101
|
Hattersley N, Shen L, Jaffray EG, Hay RT. The SUMO protease SENP6 is a direct regulator of PML nuclear bodies. Mol Biol Cell 2010; 22:78-90. [PMID: 21148299 PMCID: PMC3016979 DOI: 10.1091/mbc.e10-06-0504] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We show that SUMO-specific protease SENP6 can cleave mixed SUMO-1 and SUMO-2/3 chains. Depletion of SENP6 results in accumulation of SUMO-2/3 and SUMO-1 conjugates in promyelocytic leukemia (PML) nuclear bodies. Inactivation of SENP6 results in its accumulation at the SUMO-2/3-rich core of PML nuclear bodies. Biochemical analysis indicates that SUMO-modified PML is a SENP6 substrate. Promyelocytic leukemia protein (PML) is the core component of PML-nuclear bodies (PML NBs). The small ubiquitin-like modifier (SUMO) system (and, in particular, SUMOylation of PML) is a critical component in the formation and regulation of PML NBs. SUMO protease SENP6 has been shown previously to be specific for SUMO-2/3–modified substrates and shows preference for SUMO polymers. Here, we further investigate the substrate specificity of SENP6 and show that it is also capable of cleaving mixed chains of SUMO-1 and SUMO-2/3. Depletion of SENP6 results in accumulation of endogenous SUMO-2/3 and SUMO-1 conjugates, and immunofluorescence analysis shows accumulation of SUMO and PML in an increased number of PML NBs. Although SENP6 depletion drastically increases the size of PML NBs, the organizational structure of the body is not affected. Mutation of the catalytic cysteine of SENP6 results in its accumulation in PML NBs, and biochemical analysis indicates that SUMO-modified PML is a substrate of SENP6.
Collapse
Affiliation(s)
- Neil Hattersley
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD15EH Scotland, United Kingdom
| | | | | | | |
Collapse
|
102
|
Geoffroy MC, Jaffray EG, Walker KJ, Hay RT. Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell 2010; 21:4227-39. [PMID: 20943951 PMCID: PMC2993750 DOI: 10.1091/mbc.e10-05-0449] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin ligase, RNF4, in response to arsenic. We show that arsenic induces rapid reorganization of the cell nucleus by SUMO modification of nuclear body associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML. In acute promyelocytic leukemia (APL), the promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). Arsenic is an effective treatment for this disease as it induces SUMO-dependent ubiquitin-mediated proteasomal degradation of the PML-RAR fusion protein. Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin E3 ligase, RNF4 in response to arsenic. After administration of arsenic, PML immediately transits into nuclear bodies where it undergoes SUMO modification. This initial recruitment of PML into nuclear bodies is not dependent on RNF4, but RNF4 quickly follows PML into the nuclear bodies where it is responsible for ubiquitylation of SUMO-modified PML and its degradation by the proteasome. While arsenic restricts the mobility of PML, FRAP analysis indicates that RNF4 continues to rapidly shuttle into PML nuclear bodies in a SUMO-dependent manner. Under these conditions FRET studies indicate that RNF4 interacts with SUMO in PML bodies but not directly with PML. These studies indicate that arsenic induces the rapid reorganization of the cell nucleus by SUMO modification of nuclear body-associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | |
Collapse
|
103
|
Cho KI, Yi H, Tserentsoodol N, Searle K, Ferreira PA. Neuroprotection resulting from insufficiency of RANBP2 is associated with the modulation of protein and lipid homeostasis of functionally diverse but linked pathways in response to oxidative stress. Dis Model Mech 2010; 3:595-604. [PMID: 20682751 DOI: 10.1242/dmm.004648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
104
|
Seki D, Obata S, Shirozu T, Kitano T, Saitoh H. Identification of four SUMO paralogs in the medaka fish, Oryzias latipes, and their classification into two subfamilies. Biochem Genet 2010; 48:737-50. [PMID: 20549333 DOI: 10.1007/s10528-010-9356-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/02/2010] [Indexed: 11/27/2022]
Abstract
At least four paralogs of the small ubiquitin-related modifier (SUMO) exist in humans, but there is limited information about SUMO paralogs from other vertebrate species. We isolated the four cDNA encoding proteins, similar to human SUMOs, from the medaka fish, Oryzias latipes: OlSUMO-1, OlSUMO-2, OlSUMO-3, and OlSUMO-4. The amino acid sequences of OlSUMO-2, -3, and -4 are 89-94% identical, but they share only 45% identity with OlSUMO-1. Phylogenetic analysis, transient expression of OlSUMOs in cultured cells, and in vitro binding of OlSUMOs with two SUMO-interacting proteins demonstrated that the medaka SUMO paralogs can be grouped into two subfamilies, OlSUMO-1 and OlSUMO-2/3/4. Furthermore, this is the first report of all four OlSUMO transcripts being expressed in medaka embryos, implying that they have a role in fish development. This study will improve understanding of the relationship between structural and functional diversity of SUMO paralogs during vertebrate evolution.
Collapse
Affiliation(s)
- Daisuke Seki
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | | | | | | | | |
Collapse
|
105
|
Abstract
The post-translational modification SUMOylation is a major regulator of protein function that plays an important role in a wide range of cellular processes. SUMOylation involves the covalent attachment of a member of the SUMO (small ubiquitin-like modifier) family of proteins to lysine residues in specific target proteins via an enzymatic cascade analogous to, but distinct from, the ubiquitination pathway. There are four SUMO paralogues and an increasing number of proteins are being identified as SUMO substrates. However, in many cases little is known about how SUMOylation of these targets is regulated. Compared with the ubiquitination pathway, relatively few components of the conjugation machinery have been described and the processes that specify individual SUMO paralogue conjugation to defined substrate proteins are an active area of research. In the present review, we briefly describe the SUMOylation pathway and present an overview of the recent findings that are beginning to identify some of the mechanisms that regulate protein SUMOylation.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
106
|
Sharma P, Murillas R, Zhang H, Kuehn MR. N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J Cell Sci 2010; 123:1227-34. [PMID: 20233849 DOI: 10.1242/jcs.060160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A number of proteins can be conjugated with both ubiquitin and the small ubiquitin-related modifier (SUMO), with crosstalk between these two post-translational modifications serving to regulate protein function and stability. We previously identified N4BP1 as a substrate for monoubiquitylation by the E3 ubiquitin ligase Nedd4. Here, we describe Nedd4-mediated polyubiquitylation and proteasomal degradation of N4BP1. In addition, we show that N4BP1 can be conjugated with SUMO1 and that this abrogates N4BP1 ubiquitylation. Consistent with this, endogenous N4BP1 is stabilized in primary embryonic fibroblasts from mutants of the desumoylating enzyme SENP1, which show increased steady-state sumoylation levels. We have localized endogenous N4BP1 predominantly to the nucleolus in primary cells. However, a small fraction is found at promyelocytic leukemia (PML) nuclear bodies (NBs). In cells deficient for SENP1 or in wild-type cells treated with the proteasome inhibitor MG132, there is considerable accumulation of N4BP1 at PML NBs. These findings suggest a dynamic interaction between subnuclear compartments, and a role for post-translational modification by ubiquitin and SUMO in the regulation of nucleolar protein turnover.
Collapse
Affiliation(s)
- Prashant Sharma
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
107
|
Abstract
In the last decade, SUMOylation has emerged as an essential post-translational modification in eukaryotes. In plants, the biological role of SUMO (small ubiquitin-related modifier) has been studied through genetic approaches that together with recent biochemical studies suggest that the plant SUMOylation system has a high degree of complexity. The present review summarizes our current knowledge on the SUMOylation system in Arabidopsis, focusing on the mechanistic properties of the machinery components identified.
Collapse
|
108
|
Sánchez-Álvarez M, Montes M, Sánchez-Hernández N, Hernández-Munain C, Suñé C. Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1). J Biol Chem 2010; 285:15220-15233. [PMID: 20215116 DOI: 10.1074/jbc.m109.063750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of proteins by small ubiquitin-like modifier (SUMO) is emerging as an important control of transcription and RNA processing. The human factor TCERG1 (also known as CA150) participates in transcriptional elongation and alternative splicing of pre-mRNAs. Here, we report that SUMO family proteins modify TCERG1. Furthermore, TCERG1 binds to the E2 SUMO-conjugating enzyme Ubc9. Two lysines (Lys-503 and Lys-608) of TCERG1 are the major sumoylation sites. Sumoylation does not affect localization of TCERG1 to the splicing factor-rich nuclear speckles or the alternative splicing function of TCERG1. However, mutation of the SUMO acceptor lysine residues enhanced TCERG1 transcriptional activity, indicating that SUMO modification negatively regulates TCERG1 transcriptional activity. These results reveal a regulatory role for sumoylation in controlling the activity of a transcription factor that modulates RNA polymerase II elongation and mRNA alternative processing, which are discriminated differently by this post-translational modification.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain; Departments of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra," Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Marta Montes
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Noemí Sánchez-Hernández
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Cristina Hernández-Munain
- Departments of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra," Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Carlos Suñé
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain.
| |
Collapse
|
109
|
Han Y, Huang C, Sun X, Xiang B, Wang M, Yeh ETH, Chen Y, Li H, Shi G, Cang H, Sun Y, Wang J, Wang W, Gao F, Yi J. SENP3-mediated de-conjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress. J Biol Chem 2010; 285:12906-15. [PMID: 20181954 DOI: 10.1074/jbc.m109.071431] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) 2/3 is known to conjugate to substrates in response to a variety of cellular stresses. However, whether and how SUMO2/3-specific proteases are involved in de-conjugation under cell stress is unclear. Here, we show that low doses of hydrogen peroxide (H(2)O(2)) induce an increase of the SENP3 protein, which removes SUMO2/3 from promyelocytic leukemia (PML). Low dose H(2)O(2) causes SENP3 to co-localize with PML bodies and reduces the number of PML bodies in a SENP3-dependent manner. Furthermore, de-conjugation of SUMO2/3 from PML is responsible for the accelerated cell proliferation caused by low dose H(2)O(2). Knocking down PML promotes basal cell proliferation as expected. This can be reversed by reconstitution with wild-type PML but not its mutant lacking SUMOylation, indicating that only the SUMOylated PML can play an inhibitory role for cell proliferation. Thus, SENP3 appears to be a key mediator in mild oxidative stress-induced cell proliferation via regulation of the SUMOylation status of PML. Furthermore, SENP3 is over-accumulated in a variety of primary human cancers including colon adenocarcinoma in which PML is hypo-SUMOylated. These results reveal an important role of SENP3 and the SUMOylation status of PML in the regulation of cell proliferation under oxidative stress.
Collapse
Affiliation(s)
- Yan Han
- Department of Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Woo CH, Abe JI. SUMO--a post-translational modification with therapeutic potential? Curr Opin Pharmacol 2010; 10:146-55. [PMID: 20079693 DOI: 10.1016/j.coph.2009.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 12/20/2022]
Abstract
Sumoylation is a covalent modification, which is mediated by small ubiquitin-like modifier (SUMO) polypeptides. A growing body of evidence has shown that sumoylation affects the functional properties of many substrates in the regulation of cellular processes. Recent reports indicate the crucial role of sumoylation in human diseases including familial dilated cardiomyopathy, suggesting that targeting of sumoylation would be of considerable interest for novel therapies. Even though hundreds of SUMO substrates have been identified, their pathophysiological roles remain to be determined. Among them, ERK5-sumoylation has recently been linked to diabetes and implicated in endothelial dysfunction and cardiomyocyte apoptosis in vivo. These findings support the idea that ERK5-sumoylation is a novel therapeutic target for the treatment of diabetes-related cardiovascular diseases.
Collapse
Affiliation(s)
- Chang-Hoon Woo
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14642, United States
| | | |
Collapse
|
111
|
Abstract
Sumoylation, the covalent attachment of SUMO peptide to cellular proteins, is an essential regulator of protein function involved in a wide range of cellular events. Deregulation of the SUMO pathway is implicated in the pathogenesis of several diseases, so it is important to understand how this system is controlled. Sumoylation is a highly dynamic regulatory mechanism, involving an energy dependent enzyme cascade for conjugation and another set of enzymes for deconjugation. In this chapter we will highlight the different mechanisms controlling the SUMO system.
Collapse
Affiliation(s)
- Katharina Maderböck
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, 79108, Freiburg, Germany
| | | |
Collapse
|
112
|
Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 2009; 462:935-9. [PMID: 20016603 PMCID: PMC2904806 DOI: 10.1038/nature08657] [Citation(s) in RCA: 422] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 11/04/2009] [Indexed: 01/30/2023]
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that are generated by ionizing radiation and various DNA-damaging chemicals. Following DSB formation, cells activate the DNA-damage response (DDR) protein kinases ATM, ATR and DNA-PK (also known as PRKDC). These then trigger histone H2AX (also known as H2AFX) phosphorylation and the accumulation of proteins such as MDC1, 53BP1 (also known as TP53BP1), BRCA1, CtIP (also known as RBBP8), RNF8 and RNF168/RIDDLIN into ionizing radiation-induced foci (IRIF) that amplify DSB signalling and promote DSB repair. Attachment of small ubiquitin-related modifier (SUMO) to target proteins controls diverse cellular functions. Here, we show that SUMO1, SUMO2 and SUMO3 accumulate at DSB sites in mammalian cells, with SUMO1 and SUMO2/3 accrual requiring the E3 ligase enzymes PIAS4 and PIAS1. We also establish that PIAS1 and PIAS4 are recruited to damage sites via mechanisms requiring their SAP domains, and are needed for the productive association of 53BP1, BRCA1 and RNF168 with such regions. Furthermore, we show that PIAS1 and PIAS4 promote DSB repair and confer ionizing radiation resistance. Finally, we establish that PIAS1 and PIAS4 are required for effective ubiquitin-adduct formation mediated by RNF8, RNF168 and BRCA1 at sites of DNA damage. These findings thus identify PIAS1 and PIAS4 as components of the DDR and reveal how protein recruitment to DSB sites is controlled by coordinated SUMOylation and ubiquitylation.
Collapse
Affiliation(s)
- Yaron Galanty
- The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | | | |
Collapse
|
113
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J Cell Mol Med 2009; 13:3019-3031. [PMID: 19522844 PMCID: PMC4516462 DOI: 10.1111/j.1582-4934.2009.00825.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 06/03/2009] [Indexed: 12/12/2022] Open
Abstract
DNA repair is an indispensable part of a cell's defence system against the devastating effects of DNA-damaging conditions. The regulation of this function is a really demanding situation, particularly when the stressing factors persist for a long time. In such cases, the depletion of existing DNA repair proteins has to be compensated by the induction of the analogous gene products. In addition, the arrest of transcription, which is another result of many DNA-damaging agents, needs to be overcome through regulation of transcription-specific DNA repair pathways. The involvement of the ubiquitin-proteasome system (UPS) in cancer- and chemotherapy-related DNA-damage repair relevant to the above transcriptional modification mechanisms are illustrated in this review. Furthermore, the contribution of UPS to the regulation of localization and accessibility of DNA repair proteins to chromatin, in response to cellular stress is discussed.
Collapse
|
114
|
Anderson DB, Wilkinson KA, Henley JM. Protein SUMOylation in neuropathological conditions. DRUG NEWS & PERSPECTIVES 2009; 22:255-65. [PMID: 19609463 PMCID: PMC3309023 DOI: 10.1358/dnp.2009.22.5.1378636] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Small ubiquitin-related modifier (SUMO) proteins are approximately 11 kDa proteins that can be covalently conjugated to lysine residues in defined target proteins. The resultant post-translational modification, SUMOylation, is vital for the viability of mammalian cells and regulates, among other things, a range of essential nuclear processes. It has become increasingly apparent in recent years that SUMOylation also serves multiple functions outside the nucleus and that it plays a critical role in the regulation of neuronal integrity and synaptic function. In particular, dysfunction of the SUMOylation pathway has been implicated in the molecular and cellular dysfunction associated with neurodegenerative and psychiatric disorders. Here, we outline current knowledge of the SUMO pathway and discuss the growing evidence for its involvement in multiple neurodegenerative disorders, with a view to highlighting the potential of the SUMO pathway as a putative drug target.
Collapse
Affiliation(s)
- Dina B. Anderson
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| | - Kevin A. Wilkinson
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| | - Jeremy M. Henley
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| |
Collapse
|
115
|
Geoffroy MC, Hay RT. An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 2009; 10:564-8. [PMID: 19474794 DOI: 10.1038/nrm2707] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although the post-translational modification of proteins with small ubiquitin-like modifier (SUMO) has a role in many biological processes, it was thought that SUMO, unlike ubiquitin, does not target proteins for degradation. However, these views need to be revised, as recent findings in yeast and human cells indicate that SUMO can act as a signal for the recruitment of E3 ubiquitin ligases, which leads to the ubiquitylation and degradation of the modified protein.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | |
Collapse
|
116
|
Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT. System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2009; 2:ra24. [PMID: 19471022 DOI: 10.1126/scisignal.2000282] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Covalent conjugation of the small ubiquitin-like modifier (SUMO) proteins to target proteins regulates many important eukaryotic cellular mechanisms. Although the molecular consequences of the conjugation of SUMO proteins are relatively well understood, little is known about the cellular signals that regulate the modification of their substrates. Here, we show that SUMO-2 and SUMO-3 are required for cells to survive heat shock. Through quantitative labeling techniques, stringent purification of SUMOylated proteins, advanced mass spectrometric technology, and novel techniques of data analysis, we quantified heat shock-induced changes in the SUMOylation state of 766 putative substrates. In response to heat shock, SUMO was polymerized into polySUMO chains and redistributed among a wide range of proteins involved in cell cycle regulation; apoptosis; the trafficking, folding, and degradation of proteins; transcription; translation; and DNA replication, recombination, and repair. This comprehensive proteomic analysis of the substrates of a ubiquitin-like modifier (Ubl) identifies a pervasive role for SUMO proteins in the biologic response to hyperthermic stress.
Collapse
Affiliation(s)
- Filip Golebiowski
- 1Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Reineke EL, Kao HY. Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. Int J Biol Sci 2009; 5:366-76. [PMID: 19471587 PMCID: PMC2686094 DOI: 10.7150/ijbs.5.366] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 01/17/2023] Open
Abstract
The promyelocytic leukemia protein (PML) is involved in many cellular processes including cell cycle progression, DNA damage response, transcriptional regulation, viral infection, and apoptosis. These cellular activities often rely on the localization of PML to unique subnuclear structures known as PML nuclear bodies (NBs). More than 50 cellular proteins are known to traffic in and out of PML NBs, either transiently or constitutively. In order to understand the dynamics of these NBs, it is important to delineate the regulation of PML itself. PML is subject to extensive regulation at transcriptional, post-transcriptional, and post-translational levels. Many of these modes of regulation depend on the cellular context and the presence of extracellular signals. This review focuses on the current knowledge of regulation of PML under normal cellular conditions as well as the role for regulation of PML in viral infection and cancer.
Collapse
Affiliation(s)
- Erin L Reineke
- Department of Biochemistry, School of Medicine, Case Western Reserve University and the Comprehensive Cancer Center of CWRU, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
118
|
Kanagasabai R, Liu S, Salama S, Yamasaki EF, Zhang L, Greenchurch KB, Snapka RM. Ubiquitin-family modifications of topoisomerase I in camptothecin-treated human breast cancer cells. Biochemistry 2009; 48:3176-85. [PMID: 19236054 DOI: 10.1021/bi802179t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Camptothecins kill mammalian cells by stabilizing topoisomerase I-DNA strand passing intermediates that are converted to lethal double strand DNA breaks in DNA replication fork collisions. Camptothecin-stabilized topoisomerase I-DNA cleavage intermediates in mammalian cells are uniquely modified by ubiquitin-family proteins. The structure, composition, and function of these ubiquitin-family modifications are poorly understood. We have used capillary liquid chromatography-nanospray tandem mass spectrometry to analyze the endogenous ubiquitin-family modifications of topoisomerase I purified from camptothecin-stabilized topoisomerase I-DNA cleavage complexes in human breast cancer cells. Peptides shared by SUMO-2 and SUMO-3 were abundant, and a peptide unique to SUMO-2 was identified. Ubiquitin was also identified in these complexes. No SUMO-1 peptide was detected in human topoisomerase I-DNA cleavage complexes. Identical experiments with purified SUMO paralogues showed that SUMO-1 was well digested by our protocol and that fragments were easily analyzed by LC-MS/MS. Spiking experiments with purified SUMO paralogues determined that we could detect as little as 0.5 SUMO-1 residue per topoisomerase I molecule. These results indicate that SUMO-1 is below this detection level and that SUMO-2 or a mixture of SUMO-2 and SUMO-3 predominates. SUMO-1 capping seems unlikely to be limiting the growth of SUMO-2/3 chains formed on camptothecin-stabilized topoisomerase I-DNA cleavage complexes.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Department of Internal Medicine, Comprehensive Cancer Center, Mass Spectrometry and Proteomics Facility, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Zhu S, Goeres J, Sixt KM, Békés M, Zhang XD, Salvesen GS, Matunis MJ. Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. Mol Cell 2009; 33:570-80. [PMID: 19285941 DOI: 10.1016/j.molcel.2009.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 11/05/2008] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
Vertebrates express three small ubiquitin-related modifiers (SUMO-1, SUMO-2, and SUMO-3) that are conjugated in part to unique subsets of proteins and, thereby, regulate distinct cellular processes. Mechanisms regulating paralog-selective sumoylation, however, remain poorly understood. Despite being equally well modified by SUMO-1 and SUMO-2 in vitro, RanGAP1 is selectively modified by SUMO-1 in vivo. We have found that this paralog-selective modification is determined at the level of deconjugation by isopeptidases. Our findings indicate that, relative to SUMO-2-modified RanGAP1, SUMO-1-modified RanGAP1 forms a more stable, higher affinity complex with the nucleoporin Nup358/RanBP2 that preferentially protects it from isopeptidases. By swapping residues in SUMO-1 and SUMO-2 responsible for Nup358/RanBP2 binding, or by manipulating isopeptidase expression levels, paralog-selective modification of RanGAP1 could be affected both in vitro and in vivo. Thus, protection from isopeptidases, through interactions with SUMO-binding proteins, represents an important mechanism defining paralog-selective sumoylation.
Collapse
Affiliation(s)
- Shanshan Zhu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|