101
|
Yusuf F, Brand-Saberi B. Myogenesis and muscle regeneration. Histochem Cell Biol 2012; 138:187-99. [DOI: 10.1007/s00418-012-0972-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
|
102
|
Abstract
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.
Collapse
Affiliation(s)
- Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
103
|
Alfaro LAS, Dick SA, Siegel AL, Anonuevo AS, McNagny KM, Megeney LA, Cornelison DDW, Rossi FMV. CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells 2012; 29:2030-41. [PMID: 21997891 DOI: 10.1002/stem.759] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression of the cell surface sialomucin CD34 is common to many adult stem cell types, including muscle satellite cells. However, no clear stem cell or regeneration-related phenotype has ever been reported in mice lacking CD34, and its function on these cells remains poorly understood. Here, we assess the functional role of CD34 on satellite cell-mediated muscle regeneration. We show that Cd34(-/-) mice, which have no obvious developmental phenotype, display a defect in muscle regeneration when challenged with either acute or chronic muscle injury. This regenerative defect is caused by impaired entry into proliferation and delayed myogenic progression. Consistent with the reported antiadhesive function of CD34, knockout satellite cells also show decreased motility along their host myofiber. Altogether, our results identify a role for CD34 in the poorly understood early steps of satellite cell activation and provide the first evidence that beyond being a stem cell marker, CD34 may play an important function in modulating stem cell activity.
Collapse
Affiliation(s)
- Leslie Ann So Alfaro
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Parker MH, Loretz C, Tyler AE, Snider L, Storb R, Tapscott SJ. Inhibition of CD26/DPP-IV enhances donor muscle cell engraftment and stimulates sustained donor cell proliferation. Skelet Muscle 2012; 2:4. [PMID: 22340947 PMCID: PMC3299591 DOI: 10.1186/2044-5040-2-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/16/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Transplantation of myogenic stem cells possesses great potential for long-term repair of dystrophic muscle. In murine-to-murine transplantation experiments, CXCR4 expression marks a population of adult murine satellite cells with robust engraftment potential in mdx mice, and CXCR4-positive murine muscle-derived SP cells home more effectively to dystrophic muscle after intra-arterial delivery in mdx5cv mice. Together, these data suggest that CXCR4 plays an important role in donor cell engraftment. Therefore, we sought to translate these results to a clinically relevant canine-to-canine allogeneic transplant model for Duchenne muscular dystrophy (DMD) and determine if CXCR4 is important for donor cell engraftment. METHODS In this study, we used a canine-to-murine xenotransplantation model to quantitatively compare canine muscle cell engraftment, and test the most effective cell population and modulating factor in a canine model of DMD using allogeneic transplantation experiments. RESULTS We show that CXCR4 expressing cells are important for donor muscle cell engraftment, yet FACS sorted CXCR4-positive cells display decreased engraftment efficiency. However, diprotin A, a positive modulator of CXCR4-SDF-1 binding, significantly enhanced engraftment and stimulated sustained proliferation of donor cells in vivo. Furthermore, the canine-to-murine xenotransplantation model accurately predicted results in canine-to-canine muscle cell transplantation. CONCLUSIONS Therefore, these results establish the efficacy of diprotin A in stimulating muscle cell engraftment, and highlight the pre-clinical utility of a xenotransplantation model in assessing the relative efficacy of muscle stem cell populations.
Collapse
Affiliation(s)
- Maura H Parker
- Program in Transplantation Biology, Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mailstop D1-100, Seattle, WA, 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
105
|
Zatti S, Zoso A, Serena E, Luni C, Cimetta E, Elvassore N. Micropatterning topology on soft substrates affects myoblast proliferation and differentiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2718-2726. [PMID: 22217143 DOI: 10.1021/la204776e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Micropatterning techniques and substrate engineering are becoming useful tools to investigate several aspects of cell-cell interaction biology. In this work, we rationally study how different micropatterning geometries can affect myoblast behavior in the early stage of in vitro myogenesis. Soft hydrogels with physiological elastic modulus (E = 15 kPa) were micropatterned in parallel lanes (100, 300, and 500 μm width) resulting in different local and global myoblast densities. Proliferation and differentiation into multinucleated myotubes were evaluated for murine and human myoblasts. Wider lanes showed a decrease in murine myoblast proliferation: (69 ± 8)% in 100 μm wide lanes compared to (39 ± 7)% in 500 μm lanes. Conversely, fusion index increased in wider lanes: from (46 ± 7)% to (66 ± 7)% for murine myoblasts, and from (15 ± 3)% to (36 ± 2)% for human primary myoblasts, using a patterning width of 100 and 500 μm, respectively. These results are consistent with both computational modeling data and conditioned medium experiments, which demonstrated that wider lanes favor the accumulation of endogenous secreted factors. Interestingly, human primary myoblast proliferation is not affected by patterning width, which may be because the high serum content of their culture medium overrides the effect of secreted factors. These data highlight the role of micropatterning in shaping the cellular niche through secreted factor accumulation, and are of paramount importance in rationally understanding myogenesis in vitro for the correct design of in vitro skeletal muscle models.
Collapse
Affiliation(s)
- Susi Zatti
- Department of Industrial Engineering (DII), University of Padova, via Marzolo 9, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|
106
|
Mendt M, Cardier JE. Stromal-derived factor-1 and its receptor, CXCR4, are constitutively expressed by mouse liver sinusoidal endothelial cells: implications for the regulation of hematopoietic cell migration to the liver during extramedullary hematopoiesis. Stem Cells Dev 2012; 21:2142-51. [PMID: 22121892 DOI: 10.1089/scd.2011.0565] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stromal-derived factor (SDF)-1 is the main regulating factor for trafficking/homing of hematopoietic stem cells (HSC) to the bone marrow (BM). It is possible that this chemokine may also play a fundamental role in regulating the migration of HSC to several organs during extramedullary hematopoiesis. Because liver sinusoidal endothelial cells (LSEC) constitute an extramedullary niche for HSC, it is possible that these cells represent one of the main cellular sources of SDF-1 at the liver. Here, we show that LSEC express SDF-1 at the mRNA and protein level. Biological assays showed that conditioned medium from LSEC (LSEC-CM) stimulated the migration of BM progenitor lineage-negative (BM/Lin⁻) cells. This effect was significantly reduced by AMD3100, indicating that the SDF-1/CXCR4 axis is involved in the stimulatory migrating effect induced by LSEC-CM. Early localization of HSC in SDF-1-expressing LSEC microenvironment together with increased levels of this chemokine in hepatic homogenates was found in an experimental model of liver extramedullary hematopoiesis. Flow cytometry studies showed that LSEC express the CXCR4 receptor. Functional assays showed that activation of this receptor by SDF-1 stimulated the migration of LSEC and increased the expression of PECAM-1. Our findings suggest that LSEC through the production of SDF-1 may constitute a fundamental niche for regulation of HSC migration to the liver. To our knowledge, this is the first report showing that LSEC not only express and secrete SDF-1, but also its receptor CXCR4.
Collapse
Affiliation(s)
- Mayela Mendt
- Unidad de Terapia Celular-Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas-IVIC, Apartado, Caracas, Venezuela
| | | |
Collapse
|
107
|
DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 2011; 22:38-51. [PMID: 22209328 DOI: 10.1016/j.devcel.2011.11.013] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 11/23/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is one of the most common inherited muscular dystrophies. The causative gene remains controversial and the mechanism of pathophysiology unknown. Here we identify genes associated with germline and early stem cell development as targets of the DUX4 transcription factor, a leading candidate gene for FSHD. The genes regulated by DUX4 are reliably detected in FSHD muscle but not in controls, providing direct support for the model that misexpression of DUX4 is a causal factor for FSHD. Additionally, we show that DUX4 binds and activates LTR elements from a class of MaLR endogenous primate retrotransposons and suppresses the innate immune response to viral infection, at least in part through the activation of DEFB103, a human defensin that can inhibit muscle differentiation. These findings suggest specific mechanisms of FSHD pathology and identify candidate biomarkers for disease diagnosis and progression.
Collapse
|
108
|
Mancini A, Sirabella D, Zhang W, Yamazaki H, Shirao T, Krauss RS. Regulation of myotube formation by the actin-binding factor drebrin. Skelet Muscle 2011; 1:36. [PMID: 22152295 PMCID: PMC3251523 DOI: 10.1186/2044-5040-1-36] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/08/2011] [Indexed: 11/15/2022] Open
Abstract
Background Myogenic differentiation involves cell-cycle arrest, activation of the muscle-specific transcriptome, and elongation, alignment and fusion of myoblasts into multinucleated myotubes. This process is controlled by promyogenic transcription factors and regulated by signaling pathways in response to extracellular cues. The p38 mitogen-activated protein kinase (p38 MAPK) pathway promotes the activity of several such transcription factors, including MyoD and MEF2, thereby controlling the muscle-specific transcription program. However, few p38-regulated genes that play a role in the regulation of myogenesis have been identified. Methods RNA interference (RNAi), chemical inhibition and immunofluorescence approaches were used to assess the role of drebrin in differentiation of primary mouse myoblasts and C2C12 cells. Results In a search for p38-regulated genes that promote myogenic differentiation, we identified Dbn1, which encodes the actin-binding protein drebrin. Drebrin is an F-actin side-binding protein that remodels actin to facilitate the change of filopodia into dendritic spines during synaptogenesis in developing neurons. Dbn1 mRNA and protein are induced during differentiation of primary mouse and C2C12 myoblasts, and induction is substantially reduced by the p38 MAPK inhibitor SB203580. Primary myoblasts and C2C12 cells depleted of drebrin by RNAi display reduced levels of myogenin and myosin heavy chain and form multinucleated myotubes very inefficiently. Treatment of myoblasts with BTP2, a small-molecule inhibitor of drebrin, produces a phenotype similar to that produced by knockdown of drebrin, and the inhibitory effects of BTP2 are rescued by expression of a mutant form of drebrin that is unable to bind BTP2. Drebrin in myoblasts is enriched in cellular projections and cell cortices and at regions of cell-cell contact, all sites where F-actin, too, was concentrated. Conclusions Our findings reveal that Dbn1 expression is a target of p38 MAPK signaling during myogenesis and that drebrin promotes myoblast differentiation.
Collapse
Affiliation(s)
- Annalisa Mancini
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L, Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Jeong J, Conboy IM. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochem Biophys Res Commun 2011; 414:9-13. [PMID: 21910971 DOI: 10.1016/j.bbrc.2011.08.128] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/28/2011] [Indexed: 11/30/2022]
Abstract
Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generally but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.
Collapse
Affiliation(s)
- Jaemin Jeong
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA.
| | | |
Collapse
|
110
|
Otto A, Collins-Hooper H, Patel A, Dash PR, Patel K. Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism. Rejuvenation Res 2011; 14:249-60. [PMID: 21453013 DOI: 10.1089/rej.2010.1151] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adult skeletal muscle possesses a resident stem cell population called satellite cells, which are responsible for tissue repair following damage. Satellite cell migration is crucial in promoting rapid tissue regeneration, but it is a poorly understood process. Furthermore, the mechanisms facilitating satellite cell movement have yet to be elucidated. This study investigates the process of satellite cell migration, revealing that they undergo two distinct phases of movement, first under the basal lamina and then rapidly increasing their velocity when on the myofiber surface. Most significantly, we show that satellite cells move using a highly dynamic blebbing or amoeboid-based mechanism and not via lamellipodia-mediated propulsion. We show that nitric oxide and noncanonical Wnt signaling pathways are necessary for regulating the formation of blebs and the migration of satellite cells. In summary, we propose that the formation of blebs and their necessity for satellite cell migration has significant implications in the future development of therapeutic regimes aimed at promoting skeletal muscle regeneration.
Collapse
Affiliation(s)
- Anthony Otto
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB, UK
| | | | | | | | | |
Collapse
|
111
|
Manzano R, Toivonen JM, Oliván S, Calvo AC, Moreno-Igoa M, Muñoz MJ, Zaragoza P, García-Redondo A, Osta R. Altered Expression of Myogenic Regulatory Factors in the Mouse Model of Amyotrophic Lateral Sclerosis. NEURODEGENER DIS 2011; 8:386-96. [DOI: 10.1159/000324159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/05/2011] [Indexed: 12/14/2022] Open
|
112
|
Henningsen J, Pedersen BK, Kratchmarova I. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. ACTA ACUST UNITED AC 2011; 7:311-21. [DOI: 10.1039/c0mb00209g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
113
|
Griffin CA, Apponi LH, Long KK, Pavlath GK. Chemokine expression and control of muscle cell migration during myogenesis. Development 2010. [DOI: 10.1242/dev.058446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|