101
|
Abstract
β-Alanine is rapidly developing as one of the most popular sport supplements used by strength/power athletes worldwide. The popularity of β-alanine stems from its unique ability to enhance intramuscular buffering capacity and thereby attenuating fatigue. This review will provide an overview of the physiology that underlies the mechanisms of action behind β-alanine, examine dosing schemes, and examine the studies that have been conducted on the efficacy of this supplement. In addition, the effect that β-alanine has on body mass changes or whether it can stimulate changes in aerobic capacity also will be discussed. The review also will begin to explore the potential health benefits that β-alanine may have on older adult populations. Discussion will examine the potential adverse effects associated with this supplement as well as the added benefits of combining β-alanine with creatine.
Collapse
Affiliation(s)
- Jay R Hoffman
- Sport and Exercise Science, University of Central Florida, Orlando, FL 32816-1250, USA.
| | | | | |
Collapse
|
102
|
New biocatalytic route for the production of enantioenriched β-alanine derivatives starting from 5- and 6-monosubstituted dihydrouracils. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
103
|
Ormsbee MJ, Mandler WK, Thomas DD, Ward EG, Kinsey AW, Simonavice E, Panton LB, Kim JS. The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men. J Int Soc Sports Nutr 2012; 9:49. [PMID: 23153110 PMCID: PMC3542109 DOI: 10.1186/1550-2783-9-49] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/15/2012] [Indexed: 01/03/2023] Open
Abstract
Background Resistance training (RT) enhances muscle protein synthesis and hypertrophy while increasing strength and power. Some multi-ingredient performance supplements (MIPS) have been shown to augment the physiological improvements associated with RT. The purpose of this study was to investigate the impact of specific pre- and post-workout MIPS on anabolic hormones, body composition, muscle strength, and power in resistance-trained men participating in a periodized RT program. Methods Twenty-four ( mean ± SE; 24.0 ± 0.9 years; 180.5 ± 5.8 cm; 83.7 ± 0.5 kg) resistance-trained men completed 6 wks of periodized RT (3x/wk). Participants were assigned to one of two groups based upon maximal voluntary contraction of the quadriceps (Biodex) to lean mass (LM) ratio. Group 1 (n = 13; MIPS) consumed one serving of NO-Shotgun® (whey protein, casein protein, branched-chain amino acids, creatine, beta alanine, and caffeine) before each workout and one serving of NO-Synthesize® (whey protein, casein protein, branched-chain amino acids, creatine, and beta alanine; Vital Pharmaceuticals, Inc., Davie, FL) immediately after each workout and on non-RT days. Group 2 (n = 11; Placebo; PLA) consumed a flavor-matched isocaloric maltodextrin placebo. Serum insulin-like growth factor 1, human growth hormone, testosterone, body composition (DXA), circumferences, 1-repetition maximal strength (1RM) of the upper (chest press) and lower body (leg press), and anaerobic power (Wingate test) were assessed before and after the intervention. Statistical analysis included a 2 × 2 (group x time) ANOVA with repeated measures. Tukey LSD post hoc tests were used to examine pairwise differences. Significance was set at p < 0.05. Results There was a main time effect (p = 0.035) for testosterone to increase, but no differences between groups were observed. There were no differences in the other blood hormones. Group x time interactions were observed for LM (MIPS: PRE, 62.9 ± 2.1 to POST, 65.7 ± 2.0 vs. PLA: PRE, 63.5 ± 2.3 to POST, 64.8 ± 2.5 kg; p = 0.017). Only a main effect of time was noted for circumference measures. Both groups increased upper and lower body 1RM strength to a similar degree. MIPS significantly increased peak anaerobic power (PRE, 932.7 ± 172.5 W vs. POST, 1119.2 ± 183.8 W, p = 0.002) while PLA remained unchanged (PRE, 974.4 ± 44.1 W vs. POST, 1033.7 ± 48.6 W, p = 0.166). Conclusion Consumption of MIPS during the course of a periodized RT program facilitated training-induced improvement in LM in trained males, whereas the consumption of PLA did not. MIPS improved measures of anaerobic power while PLA did not.
Collapse
Affiliation(s)
- Michael J Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Science and Medicine, The Florida State University, 120 Convocation Way, 430 Sandels Building, Tallahassee, FL, 32306-1493, USA.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Liu P, Ge X, Ding H, Jiang H, Christensen BM, Li J. Role of glutamate decarboxylase-like protein 1 (GADL1) in taurine biosynthesis. J Biol Chem 2012; 287:40898-906. [PMID: 23038267 DOI: 10.1074/jbc.m112.393728] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This manuscript concerns the tissue-specific transcription of mouse and cattle glutamate decarboxylase-like protein 1 (GADL1) and the biochemical activities of human GADL1 recombinant protein. Bioinformatic analysis suggested that GADL1 appears late in evolution, only being found in reptiles, birds, and mammals. RT-PCR determined that GADL1 mRNA is transcribed at high levels in mouse and cattle skeletal muscles and also in mouse kidneys. Substrate screening determined that GADL1, unlike its name implies, has no detectable GAD activity, but it is able to efficiently catalyze decarboxylation of aspartate, cysteine sulfinic acid, and cysteic acid to β-alanine, hypotaurine, and taurine, respectively. Western blot analysis verified the presence of GADL1 in mouse muscles, kidneys, C2C12 myoblasts, and C2C12 myotubes. Incubation of the supernatant of fresh muscle or kidney extracts with cysteine sulfinic acid resulted in the detection of hypotaurine or taurine in the reaction mixtures, suggesting the possible involvement of GADL1 in taurine biosynthesis. However, when the tissue samples were incubated with aspartate, no β-alanine production was observed. We proposed several possibilities that might explain the inactivation of ADC activity of GADL1 in tissue protein extracts. Although β-alanine-producing activity was not detected in the supernatant of tissue protein extracts, its potential role in β-alanine synthesis cannot be excluded. There are several inhibitors of the ADC activity of GADL1 identified. The discovery of GADL1 biochemical activities, in conjunction with its expression and activities in muscles and kidneys, provides some tangible insight toward establishing its physiological function(s).
Collapse
Affiliation(s)
- Pingyang Liu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | |
Collapse
|
105
|
Smith-Ryan AE, Fukuda DH, Stout JR, Kendall KL. High-Velocity Intermittent Running. J Strength Cond Res 2012; 26:2798-805. [DOI: 10.1519/jsc.0b013e318267922b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
106
|
Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W. Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients 2012; 4:585-601. [PMID: 22852051 PMCID: PMC3407982 DOI: 10.3390/nu4070585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022] Open
Abstract
β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation.
Collapse
Affiliation(s)
- John Caruso
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-918-631-2924; Fax: +1-918-631-2068
| | - Jessica Charles
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Kayla Unruh
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Rachel Giebel
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Lexis Learmonth
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - William Potter
- Department of Chemistry & Biochemistry, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
107
|
Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases. Amino Acids 2012; 44:391-404. [DOI: 10.1007/s00726-012-1342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/05/2012] [Indexed: 02/04/2023]
|
108
|
Stellingwerff T, Decombaz J, Harris RC, Boesch C. Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis. Amino Acids 2012; 43:57-65. [PMID: 22358258 DOI: 10.1007/s00726-012-1245-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 02/02/2012] [Indexed: 12/30/2022]
Abstract
Interest into the effects of carnosine on cellular metabolism is rapidly expanding. The first study to demonstrate in humans that chronic β-alanine (BA) supplementation (~3-6 g BA/day for ~4 weeks) can result in significantly augmented muscle carnosine concentrations (>50%) was only recently published. BA supplementation is potentially poised for application beyond the niche exercise and performance-enhancement field and into other more clinical populations. When examining all BA supplementation studies that directly measure muscle carnosine (n=8), there is a significant linear correlation between total grams of BA consumed (of daily intake ranges of 1.6-6.4 g BA/day) versus both the relative and absolute increases in muscle carnosine. Supporting this, a recent dose-response study demonstrated a large linear dependency (R2=0.921) based on the total grams of BA consumed over 8 weeks. The pre-supplementation baseline carnosine or individual subjects' body weight (from 65 to 90 kg) does not appear to impact on subsequent carnosine synthesis from BA consumption. Once muscle carnosine is augmented, the washout is very slow (~2%/week). Recently, a slow-release BA tablet supplement has been developed showing a smaller peak plasma BA concentration and delayed time to peak, with no difference in the area under the curve compared to pure BA in solution. Further, this slow-release profile resulted in a reduced urinary BA loss and improved retention, while at the same time, eliciting minimal paraesthesia symptoms. However, our complete understanding of optimizing in vivo delivery and dosing of BA is still in its infancy. Thus, this review will clarify our current knowledge of BA supplementation to augment muscle carnosine as well as highlight future research questions on the regulatory points of control for muscle carnosine synthesis.
Collapse
|
109
|
Hobson RM, Saunders B, Ball G, Harris RC, Sale C. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids 2012; 43:25-37. [PMID: 22270875 PMCID: PMC3374095 DOI: 10.1007/s00726-011-1200-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/09/2011] [Indexed: 11/16/2022]
Abstract
Due to the well-defined role of β-alanine as a substrate of carnosine (a major contributor to H+ buffering during high-intensity exercise), β-alanine is fast becoming a popular ergogenic aid to sports performance. There have been several recent qualitative review articles published on the topic, and here we present a preliminary quantitative review of the literature through a meta-analysis. A comprehensive search of the literature was employed to identify all studies suitable for inclusion in the analysis; strict exclusion criteria were also applied. Fifteen published manuscripts were included in the analysis, which reported the results of 57 measures within 23 exercise tests, using 18 supplementation regimes and a total of 360 participants [174, β-alanine supplementation group (BA) and 186, placebo supplementation group (Pla)]. BA improved (P = 0.002) the outcome of exercise measures to a greater extent than Pla [median effect size (IQR): BA 0.374 (0.140–0.747), Pla 0.108 (−0.019 to 0.487)]. Some of that effect might be explained by the improvement (P = 0.013) in exercise capacity with BA compared to Pla; no improvement was seen for exercise performance (P = 0.204). In line with the purported mechanisms for an ergogenic effect of β-alanine supplementation, exercise lasting 60–240 s was improved (P = 0.001) in BA compared to Pla, as was exercise of >240 s (P = 0.046). In contrast, there was no benefit of β-alanine on exercise lasting <60 s (P = 0.312). The median effect of β-alanine supplementation is a 2.85% (−0.37 to 10.49%) improvement in the outcome of an exercise measure, when a median total of 179 g of β-alanine is supplemented.
Collapse
Affiliation(s)
- R M Hobson
- Biomedical, Life and Health Sciences Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | | | | | | | | |
Collapse
|
110
|
Netzer M, Weinberger KM, Handler M, Seger M, Fang X, Kugler KG, Graber A, Baumgartner C. Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers. J Clin Bioinforma 2011; 1:34. [PMID: 22182709 PMCID: PMC3320562 DOI: 10.1186/2043-9113-1-34] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/19/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In metabolomics, biomarker discovery is a highly data driven process and requires sophisticated computational methods for the search and prioritization of novel and unforeseen biomarkers in data, typically gathered in preclinical or clinical studies. In particular, the discovery of biomarker candidates from longitudinal cohort studies is crucial for kinetic analysis to better understand complex metabolic processes in the organism during physical activity. FINDINGS In this work we introduce a novel computational strategy that allows to identify and study kinetic changes of putative biomarkers using targeted MS/MS profiling data from time series cohort studies or other cross-over designs. We propose a prioritization model with the objective of classifying biomarker candidates according to their discriminatory ability and couple this discovery step with a novel network-based approach to visualize, review and interpret key metabolites and their dynamic interactions within the network. The application of our method on longitudinal stress test data revealed a panel of metabolic signatures, i.e., lactate, alanine, glycine and the short-chain fatty acids C2 and C3 in trained and physically fit persons during bicycle exercise. CONCLUSIONS We propose a new computational method for the discovery of new signatures in dynamic metabolic profiling data which revealed known and unexpected candidate biomarkers in physical activity. Many of them could be verified and confirmed by literature. Our computational approach is freely available as R package termed BiomarkeR under LGPL via CRAN http://cran.r-project.org/web/packages/BiomarkeR/.
Collapse
Affiliation(s)
- Michael Netzer
- Research Group for Clinical Bioinformatics, Institute of Electrical, Electronic and Bioengineering, UMIT, 6060 Hall in Tirol, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Beta-alanine (Carnosyn™) supplementation in elderly subjects (60-80 years): effects on muscle carnosine content and physical capacity. Amino Acids 2011; 43:49-56. [PMID: 22143432 PMCID: PMC3374124 DOI: 10.1007/s00726-011-1190-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/29/2011] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the effects of beta-alanine supplementation on exercise capacity and the muscle carnosine content in elderly subjects. Eighteen healthy elderly subjects (60-80 years, 10 female and 4 male) were randomly assigned to receive either beta-alanine (BA, n=12) or placebo (PL, n=6) for 12 weeks. The BA group received 3.2 g of beta-alanine per day (2×800 mg sustained-release Carnosyn™ tablets, given 2 times per day). The PL group received 2× (2×800 mg) of a matched placebo. At baseline (PRE) and after 12 weeks (POST-12) of supplementation, assessments were made of the muscle carnosine content, anaerobic exercise capacity, muscle function, quality of life, physical activity and food intake. A significant increase in the muscle carnosine content of the gastrocnemius muscle was shown in the BA group (+85.4%) when compared with the PL group (+7.2%) (p=0.004; ES: 1.21). The time-to-exhaustion in the constant-load submaximal test (i.e., TLIM) was significantly improved (p=0.05; ES: 1.71) in the BA group (+36.5%) versus the PL group (+8.6%). Similarly, time-to-exhaustion in the incremental test was also significantly increased (p=0.04; ES 1.03) following beta-alanine supplementation (+12.2%) when compared with placebo (+0.1%). Significant positive correlations were also shown between the relative change in the muscle carnosine content and the relative change in the time-to-exhaustion in the TLIM test (r=0.62; p=0.01) and in the incremental test (r=0.48; p=0.02). In summary, the current data indicate for the first time, that beta-alanine supplementation is effective in increasing the muscle carnosine content in healthy elderly subjects, with subsequent improvement in their exercise capacity.
Collapse
|
112
|
|
113
|
Smith AE, Stout JR, Kendall KL, Fukuda DH, Cramer JT. Exercise-induced oxidative stress: the effects of β-alanine supplementation in women. Amino Acids 2011; 43:77-90. [DOI: 10.1007/s00726-011-1158-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
|
114
|
Gualano B, Lugaresi R, de Salles Painelli V, Painelli de Salles V, Queiroz ACC, Artioli G, Roschel H, Otaduy MC, Leite CDC, Lancha AH. Creatine supplementation does not augment muscle carnosine content in type 2 diabetic patients. Appl Physiol Nutr Metab 2011; 36:764-7. [PMID: 21999299 DOI: 10.1139/h11-083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether creatine supplementation affects muscle carnosine content in type 2 diabetic patients. Subjects were randomly assigned to receive either creatine (5 g·day(-1)) or placebo in a double-blind fashion. At baseline and after 12 weeks, carnosine content was evaluated in gastrocnemius and soleus muscles by using a 1H-MRS technique. No changes were found in gastrocnemius (p = 0.81) and soleus (p = 0.85). We concluded that creatine supplementation does not augment muscle carnosine content in type 2 diabetic patients.
Collapse
Affiliation(s)
- Bruno Gualano
- School of Physical Education and Sport, School of Medicine, University of Sao Paulo, Av Mello de Moraes, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med 2011; 32:258-66. [DOI: 10.1016/j.mam.2011.10.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022]
|
116
|
|