with high amounts of superoxide generation by the sperm mitochondria. This leads to significant oxidative DNA damage that eventually culminates in the DNA fragmentation we see in infertile patients. In light of the significance of oxidative stress in the etiology of defective sperm function, a variety of antioxidant therapies are now being assessed for their therapeutic potential.
Collapse
Affiliation(s)
- Robert J Aitken
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.
| | | |
Collapse
|
105
|
Abstract
The foundations of proteomics are to study gene products and their regulatory roles within cells. Paradoxically, the only evidence that sperm cells make new proteins is through mitochondrial protein synthesis. Yet despite this, spermatozoa are the perfect candidates for mass spectrometry and hence, proteomic analysis. These enterprising cells use a plethora of post-translational modifications in order to gain functionality following their production within the testis. By using a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and more recently liquid chromatography-mass spectrometry (LC-MS)/MS, recent advances in sperm cell biology, through the use of proteomics, is making unparalleled progress. The protein inventory lists being generated have shed light on transmembrane proteins, kinases and chaperones never previously recognized. In addition, the ability to isolate either phosphopeptides or glycopeptides and quantify the differences between cells of two different populations make proteomic analysis of spermatozoa a real chance to finally answer some age old questions.
Collapse
|
106
|
Breitbart H, Etkovitz N. Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction. Asian J Androl 2010; 13:106-10. [PMID: 21200378 DOI: 10.1038/aja.2010.78] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To bind and fertilize the egg, the spermatozoon should undergo few biochemical and motility changes in the female reproductive tract collectively called capacitation. The capacitated spermatozoon binds to the egg zona pellucida, and then undergoes the acrosome reaction (AR), which allows its penetration into the egg. The mechanisms regulating sperm capacitation and the AR are not completely understood. In the present review, we summarize some data regarding the role and regulation of the epidermal growth factor receptor (EGFR) in these processes. In the capacitation process, the EGFR is partially activated by protein kinase A (PKA), resulting in phospholipase D (PLD) activation and actin polymerization. Protein kinase C alpha (PKCα), which is already activated at the beginning of the capacitation, also participates in PLD activation. Further activation of the EGFR at the end of the capacitation enhances intracellular Ca(2+) concentration leading to F-actin breakdown and allows the AR to take place. Under in vivo conditions, the EGFR can be directly activated by its known ligand epidermal growth factor (EGF), and indirectly by activating PKA or by transactivation mediated by G protein-coupled receptors (GPCRs) activation or by ouabain. Under physiological conditions, sperm PKA is activated mainly by bicarbonate, which activates the soluble adenylyl cyclase to produce cyclic adenosine monophosphate (cAMP), the activator of PKA. The GPCR activators angiotensin II or lysophosphatidic acid, as well as ouabain and EGF are physiological components present in the female reproductive tract.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | |
Collapse
|
107
|
Finkelstein M, Etkovitz N, Breitbart H. Role and regulation of sperm gelsolin prior to fertilization. J Biol Chem 2010; 285:39702-9. [PMID: 20937821 DOI: 10.1074/jbc.m110.170951] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To acquire fertilization competence, spermatozoa should undergo several biochemical changes in the female reproductive tract, known as capacitation. The capacitated spermatozoon can interact with the egg zona pellucida resulting in the occurrence of the acrosome reaction, a process that allowed its penetration into the egg and fertilization. Sperm capacitation requires actin polymerization, whereas F-actin must disperse prior to the acrosome reaction. Here, we suggest that the actin-severing protein, gelsolin, is inactive during capacitation and is activated prior to the acrosome reaction. The release of bound gelsolin from phosphatidylinositol 4,5-bisphosphate (PIP(2)) by PBP10, a peptide containing the PIP(2)-binding domain of gelsolin, or by activation of phospholipase C, which hydrolyzes PIP(2), caused rapid Ca(2+)-dependent F-actin depolymerization as well as enhanced acrosome reaction. Using immunoprecipitation assays, we showed that the tyrosine kinase SRC and gelsolin coimmunoprecipitate, and activating SRC by adding 8-bromo-cAMP (8-Br-cAMP) enhanced the amount of gelsolin in this precipitate. Moreover, 8-Br-cAMP enhanced tyrosine phosphorylation of gelsolin and its binding to PIP(2(4,5)), both of which inactivated gelsolin, allowing actin polymerization during capacitation. This actin polymerization was blocked by inhibiting the Src family kinases, suggesting that gelsolin is activated under these conditions. These results are further supported by our finding that PBP10 was unable to cause complete F-actin breakdown in the presence of 8-Br-cAMP or vanadate. In conclusion, inactivation of gelsolin during capacitation occurs by its binding to PIP(2) and tyrosine phosphorylation by SRC. The release of gelsolin from PIP(2) together with its dephosphorylation enables gelsolin activation, resulting in the acrosome reaction.
Collapse
Affiliation(s)
- Maya Finkelstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
108
|
|
109
|
Daniel L, Etkovitz N, Weiss SR, Rubinstein S, Ickowicz D, Breitbart H. Regulation of the sperm EGF receptor by ouabain leads to initiation of the acrosome reaction. Dev Biol 2010; 344:650-7. [DOI: 10.1016/j.ydbio.2010.05.490] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/25/2010] [Accepted: 05/15/2010] [Indexed: 11/25/2022]
|
110
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
111
|
Nixon B, Bielanowicz A, Anderson AL, Walsh A, Hall T, Mccloghry A, Aitken RJ. Elucidation of the signaling pathways that underpin capacitation-associated surface phosphotyrosine expression in mouse spermatozoa. J Cell Physiol 2010; 224:71-83. [PMID: 20232304 DOI: 10.1002/jcp.22090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies from within our laboratory have demonstrated a causal relationship between capacitation-associated surface phosphotyrosine expression and the ability of mouse spermatozoa to recognize the oocyte and engage in sperm-zona pellucida interaction. In the studies described herein we have sought to investigate the signaling pathways that underpin the tyrosine phosphorylation of sperm surface protein targets and validate the physiological significance of these pathways in relation to sperm-zona pellucida adhesion. Through selective pharmacological inhibition we have demonstrated that surface phosphotyrosine expression is unlikely to be mediated by the canonical cAMP-dependent protein kinase A (PKA) signaling cascade that has been most widely studied in relation to sperm capacitation. Rather, it appears to be primarily driven by the extracellular signal-regulated kinase (ERK) module of the mitogen-activated protein kinase (MAPK) pathway. Consistent with this notion, the main components of the ERK module (RAS, RAF1, MEK, and ERK1/2) were localized to the periacrosomal region of the head of mature mouse spermatozoa and their phosphorylation status within this region of the cell was positively modulated by capacitation. Furthermore, inhibition of several elements of this pathway suppressed sperm surface phosphotyrosine expression and induced a concomitant reduction sperm-zona pellucida interaction. Collectively, these data highlight a previously unappreciated role of the ERK module in the modification of the sperm surface during capacitation to render these cells functionally competent to engage in the process of fertilization.
Collapse
Affiliation(s)
- Brett Nixon
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.
| | | | | | | | | | | | | |
Collapse
|
112
|
Rotman T, Etkovitz N, Spiegel A, Rubinstein S, Breitbart H. Protein kinase A and protein kinase C(alpha)/PPP1CC2 play opposing roles in the regulation of phosphatidylinositol 3-kinase activation in bovine sperm. Reproduction 2010; 140:43-56. [PMID: 20442273 DOI: 10.1530/rep-09-0314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to acquire fertilization competence, spermatozoa have to undergo biochemical changes in the female reproductive tract, known as capacitation. Signaling pathways that take place during the capacitation process are much investigated issue. However, the role and regulation of phosphatidylinositol 3-kinase (PI3K) in this process are still not clear. Previously, we reported that short-time activation of protein kinase A (PRKA, PKA) leads to PI3K activation and protein kinase C(alpha)(PRKCA, PKC(alpha)) inhibition. In the present study, we found that during the capacitation PI3K phosphorylation/activation increases. PI3K activation was PRKA dependent, and down-regulated by PRKCA. PRKCA is found to be highly active at the beginning of the capacitation, conditions in which PI3K is not active. Moreover, inhibition of PRKCA causes significant activation of PI3K. Similar activation of PI3K is seen when the phosphatase PPP1 is blocked suggesting that PPP1 regulates PI3K activity. We found that during the capacitation PRKCA and PPP1CC2 (PP1gamma2) form a complex, and the two enzymes were degraded during the capacitation, suggesting that this degradation enables the activation of PI3K. This degradation is mediated by PRKA, indicating that in addition to the direct activation of PI3K by PRKA, this kinase can enhance PI3K phosphorylation indirectly by enhancing the degradation and inactivation of PRKCA and PPP1CC2.
Collapse
Affiliation(s)
- T Rotman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
113
|
Siva AB, Kameshwari DB, Singh V, Pavani K, Sundaram CS, Rangaraj N, Deenadayal M, Shivaji S. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod 2010; 16:452-62. [PMID: 20304782 DOI: 10.1093/molehr/gaq009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
With a view to understand the molecular basis of sperm motility, we have tried to establish the human sperm proteome by two-dimensional PAGE MALDI MS/MS analysis. We report identification of 75 different proteins in the human spermatozoa. Comparative proteome analysis was carried out for asthenozoospermic and normozoospermic patients to understand the molecular basis of sperm motility. Analysis revealed eight proteins (including one unidentified) with altered intensity between the groups. Differential proteins distributed into three functional groups: 'energy and metabolism' (triose-phosphate isomerase, glycerol kinase 2, testis specific isoform and succinyl-CoA:3-ketoacid co-enzyme A transferase 1, mitochondrial precursor); 'movement and organization' (tubulin beta 2C and tektin 1) and 'protein turnover, folding and stress response' (proteasome alpha 3 subunit and heat shock-related 70 kDa protein 2). It was interesting to note that although the proteins falling in the functional group of 'energy and metabolism' are higher in the asthenozoospermic patients, the other two functional groups contain proteins, which are higher in the normozoospermic samples. Validation of results carried out for proteasome alpha 3 subunit by immunoblotting and confocal microscopy, confirmed significant changes in intensity of proteasome alpha 3 subunit in asthenozoospermic samples when compared with normozoospermic controls. Significant positive correlation too was found between proteasome alpha 3 subunit levels and rapid, linear progressive motility of the spermatozoa. In our understanding, this data would contribute appreciably to the presently limited information available about the proteins implicated in human sperm motility.
Collapse
|
114
|
Krapf D, Arcelay E, Wertheimer EV, Sanjay A, Pilder SH, Salicioni AM, Visconti PE. Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem 2010; 285:7977-85. [PMID: 20068039 PMCID: PMC2832948 DOI: 10.1074/jbc.m109.085845] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/11/2010] [Indexed: 11/06/2022] Open
Abstract
Signaling events leading to mammalian sperm capacitation rely on activation/deactivation of proteins by phosphorylation. This cascade includes soluble adenylyl cyclase, an atypical bicarbonate-stimulated adenylyl cyclase, and is mediated by protein kinase A and the subsequent stimulation of protein tyrosine phosphorylation. Recently, it has been proposed that the capacitation-associated increase in tyrosine phosphorylation is governed by Src tyrosine kinase activity. This conclusion was based mostly on the observation that Src is present in sperm and that the Src kinase family inhibitor SU6656 blocked the capacitation-associated increase in tyrosine phosphorylation. Results in the present manuscript confirmed these observations and provided evidence that these inhibitors were also able to inhibit protein kinase A phosphorylation, sperm motility, and in vitro fertilization. However, the block of capacitation-associated parameters was overcome when sperm were incubated in the presence of Ser/Thr phosphatase inhibitors such as okadaic acid and calyculin-A at concentrations reported to affect only PP2A. Altogether, these data indicate that Src is not directly involved in the observed increase in tyrosine phosphorylation. More importantly, this work presents strong evidence that capacitation is regulated by two parallel pathways. One of them requiring activation of protein kinase A and the second one involving inactivation of Ser/Thr phosphatases.
Collapse
Affiliation(s)
- Dario Krapf
- From the Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts 01003 and
| | - Enid Arcelay
- From the Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts 01003 and
| | - Eva V. Wertheimer
- From the Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts 01003 and
| | - Archana Sanjay
- the Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Stephen H. Pilder
- the Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Ana M. Salicioni
- From the Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts 01003 and
| | - Pablo E. Visconti
- From the Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts 01003 and
| |
Collapse
|
115
|
Mariappa D, Aladakatti RH, Dasari SK, Sreekumar A, Wolkowicz M, van der Hoorn F, Seshagiri PB. Inhibition of tyrosine phosphorylation of sperm flagellar proteins, outer dense fiber protein-2 and tektin-2, is associated with impaired motility during capacitation of hamster spermatozoa. Mol Reprod Dev 2010; 77:182-93. [PMID: 19953638 DOI: 10.1002/mrd.21131] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, tyrphostin-A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin-A47-treated spermatozoa exhibited circular motility, which was associated with a distinct hypo-tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000-60,000. In this study, we provide evidence on the localization of capacitation-associated tyrosine-phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo-tyrosine phosphorylated major proteins of tyrphostin-A47-treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein-2 and the 51 kDa protein as tektin-2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo-tyrosine-phosphorylation status of outer dense fiber protein-2 and tektin-2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR-tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa.
Collapse
Affiliation(s)
- Daniel Mariappa
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
116
|
Pujianto DA, Curry BJ, Aitken RJ. Prolactin exerts a prosurvival effect on human spermatozoa via mechanisms that involve the stimulation of Akt phosphorylation and suppression of caspase activation and capacitation. Endocrinology 2010; 151:1269-79. [PMID: 20032052 DOI: 10.1210/en.2009-0964] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to examine the impact of prolactin (PRL) on human sperm function, in light of a recent proteomic analysis indicating that these cells express the PRL receptor (PRLR). Immunocytochemical analyses confirmed the presence of PRLR in human spermatozoa and localized this receptor to the postacrosomal region of the sperm head as well as the neck, midpiece, and principal piece of the sperm tail. Nested PCR analysis indicated that these cells possess four splice variants of the PRLR: the long form and three short isoforms, one of which is reported for the first time. A combination of Western blot analyses and immunocytochemistry demonstrated that PRL inhibited sperm capacitation in a dose-dependent manner, suppressing SRC kinase activation and phosphotyrosine expression, two hallmarks of this process. The suppression of sperm capacitation was accompanied by a powerful prosurvival effect, supporting the prolonged motility of these cells and preventing the formation of spontaneous DNA strand breaks via mechanisms that involved the concomitant suppression of caspase activation. Western blot analyses indicated that the prosurvival effect of PRL on human spermatozoa involved the stimulation of Akt phosphorylation, whereas inhibitors of phosphatidylinositol-3-OH kinase and Akt negated this effect, as did the direct induction of sperm capacitation with cAMP analogues. We conclude that PRL is a prosurvival factor for human spermatozoa that prevents these cells from defaulting to an intrinsic apoptotic pathway associated with cell senescence. These findings have implications for preservation of sperm integrity in vivo and in vitro.
Collapse
Affiliation(s)
- Dwi Ari Pujianto
- School of Environmental and Life Sciences, University of Newcastle, University Drive Callaghan, New South Wales 2308, Australia
| | | | | |
Collapse
|
117
|
Suzuki T, Fujinoki M, Shibahara H, Suzuki M. Regulation of hyperactivation by PPP2 in hamster spermatozoa. Reproduction 2010; 139:847-56. [PMID: 20185533 DOI: 10.1530/rep-08-0366] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It has been widely accepted that serine/threonine protein phosphatases (PPPs) are associated with the regulation of sperm hyperactivation. In the present study, we examined the types of PPPs associated with the regulation of hamster sperm hyperactivation. Protein phosphatases PPP1CA, PPP1CC, PPP2, and PPP3 are present in hamster sperm. In the experiments using several inhibitors, sperm hyperactivation was enhanced when PPP2 was inhibited at least, although inhibition of PPP1 also enhanced sperm hyperactivation. Interestingly, sperm were hyperactivated after PPP2 became an inactive form. And then, PPP1CA became an active form after sperm were hyperactivated. It has also been widely accepted that tyrosine phosphorylation is closely associated with the regulation of sperm hyperactivation. When PPP2 was inhibited, tyrosine phosphorylation was not enhanced at all. On the other hand, inhibition of PPP1 enhanced tyrosine phosphorylation. From the results, it is likely that PPP2 is closely associated with the regulation of sperm hyperactivation, although it is not associated with the regulation of tyrosine phosphorylation.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
| | | | | | | |
Collapse
|
118
|
Breitbart H, Rotman T, Rubinstein S, Etkovitz N. Role and regulation of PI3K in sperm capacitation and the acrosome reaction. Mol Cell Endocrinol 2010; 314:234-8. [PMID: 19560510 DOI: 10.1016/j.mce.2009.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 11/16/2022]
Abstract
Mammalian spermatozoa undergo several signaling and biochemical transformations in the female genital tract, collectively called capacitation. The capacitated spermatozoon binds to the egg zona pellucida, where it undergoes the acrosome reaction (AR), a process enabling it to penetrate and fertilize the egg. Actin polymerization occurs in sperm capacitation and depolymerization prior to the AR. In this review we describe the possible role and regulation of PI3K in sperm capacitation and the acrosome reaction. We claim that PI3K is activated by protein kinase A and suppressed by protein kinase C. Only partial activation of PI3K is seen during the capacitation time, however towards the end of incubation, full activation is observed. Actin polymerization during capacitation is independent on PI3K activity, suggesting that the enzyme is not involved in sperm capacitation. However, the full activation of PI3K towards the end of the capacitation suggests that it might mediate the AR, as indeed was found.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | |
Collapse
|
119
|
Baker MA, Smith ND, Hetherington L, Taubman K, Graham ME, Robinson PJ, Aitken RJ. Label-Free Quantitation of Phosphopeptide Changes During Rat Sperm Capacitation. J Proteome Res 2010; 9:718-29. [DOI: 10.1021/pr900513d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mark A. Baker
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Nathan D. Smith
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Louise Hetherington
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Kristy Taubman
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Mark E. Graham
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Phillip J. Robinson
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| | - R. John Aitken
- The ARC Centre of Excellence in Biotechnology and Development, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia, and Cell Signaling Unit, Childrens’ Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia
| |
Collapse
|
120
|
|
121
|
Dun MD, Mitchell LA, Aitken RJ, Nixon B. Sperm-zona pellucida interaction: molecular mechanisms and the potential for contraceptive intervention. Handb Exp Pharmacol 2010:139-178. [PMID: 20839091 DOI: 10.1007/978-3-642-02062-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
At the moment of insemination, millions of mammalian sperm cells are released into the female reproductive tract with the single goal of finding the oocyte. The spermatozoa subsequently ignore the thousands of cells they make contact with during their journey to the site of fertilization, until they reach the surface of the oocyte. At this point, they bind tenaciously to the acellular coat, known as the zona pellucida, which surrounds the oocyte and orchestrate a cascade of cellular interactions that culminate in fertilization. These exquisitely cell- and species- specific recognition events are among the most strategically important cellular interactions in biology. Understanding the cellular and molecular mechanisms that underpin them has implications for the etiology of human infertility and the development of novel targets for fertility regulation. Herein we describe our current understanding of the molecular basis of successful sperm-zona pellucida binding.
Collapse
Affiliation(s)
- Matthew D Dun
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
122
|
Baker MA, Reeves G, Hetherington L, Aitken RJ. Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis. Proteomics 2009; 10:482-95. [DOI: 10.1002/pmic.200900574] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
123
|
Chatterjee M, Nandi P, Ghosh S, Sen PC. Regulation of tyrosine kinase activity during capacitation in goat sperm. Mol Cell Biochem 2009; 336:39-48. [PMID: 19802524 DOI: 10.1007/s11010-009-0261-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/15/2009] [Indexed: 11/24/2022]
Abstract
Protein tyrosine phosphorylation is a key event accompanying sperm capacitation. Although this signaling cascade generates an array of tyrosine-phosphorylated polypeptides, their molecular characterization is still limited. It is necessary to differentiate the localization of the tyrosine-phosphorylated proteins in spermatozoa to understand the link between the different phosphorylated proteins and the corresponding regulated sperm function. cAMP plays a pivotal role in the regulation of tyrosine phosphorylation. The intracellular cAMP levels were raised in goat spermatozoa by the addition of the phosphodiesterase inhibitor, IBMX in conjugation with caffeine. Tyrosine phosphorylation was significantly up-regulated following treatment with these two reagents. Treatment of caudal spermatozoa with IBMX and caffeine, time dependent up-regulated phosphorylation of the protein of molecular weights 50 and 200 kDa was observed. Increased phosphorylation was observed with a combination of IBMX and caffeine treatment. Tyrosine phosphorylation in caput spermatozoa was not affected significantly under these conditions. The expression level of tyrosine kinase in sperm was examined with specific inhibitors and with anti-phosphotyrosine antibody. The indirect immunofluorescence staining was carried out on ethanol permeabilized sperm using anti-phosphotyrosine antibody. Western blot analysis was done using two separate PKA antibodies: anti-PKA catalytic and anti-PKA RIalpha. Almost no difference was found in the intracellular presence of the PKA RIalpha and RIIalpha subunits in caput and caudal epididymal spermatozoa. However, the catalytic subunit seemed to be present in higher amount in caudal spermatozoa. The results show that caprine sperm displays an enhancement of phosphorylation in the tyrosine residues of specific proteins under in vitro capacitation conditions.
Collapse
Affiliation(s)
- Madhumouli Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, C.I.T. Scheme, VII-M, Kolakata, 700054, India
| | | | | | | |
Collapse
|
124
|
Etkovitz N, Tirosh Y, Chazan R, Jaldety Y, Daniel L, Rubinstein S, Breitbart H. Bovine sperm acrosome reaction induced by G-protein-coupled receptor agonists is mediated by epidermal growth factor receptor transactivation. Dev Biol 2009; 334:447-57. [PMID: 19666015 DOI: 10.1016/j.ydbio.2009.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/22/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
We have previously demonstrated the presence of active epidermal growth factor receptor (EGFR) and its involvement in sperm capacitation and the acrosome reaction; however, the mechanism of EGFR activation was not clear. We show here that the sperm EGFR can be transactivated by angiotensin II or by lysophosphatydic acid, two ligands which activate specific G-protein-coupled receptors (GPCR), or by directly activating protein kinase A using 8Br-cAMP. This transactivation occurs in noncapacitated sperm and is mediated by PKA, SRC and a metalloproteinase. We also show that the EGFR is activated in sperm incubated under in vitro capacitation conditions, without any added ligand, but not in bicarbonate-deficient medium or when PKA is blocked. Despite the fact that EGFR is activated in capacitated sperm, this state is not sufficient to induce the acrosome reaction. We conclude that the EGFR is stimulated during capacitation via PKA activation, while further activation of the EGFR in capacitated sperm is required in order to induce the acrosome reaction. The acrosome reaction can be induced by GPCR via the transactivation of the EGFR by a signaling pathway involving PKA, SRC and metalloproteinase and the EGFR down-stream effectors PI3K, PLC and PKC.
Collapse
Affiliation(s)
- Nir Etkovitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
125
|
Oliva R, Martínez-Heredia J, Estanyol JM. Proteomics in the Study of the Sperm Cell Composition, Differentiation and Function. Syst Biol Reprod Med 2009; 54:23-36. [DOI: 10.1080/19396360701879595] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
126
|
Hughes LM, Griffith R, Carey A, Butler T, Donne SW, Beagley KW, Aitken RJ. The spermostatic and microbicidal actions of quinones and maleimides: toward a dual-purpose contraceptive agent. Mol Pharmacol 2009; 76:113-24. [PMID: 19336525 DOI: 10.1124/mol.108.053645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
There is an urgent need to develop safe, effective, dual-purpose contraceptive agents that combine the prevention of pregnancy with protection against sexually transmitted diseases. Here we report the identification of a group of compounds that on contact with human spermatozoa induce a state of "spermostasis," characterized by the extremely rapid inhibition of sperm movement without compromising cell viability. These spermostatic agents were more active and significantly less toxic than the reagent in current clinical use, nonoxynol 9, giving therapeutic indices (ratio of spermostatic to cytotoxic activity) that were orders of magnitude greater than this traditional spermicide. Although certain compounds could trigger reactive oxygen species generation by spermatozoa, this activity was not correlated with spermostasis. Rather, the latter was associated with alkylation of two major sperm tail proteins that were identified as A Kinase-Anchoring Proteins (AKAP3 and AKAP4) by mass spectrometry. As a consequence of disrupted AKAP function, the abilities of cAMP to drive protein kinase A-dependent activities in the sperm tail, such as the activation of SRC and the consequent stimulation of tyrosine phosphorylation, were suppressed. Furthermore, analysis of microbicidal activity using Chlamydia muridarum revealed powerful inhibitory effects at the same low micromolar doses that suppressed sperm movement. In this case, the microbicidal action was associated with alkylation of Major Outer Membrane Protein (MOMP), a major chlamydial membrane protein. Taken together, these results have identified for the first time a novel set of cellular targets and chemical principles capable of providing simultaneous defense against both fertility and the spread of sexually transmitted disease.
Collapse
Affiliation(s)
- Louise M Hughes
- School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
127
|
Baker MA, Hetherington L, Curry B, Aitken RJ. Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Dev Biol 2009; 333:57-66. [PMID: 19560455 DOI: 10.1016/j.ydbio.2009.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 01/04/2023]
Abstract
Upon ejaculation, spermatozoa undergo a series of post-translational modifications in a process known as capacitation in order to prepare for fertilization. In the absence of capacitation, fertilization cannot occur. Spermatozoa are unusual in that one of the hallmarks of capacitation is a global up-regulation in phosphotyrosine expression, which is known to be mediated upstream by PKA. Little is known about the signaling events downstream of PKA apart from the involvement of SRC, as a key mediator of PKA-induced tyrosine phosphorylation in the sperm tail. Here we describe the presence of c-Abl in mouse spermatozoa. In vitro analysis confirmed that PKA can up-regulate c-Abl kinase activity. In vivo, this tyrosine kinase was found to associate, and become threonine phosphorylated by PKA in the sperm flagellum. By treating spermatozoa with hemolysin we could demonstrate that a significant proportion of the tyrosine phosphorylation associated with capacitation could be suppressed by the c-Abl inhibitor, Gleevac. This is the first report of c-Abl being up-regulated by PKA for any cell type. We present a model, whereby these kinases may operate together with SRC to ensure optimal levels of tyrosine phosphorylation in the sperm flagellum during the attainment of a capacitated state.
Collapse
Affiliation(s)
- Mark A Baker
- ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, NSW 2308, Australia
| | | | | | | |
Collapse
|
128
|
González-Fernández L, Ortega-Ferrusola C, Macias-Garcia B, Salido G, Peña F, Tapia J. Identification of Protein Tyrosine Phosphatases and Dual-Specificity Phosphatases in Mammalian Spermatozoa and Their Role in Sperm Motility and Protein Tyrosine Phosphorylation1. Biol Reprod 2009; 80:1239-52. [DOI: 10.1095/biolreprod.108.073486] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
129
|
Kota V, Dhople VM, Shivaji S. Tyrosine phosphoproteome of hamster spermatozoa: Role of glycerol-3-phosphate dehydrogenase 2 in sperm capacitation. Proteomics 2009; 9:1809-26. [DOI: 10.1002/pmic.200800519] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
130
|
Goto N, Harayama H. Calyculin A-sensitive protein phosphatases are involved in maintenance of progressive movement in mouse spermatozoa in vitro by suppression of autophosphorylation of protein kinase A. J Reprod Dev 2009; 55:327-34. [PMID: 19293561 DOI: 10.1262/jrd.20170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein serine/threonine phosphorylation in mammalian sperm flagella has been considered to play important roles in regulation of motility. Protein phosphorylation state reflects balance of enzymatic activities between protein phosphatases and protein kinases [predominantly protein kinase A (PKA)]. The aims of this study were to disclose roles of protein phosphatases in the regulation of sperm motility and to provide evidence for suppression of PKA full activation by protein phosphatases in sperm flagella. Mouse epididymal spermatozoa were incubated with a cell-permeable protein phosphatase 1 (PP1)/protein phosphatase 2A (PP2A) inhibitor (calyculin A: 25-125 nM) at 37.5 C. After incubation, they were used for immunodetection of phosphorylated proteins, PKA and PP1 gamma2, assessment for motility and co-immunoprecipitation of PP1gamma2 with PKA. Incubation with calyculin A enhanced the phosphorylation states of several proteins (>250 kDa, 170 kDa, 155 kDa, 140 kDa and 42 kDa for serine/threonine phosphorylation and 70 kDa for tyrosine phosphorylation) and PKA catalytic subunits [at the autophosphorylation residue (Thr-197) for its full enzymatic activation] in the flagella. Coincidently, this incubation induced changes of sperm flagellar movement from the progressive type to the hyperactivation-like type. Indirect immunofluorescence and co-immunoprecipitation showed that PKA was co-localized with PP1 gamma2 in the principal pieces of sperm flagella. These findings suggest that calyculin A-sensitive protein phosphatases (PP1/PP2A) suppress full activation of PKA as well as enhancement of the phosphorylation states of other flagellar proteins in sperm flagella in order to prevent precocious changes of flagellar movement from the progressive type to hyperactivation.
Collapse
Affiliation(s)
- Namiko Goto
- Graduate School of Science and Technology, Kobe University
| | | |
Collapse
|
131
|
Muratori M, Luconi M, Marchiani S, Forti G, Baldi E. Molecular markers of human sperm functions. ACTA ACUST UNITED AC 2009; 32:25-45. [DOI: 10.1111/j.1365-2605.2008.00875.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
132
|
|
133
|
Kawano N, Yoshida K, Iwamoto T, Yoshida M. Ganglioside GM1 Mediates Decapacitation Effects of SVS2 on Murine Spermatozoa1. Biol Reprod 2008; 79:1153-9. [DOI: 10.1095/biolreprod.108.069054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
134
|
Seita Y, Sugio S, Ito J, Kashiwazaki N. Generation of live rats produced by in vitro fertilization using cryopreserved spermatozoa. Biol Reprod 2008; 80:503-10. [PMID: 19038860 DOI: 10.1095/biolreprod.108.072918] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In rats, the success of in vitro fertilization (IVF) was reported 40 years ago. Although it has been demonstrated in papers that these IVF oocytes using sperm freshly collected from cauda epididymides can be developed to term via embryo transfer, successful IVF with cryopreserved rat sperm has never been reported to date. Here, we report establishment of a successful IVF system using frozen/thawed rat spermatozoa. Our data showed that intracellular cAMP and free cholesterol levels in frozen/thawed rat sperm were maintained low, suppressing capacitation-associated tyrosine phosphorylation. The treatment of methyl-beta-cyclodextrin improved removal of free cholesterol from the membrane in frozen/thawed sperm but not induction of capacitation-associated tyrosine phosphorylation in the sperm. Treatment with a phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthin (IBMX), dramatically increased cAMP and tyrosine phosphorylation levels in frozen/thawed rat sperm. When the IBMX-treated frozen/thawed sperm were used for IVF, the proportions of pronuclear formation and blastocyst formation were significantly higher than those of frozen/thawed sperm treated without IBMX (P < 0.05). The embryos were developed to term at a high success rate equivalent to the rate obtained with IVF using fresh sperm. Thus, we established for the first time a successful IVF system in rats using cryopreserved spermatozoa.
Collapse
Affiliation(s)
- Yasunari Seita
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | | | | | | |
Collapse
|
135
|
Frasson M, Vitadello M, Brunati AM, La Rocca N, Tibaldi E, Pinna LA, Gorza L, Donella-Deana A. Grp94 is Tyr-phosphorylated by Fyn in the lumen of the endoplasmic reticulum and translocates to Golgi in differentiating myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:239-52. [PMID: 19000718 DOI: 10.1016/j.bbamcr.2008.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 09/22/2008] [Accepted: 10/02/2008] [Indexed: 12/11/2022]
Abstract
The endoplasmic-reticulum chaperone Grp94 is required for the cell surface export of molecules involved in the native immune response, in mesoderm induction and muscle development, but the signals responsible for Grp94 recruitment are still obscure. Here we show for the first time that Grp94 undergoes Tyr-phosphorylation in differentiating myogenic C2C12 cells. By means of phospho-proteomic and immunoprecipitation analyses, and the use of Src-specific inhibitors we demonstrate that the Src-tyrosine-kinase Fyn becomes active early after induction of C2C12 cell differentiation, in parallel with the recruitment and the Tyr-phosphorylation of Grp94, which peaks at 6-hour differentiation. Grp94 is Tyr-phosphorylated inside the endoplasmic reticulum by a lumenal Fyn, as indicated by fluorescence and electronmicroscopy immunolocalization, co-immunoprecipitation after chemical cross-linking and by treatment of intact endoplasmic-reticulum vesicles with proteinase K. Furthermore, fractionation of cellular membrane compartments and double-immunofluorescence studies showed that Tyr-phosphorylation of Grp94 is necessary for the protein translocation from the endoplasmic reticulum to the Golgi apparatus. These results indicate that Fyn-catalyzed Tyr-phosphorylation of Grp94 is an event required to promote the chaperone export from the endoplasmic reticulum occurring in the early phase of myoblast differentiation.
Collapse
Affiliation(s)
- Martina Frasson
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Bridging the gap between male and female fertility control; contraception-on-demand. Contraception 2008; 78:S28-35. [DOI: 10.1016/j.contraception.2008.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 01/30/2023]
|
137
|
Harayama H, Nakamura K. Changes of PKA and PDK1 in the principal piece of boar spermatozoa treated with a cell-permeable cAMP analog to induce flagellar hyperactivation. Mol Reprod Dev 2008; 75:1396-407. [PMID: 18213679 DOI: 10.1002/mrd.20882] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A cAMP-induced protein tyrosine phosphorylation and flagellar hyperactivation are controlled via complicated signaling cascades in mammalian spermatozoa. For instance, these events seem to be regulated positively by the PKA-mediated signaling and negatively by the PI3K/PDK1-mediated signaling. In this article, we have shown molecular changes of PKA and PDK1 in cAMP analog (cBiMPS)-treated boar spermatozoa in order to disclose possible roles of these kinases in protein tyrosine phosphorylation and hyperactivation. Ejaculated spermatozoa were incubated with cBiMPS, and then they were used for biochemical analyses of sperm kinases by Western blotting and indirect immunofluorescence and for assessment of flagellar movement. The first 30-min incubation with cBiMPS highly activated PKA of the principal piece to the accompaniment of autophosphorylation on Thr-197 of catalytic subunits. However, protein tyrosine phosphorylation and hyperactivation were fully induced in the sperm samples after the 180-min incubation. A potentially active form of PDK1 (54/55-kDa phospho-PDK1) was detected in the principal piece of the spermatozoa during the 90-min incubation. Another potentially active form (59-kDa phospho-PDK1) gradually increased during the same incubation period. However, the PDK1 suddenly became inactive by the dephosphorylation after the 180-min incubation, namely coincidently with full induction of protein tyrosine phosphorylation and hyperactivation. Additionally, existence of PI3K-dependently suppressing mechanisms for protein tyrosine phosphorylation was confirmed in the principal piece by pharmacological experiments with LY294002 and biochemical analyses with anti-PI3K p85 antibodies. These findings suggest that dephosphorylation of PDK1 may be a molecular switch for enhancement of protein tyrosine phosphorylation and flagellar hyperactivation in boar spermatozoa.
Collapse
Affiliation(s)
- Hiroshi Harayama
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan. :
| | | |
Collapse
|
138
|
Src activation triggers capacitation and acrosome reaction but not motility in human spermatozoa. Hum Reprod 2008; 23:2652-62. [DOI: 10.1093/humrep/den314] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
139
|
Lawson C, Goupil S, Leclerc P. Increased activity of the human sperm tyrosine kinase SRC by the cAMP-dependent pathway in the presence of calcium. Biol Reprod 2008; 79:657-66. [PMID: 18562702 DOI: 10.1095/biolreprod.108.070367] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
SRC-related tyrosine kinases are suggested to play a role in the increase of sperm protein phosphotyrosine content that occurs during capacitation. In our laboratory, we previously demonstrated that the SRC-related tyrosine kinase YES1 (also known as c-YES) is present in human spermatozoa. However, since it is negatively regulated by Ca(2+), whose intracellular concentration increases during capacitation, another kinase would most likely be involved in the capacitation-related increase in sperm protein tyrosine phosphorylation. The present study represents the first direct assessment of SRC tyrosine kinase activity in ejaculated mammalian sperm. By immunohistochemistry on human testis sections, it is clearly shown that SRC is expressed during spermatogenesis, mainly in round and elongating spermatids. Using an indirect immunofluorescence approach, SRC is detected in the acrosomal region of the head and in the sperm flagellum of ejaculated sperm. This tyrosine kinase is associated with the plasma membrane and with cytoskeletal elements, as suggested by its partial solubility in nonionic detergents. Despite its partial solubility, SRC kinase activity was assayed after immunoprecipitation using acid-denatured enolase as a substrate. It is clearly demonstrated that SRC activity is inhibited by SU6656 and PP1, selective SRC family tyrosine kinase inhibitors, and activated in a Ca(2+)-dependent manner. Furthermore, it is shown that SRC is activated in a cAMP/PRKA-dependent manner; SRC coimmunoprecipitates with the catalytic subunit of the cAMP-dependent protein kinase (PRKAC) and is phosphorylated by this latter kinase, resulting in an increase in enolase phosphorylation. All these results support the involvement of the tyrosine kinase SRC in the increase in sperm protein phosphotyrosine content observed during capacitation.
Collapse
Affiliation(s)
- Christine Lawson
- Département d'Obstétrique, Université Laval and Ontogénie et Reproduction, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| | | | | |
Collapse
|
140
|
Baker MA, Hetherington L, Reeves G, Müller J, Aitken RJ. The rat sperm proteome characterizedviaIPG strip prefractionation and LC-MS/MS identification. Proteomics 2008; 8:2312-21. [DOI: 10.1002/pmic.200700876] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
141
|
Aitken RJ, Baker MA. The role of proteomics in understanding sperm cell biology. ACTA ACUST UNITED AC 2008; 31:295-302. [DOI: 10.1111/j.1365-2605.2007.00851.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
142
|
Baker MA, Hetherington L, Reeves GM, Aitken RJ. The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 2008; 8:1720-30. [PMID: 18340633 DOI: 10.1002/pmic.200701020] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteomic profiling of the mouse spermatozoon has generated a unique and valuable inventory of candidates that can be mined for potential contraceptive targets and to further our understanding of the PTMs that regulate the functionality of this highly specialized cell. Here we report the identification of 858 proteins derived from mouse spermatozoa, 23 of which demonstrated testis only expression. The list contained many proteins that are known constituents of murine spermatozoa including Izumo, Spaca 1, 3, and 5, Spam 1, Zonadhesin, Spesp1, Smcp, Spata 6, 18, and 19, Zp3r, Zpbp 1 and 2, Spa17, Spag 6, 16, and 17, CatSper4, Acr, Cylc2, Odf1 and 2, Acrbp, and Acrv1. Certain protein families were highly represented in the proteome. For example, of the 42 gene products classified as proteases, 26 belonged to the 26S-proteasome. Of the many chaperones identified in this proteome, eight proteins with a TCP-1 domain were found, as were seven Rab guanosine triphosphatases. Finally, our list yielded three putative seven-transmembrane proteins, two of which have no known tissue distribution, an extragenomic progesterone receptor and three unique testis-specific kinases all of which may have some potential in the future regulation of male fertility.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, NSW, Australia.
| | | | | | | |
Collapse
|
143
|
Nagashima T, Maruyama T, Uchida H, Kajitani T, Arase T, Ono M, Oda H, Kagami M, Masuda H, Nishikawa S, Asada H, Yoshimura Y. Activation of SRC kinase and phosphorylation of signal transducer and activator of transcription-5 are required for decidual transformation of human endometrial stromal cells. Endocrinology 2008; 149:1227-34. [PMID: 18063684 DOI: 10.1210/en.2007-1217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone induces decidual transformation of estrogen-primed human endometrial stromal cells (hESCs), critical for implantation and maintenance of pregnancy, through activation of many signaling pathways involving protein kinase A and signal transducer and activator of transcription (STAT)-5. We have previously shown that kinase activation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (SRC) kinase is closely associated with decidualization and that SRC is indispensable for maximal decidualization in mice. To address whether SRC kinase activity is essential for decidualization in humans, hESCs were infected with adenoviruses carrying enhanced green fluorescent protein alone (Ad-EGFP), a kinase-inactive dominant-negative mutant (Ad-SRC/K295R), or an inactive autophosphorylation site mutant (Ad-SRC/Y416F). The cells were cultured in the presence of estradiol and progesterone (EP) to induce decidualization and subjected to RT-PCR, immunoblot, and ELISA analyses. Ad-EGFP-infected hESCs exhibited decidual transformation and up-regulation of decidualization markers including IGF binding protein 1 and prolactin in response to 12-d treatment with EP. In contrast, hESCs infected with Ad-SRC/K295R remained morphologically fibroblastoid without production of IGF binding protein 1 and prolactin even after EP treatment. Ad-SRC/Y416F displayed similar but less inhibitory effects on decidualization, compared with Ad-SRC/K295R. During decidualization, STAT5 was phosphorylated on tyrosine 694, a well-known SRC phosphorylation site. Phosphorylation was markedly attenuated by Ad-SRC/K295R but not Ad-EGFP. These results indicate that the SRC-STAT5 pathway is essential for decidualization of hESCs.
Collapse
Affiliation(s)
- Takashi Nagashima
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Mitchell LA, Nixon B, Baker MA, Aitken RJ. Investigation of the role of SRC in capacitation-associated tyrosine phosphorylation of human spermatozoa. ACTA ACUST UNITED AC 2008; 14:235-43. [DOI: 10.1093/molehr/gan007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
145
|
Li YF, He W, Jha KN, Klotz K, Kim YH, Mandal A, Pulido S, Digilio L, Flickinger CJ, Herr JC. FSCB, a Novel Protein Kinase A-phosphorylated Calcium-binding Protein, Is a CABYR-binding Partner Involved in Late Steps of Fibrous Sheath Biogenesis. J Biol Chem 2007; 282:34104-19. [PMID: 17855365 DOI: 10.1074/jbc.m702238200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report characterization of a novel testis- and sperm-specific protein, FSCB (fibrous sheath CABYR binding), that is expressed post-meiotically and localized in mouse sperm flagella. FSCB was identified as a binding partner of CABYR, a calcium-binding protein that is tyrosine-phosphorylated during capacitation. Orthologous genes of FSCB are present in other mammals, including rat and human, and conserved motifs in FSCB include PXXP, proline-rich and extensin-like regions. FSCB is phosphorylated by protein kinase A as shown by in vitro phosphorylation assay and also by determining phosphorylation sites in native FSCB from mouse sperm. Calcium overlay assay showed that FSCB is a calcium-binding protein from sperm. FSCB is a post meiotic protein first expressed at step 11 of mouse spermatogenesis in the elongating spermatids, and it subsequently incorporates into the flagellar principal piece of the sperm. Ultrastructurally, FSCB localized to a cortical layer of intermediate electron density at the surface of the ribs and longitudinal columns of the fibrous sheath. Due to its temporal appearance during spermiogenesis and location at the cortex of the fibrous sheath, FSCB is postulated to be involved in the later stages of fibrous sheath assembly.
Collapse
Affiliation(s)
- Yan-Feng Li
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Aitken RJ, Nixon B, Lin M, Koppers AJ, Lee YH, Baker MA. Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 2007; 9:554-64. [PMID: 17589795 DOI: 10.1111/j.1745-7262.2007.00280.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epididymal maturation is associated with the activation of a cAMP-induced tyrosine phosphorylation cascade, which is ultimately associated with the expression of capacitation-dependent sperm functions, such as hyperactivated movement and acrosomal exocytosis. As spermatozoa progress through the epididymis they first acquire the capacity to phosphorylate tyrosine on targets on the principal piece, followed by the midpiece. By the time these cells have reached the cauda epididymidis they can phosphorylate the entire tail from neck to endpiece. This particular pattern of phosphorylation is associated with the ontogeny of fully functional spermatozoa that are capable of fertilizing the oocyte. Proteomic analyses indicate that this change is associated with the phosphorylation of several mitochondrial proteins, creation of a mitochondrial membrane potential and activation of mitochondrial free radical generation. At least in rodent species, activation of sperm mitochondria appears to be a particularly important part of epididymal maturation.
Collapse
Affiliation(s)
- R John Aitken
- The ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Newcastle, NSW 2308, Australia.
| | | | | | | | | | | |
Collapse
|
147
|
Baker MA, Reeves G, Hetherington L, Müller J, Baur I, Aitken RJ. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl 2007; 1:524-32. [PMID: 21136703 DOI: 10.1002/prca.200601013] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Indexed: 11/09/2022]
Abstract
A comprehensive analysis of the proteins found in human spermatozoa is essential for understanding the events leading up to, and including, fertilization and development. Proteomics offers a platform for investigating this process, provided that the dynamic range is relatively low. In this report, spermatozoa from a number of human sperm ejaculates were isolated in a pure state using discontinuous Percoll gradient centrifugation. Triton X-100 soluble and insoluble proteins were recovered and separated by SDS-PAGE. The separation lanes were dissected into 96 fractions and analyzed individually by LC-MS(n) . A comprehensive protocol, involving LC-MS/MS analysis eventually down to the ninth most intense peak found in the MS-survey scan, was performed. Analysis of purified human sperm populations resulted in the identification of 1056 gene products, of which approximately 8% have not previously been characterized. The data were supported by the large number of proteins represented by expressed sequence tags in the testis. Bioinformatic analysis demonstrated that 437 of the gene products were involved in various metabolic pathways including glycolysis and oxidative phosphorylation. The inventory of proteins present in the human sperm proteome includes a number of notable discoveries including the first description of a nicotinamide adenine dinucleotide phosphate oxidase, dual-oxidase 2, finally laying to rest any doubts about the presence of such enzymes in spermatozoa. Furthermore, a number of different classes of receptor have also been detected in these cells and are potential regulators of sperm function. This list includes at least six seven-pass transmembrane receptors, six tyrosine kinase receptors, a tyrosine phosphatase receptor, glutamate-gated ion channel receptors, transient receptor potential cation channels, and a non-genomic progesterone receptor. This is the first published list of identified proteins in human spermatozoa using LC-MS/MS analysis.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
Temporal and spatial regulation of PKA activity are essential for vigorous sperm motility and for the resumption of meiosis in oocytes, two events required for successful fertilization. Genetic mutations in mice that affect PKA signaling in germ cells lead to infertility and illustrate the importance of this pathway in mammalian reproduction.
Collapse
Affiliation(s)
- Kimberly A Burton
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|