101
|
Brody EN, Gold L, Lawn RM, Walker JJ, Zichi D. High-content affinity-based proteomics: unlocking protein biomarker discovery. Expert Rev Mol Diagn 2011; 10:1013-22. [PMID: 21080818 DOI: 10.1586/erm.10.89] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single protein biomarkers measured with antibody-based affinity assays are the basis of molecular diagnostics in clinical practice today. There is great hope in discovering new protein biomarkers and combinations of protein biomarkers for advancing medicine through monitoring health, diagnosing disease, guiding treatment, and developing new therapeutics. The goal of high-content proteomics is to unlock protein biomarker discovery by measuring many (thousands) or all (∼23,000) proteins in the human proteome in an unbiased, data-driven approach. High-content proteomics has proven technically difficult due to the diversity of proteins, the complexity of relevant biological samples, such as blood and tissue, and large concentration ranges (in the order of 10(12) in blood). Mass spectrometry and affinity methods based on antibodies have dominated approaches to high-content proteomics. For technical reasons, neither has achieved adequate simultaneous performance and high-content. Here we review antibody-based protein measurement, multiplexed antibody-based protein measurement, and limitations of antibodies for high-content proteomics due to their inherent cross-reactivity. Finally, we review a new affinity-based proteomic technology developed from the ground up to solve the problem of high content with high sensitivity and specificity. Based on a new generation of slow off-rate modified aptamers (SOMAmers), this technology is unlocking biomarker discovery.
Collapse
Affiliation(s)
- Edward N Brody
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
102
|
Structural basis of thrombin-mediated factor V activation: the Glu666-Glu672 sequence is critical for processing at the heavy chain-B domain junction. Blood 2011; 117:7164-73. [PMID: 21555742 DOI: 10.1182/blood-2010-10-315309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombin-catalyzed activation of coagulation factor V (FV) is an essential positive feedback reaction within the blood clotting system. Efficient processing at the N- (Arg(709)-Ser(710)) and C-terminal activation cleavage sites (Arg(1545)-Ser(1546)) requires initial substrate interactions with 2 clusters of positively charged residues on the proteinase surface, exosites I and II. We addressed the mechanism of activation of human factor V (FV) using peptides that cover the entire acidic regions preceding these cleavage sites, FV (657-709)/ (FVa2) and FV(1481-1545)/(FVa3). FVa2 appears to interact mostly with exosite I, while both exosites are involved in interactions with the C-terminal linker. The 1.7-Å crystal structure of irreversibly inhibited thrombin bound to FVa2 unambiguously reveals docking of FV residues Glu(666)-Glu(672) to exosite I. These findings were confirmed in a second, medium-resolution structure of FVa2 bound to the benzamidine-inhibited proteinase. Our results suggest that the acidic A2-B domain linker is involved in major interactions with thrombin during cofactor activation, with its more N-terminal hirudin-like sequence playing a critical role. Modeling experiments indicate that FVa2, and likely also FVa3, wrap around thrombin in productive thrombin·FV complexes that cover a large surface of the activator to engage the active site.
Collapse
|
103
|
Adachi H, Ishiguro A, Hamada M, Sakota E, Asai K, Nakamura Y. Antagonistic RNA aptamer specific to a heterodimeric form of human interleukin-17A/F. Biochimie 2011; 93:1081-8. [PMID: 21524680 DOI: 10.1016/j.biochi.2011.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/03/2011] [Indexed: 01/26/2023]
Abstract
Interleukin-17 (IL-17) is a pro-inflammatory cytokine produced primarily by a subset of CD4(+)T cells, called Th17 cells, that is involved in host defense, inflammation and autoimmune disorders. The two most structurally related IL-17 family members, IL-17A and IL-17F, form homodimeric (IL-17A/A, IL-17F/F) and heterodimeric (IL-17A/F) complexes. Although the biological significance of IL-17A and IL-17F have been investigated using respective antibodies or gene knockout mice, the functional study of IL-17A/F heterodimeric form has been hampered by the lack of an inhibitory tool specific to IL-17A/F. In this study, we aimed to develop an RNA aptamer that specifically inhibits IL-17A/F. Aptamers are short single-stranded nucleic acid sequences that are selected in vitro based on their high affinity to a target molecule. One selected aptamer against human IL-17A/F, AptAF42, was isolated by repeated cycles of selection and counterselection against heterodimeric and homodimeric complexes, respectively. Thus, AptAF42 bound IL-17A/F but not IL-17A/A or IL-17F/F. The optimized derivative, AptAF42dope1, blocked the binding of IL-17A/F, but not of IL-17A/A or IL-17F/F, to the IL-17 receptor in the surface plasmon resonance assay in vitro. Consistently, AptAF42dope1 blocked cytokine GRO-α production induced by IL-17A/F, but not by IL-17A/A or IL-17F/F, in human cells. An RNA footprinting assay using ribonucleases against AptAF42dope1 in the presence or absence of IL-17A/F revealed that part of the predicted secondary structure fluctuates between alternate forms and that AptAF42dope1 is globally protected from ribonuclease cleavage by IL-17A/F. These results suggest that the selected aptamer recognizes a global conformation specified by the heterodimeric surface of IL-17A/F.
Collapse
Affiliation(s)
- Hironori Adachi
- Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
104
|
Phillips JA, Liu H, O’Donoghue MB, Xiong X, Wang R, You M, Sefah K, Tan W. Using azobenzene incorporated DNA aptamers to probe molecular binding interactions. Bioconjug Chem 2011; 22:282-8. [PMID: 21247152 PMCID: PMC3164881 DOI: 10.1021/bc100402p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rational design of DNA/RNA aptamers for use as molecular probes depends on a clear understanding of their structural elements in relation to target-aptamer binding interactions. We present a simple method to create aptamer probes that can occupy two different structural states. Then, based on the difference in binding affinity between these states, target-aptamer binding interactions can be elucidated. The basis of our two-state system comes from the incorporation of azobenzene within the DNA strand. Azobenzene can be used to photoregulate the melting of DNA-duplex structures. When incorporated into aptamers, the light-regulated conformational change of azobenzene can be used to analyze how aptamer secondary structure is involved in target binding. Azobenzene-modified aptamers showed no change in target selectivity, but showed differences in binding affinity as a function of the number, position, and conformation of azobenzene modifications. Aptamer probes that can change binding affinity on demand may have future uses in targeted drug delivery and photodynamic therapy.
Collapse
Affiliation(s)
- Joseph A. Phillips
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200. USA
| | - Haipeng Liu
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200. USA
| | - Meghan B. O’Donoghue
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200. USA
| | - Xiangling Xiong
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200. USA
| | - Ruowen Wang
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200. USA
| | - Mingxu You
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200. USA
| | - Kwame Sefah
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200. USA
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200. USA
| |
Collapse
|
105
|
Ahmad KM, Oh SS, Kim S, McClellen FM, Xiao Y, Soh HT. Probing the limits of aptamer affinity with a microfluidic SELEX platform. PLoS One 2011. [PMID: 22110600 DOI: 10.1371/journal.-pone.0027051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Nucleic acid-based aptamers offer many potential advantages relative to antibodies and other protein-based affinity reagents, including facile chemical synthesis, reversible folding, improved thermal stability and lower cost. However, their selection requires significant time and resources and selections often fail to yield molecules with affinities sufficient for molecular diagnostics or therapeutics. Toward a selection technique that can efficiently and reproducibly generate high performance aptamers, we have developed a microfluidic selection process (M-SELEX) that can be used to obtain high affinity aptamers against diverse protein targets. Here, we isolated DNA aptamers against three protein targets with different isoelectric points (pI) using a common protocol. After only three rounds of selection, we discovered novel aptamer sequences that bind to platelet derived growth factor B (PDGF-BB; pI = 9.3) and thrombin (pI = 8.3) with respective dissociation constants (K(d)) of 0.028 nM and 0.33 nM, which are both superior to previously reported aptamers against these targets. In parallel, we discovered a new aptamer that binds to apolipoprotein E3 (ApoE; pI = 5.3) with a K(d) of 3.1 nM. Furthermore, we observe that the net protein charge may exert influence on the affinity of the selected aptamers. To further explore this relationship, we performed selections against PDGF-BB under different pH conditions using the same selection protocol, and report an inverse correlation between protein charge and aptamer K(d).
Collapse
Affiliation(s)
- Kareem M Ahmad
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
| | | | | | | | | | | |
Collapse
|
106
|
Povsic TJ, Sullenger BA, Zelenkofske SL, Rusconi CP, Becker RC. Translating nucleic acid aptamers to antithrombotic drugs in cardiovascular medicine. J Cardiovasc Transl Res 2010; 3:704-16. [PMID: 21080135 DOI: 10.1007/s12265-010-9230-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/07/2010] [Indexed: 11/29/2022]
Abstract
Nucleic acid aptamers offer several distinct advantages for the selective inhibition of protein targets within the coagulation cascade. A highly attractive feature of aptamers as antithrombotics is their ability to encode for complementary "controlling agents" which selectively bind to and neutralize their active counterparts via Watson-Crick base pairing or, in a less selective and clinically characterized manner, cationic polymers that can counteract the activity of an aptamer or free/protein-complexed nucleic acid. The former property allows aptamer-based antithrombotic therapies to be administered with a goal of selective, high intensity target inhibition, knowing that rapid drug reversal is readily available. In addition, by purposefully varying the ratio of active agent to a specific controlling agent administered, the intensity of antithrombotic therapy can be regulated with precision according to patient needs and the accompanying clinical conditions. REG1, currently undergoing phase 2B clinical investigation, consists of an RNA aptamer (RB006; pegnivacogin) which targets factor IXa and its complementary controlling agent (RB007; anivamersen). Aptamers directed against other serine coagulation proteases, some with and some without parallel controlling agents, have been designed. Aptamers directed against platelet surface membrane receptor targets are in preclinical development. The following review offers a contemporary summary of nucleic acid aptamers as a translatable platform for regulatable antithrombotic drugs expanding the paradigm of patient- and disease-specific treatment in clinical practice.
Collapse
Affiliation(s)
- Thomas J Povsic
- Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
107
|
Nomura Y, Sugiyama S, Sakamoto T, Miyakawa S, Adachi H, Takano K, Murakami S, Inoue T, Mori Y, Nakamura Y, Matsumura H. Conformational plasticity of RNA for target recognition as revealed by the 2.15 A crystal structure of a human IgG-aptamer complex. Nucleic Acids Res 2010; 38:7822-9. [PMID: 20675355 PMCID: PMC2995045 DOI: 10.1093/nar/gkq615] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aptamers are short single-stranded nucleic acids with high affinity to target molecules and are applicable to therapeutics and diagnostics. Regardless of an increasing number of reported aptamers, the structural basis of the interaction of RNA aptamer with proteins is poorly understood. Here, we determined the 2.15 Å crystal structure of the Fc fragment of human IgG1 (hFc1) complexed with an anti-Fc RNA aptamer. The aptamer adopts a characteristic structure fit to hFc1 that is stabilized by a calcium ion, and the binding activity of the aptamer can be controlled many times by calcium chelation and addition. Importantly, the aptamer-hFc1 interaction involves mainly van der Waals contacts and hydrogen bonds rather than electrostatic forces, in contrast to other known aptamer-protein complexes. Moreover, the aptamer-hFc1 interaction involves human IgG-specific amino acids, rendering the aptamer specific to human IgGs, and not crossreactive to other species IgGs. Hence, the aptamer is a potent alternative for protein A affinity purification of Fc-fusion proteins and therapeutic antibodies. These results demonstrate, from a structural viewpoint, that conformational plasticity and selectivity of an RNA aptamer is achieved by multiple interactions other than electrostatic forces, which is applicable to many protein targets of low or no affinity to nucleic acids.
Collapse
Affiliation(s)
- Yusuke Nomura
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino-shi, Chiba 275-0016, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Joubert MK, Kinsley N, Capovilla A, Sewell BT, Jaffer MA, Khati M. A Modeled Structure of an Aptamer−gp120 Complex Provides Insight into the Mechanism of HIV-1 Neutralization. Biochemistry 2010; 49:5880-90. [DOI: 10.1021/bi100301k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Nichole Kinsley
- Elevation Biotech, 8 Blackwood Avenue, Parktown, Johannesburg 2193, South Africa
| | - Alexio Capovilla
- Elevation Biotech, 8 Blackwood Avenue, Parktown, Johannesburg 2193, South Africa
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - B. Trevor Sewell
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Mohamed A. Jaffer
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Makobetsa Khati
- CSIR Biosciences, P.O. Box 395, Pretoria 0001, South Africa
- Department of Medicine, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| |
Collapse
|
109
|
Clementi N, Chirkova A, Puffer B, Micura R, Polacek N. Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation. Nat Chem Biol 2010; 6:344-51. [PMID: 20348921 DOI: 10.1038/nchembio.341] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/21/2010] [Indexed: 11/09/2022]
Abstract
Following ribosomal peptide bond formation, the reaction products, peptidyl-tRNA and deacylated tRNA, need to be translocated from the A- and P-sites to the P- and E-sites, respectively. This process is facilitated by the GTPase elongation factor G (EF-G). The mechanism describing how the ribosome activates GTP hydrolysis is poorly understood in molecular terms. By using an 'atomic mutagenesis' approach, which allows the manipulation of specific functional groups on 23S rRNA nucleotides in the context of the entire ribosome, we disclose the adenine exocyclic N6 amino group at A2660 of the sarcin-ricin loop as a key determinant for triggering GTP hydrolysis on EF-G. We show that the purine pi system-expanding characteristics of the exocyclic functional group at the C6 position of A2660 are essential. We propose that stacking interactions of A2660 with EF-G may act as a molecular trigger to induce repositioning of suspected functional amino acids in EF-G that in turn promote GTP hydrolysis.
Collapse
Affiliation(s)
- Nina Clementi
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
110
|
Huang RH, Fremont DH, Diener JL, Schaub RG, Sadler JE. A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1. Structure 2010; 17:1476-84. [PMID: 19913482 DOI: 10.1016/j.str.2009.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 09/08/2009] [Accepted: 09/13/2009] [Indexed: 11/15/2022]
Abstract
ARC1172 is a 41-mer DNA aptamer selected to bind the A1 domain of von Willebrand factor (VWF). A derivative of ARC1172 with modifications to increase intravascular survival inhibits carotid artery thrombosis in a Cynomolgus macaque model and inhibits VWF-dependent platelet aggregation in humans, suggesting that such aptamers may be useful to prevent or treat thrombosis. In the crystal structure of a VWF A1-ARC1172 complex, the aptamer adopts a three-stem structure of mainly B-form DNA with three noncanonical base pairs and 9 unpaired residues, 6 of which are stabilized by base-base or base-deoxyribose stacking interactions. The aptamer-protein interface is characterized by cation-pi interactions involving Arg, Lys, and Gln residues, often stabilized by H-bonds with adjacent bases. The ARC1172 binding site on the A1 domain overlaps with that of botrocetin and clashes with glycoprotein Ibalpha binding at an adjacent site, which accounts for the antithrombotic activity of ARC1172 and related aptamers.
Collapse
Affiliation(s)
- Ren-Huai Huang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
111
|
Orava EW, Cicmil N, Gariépy J. Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2190-200. [PMID: 20144587 DOI: 10.1016/j.bbamem.2010.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/03/2010] [Indexed: 11/18/2022]
Abstract
Many evolving treatments for cancer patients are based on the targeted delivery of therapeutic cargoes to and into cancer cells. The advent of monoclonal antibodies and the use of peptide hormones, growth factors and cytokines have historically provided a spectrum of ligands needed to selectively target tumor-associated antigens on cancer cells. However, issues linked to the size, cost and immunogenicity of protein-based ligands have led to the search for alternate ligand families. The advent of short synthetic oligonucleotide ligands known as aptamers now provides a simple strategy to select for membrane-impermeant aptamers tailored to precisely target internalized surface markers present on cancer cells. Here we described how 25-base long, synthetic single-stranded DNA aptamers were derived to bind to known internalized tumor markers such as CD33, CEA, MUC1 and Tn antigens and are imported through these surface portals into cancer cells. The key consequence of using internalized aptamers is their ability to accumulate inside the cells, thus routing their therapeutic cargoes to intracellular sites relevant to their action. Internalized aptamers are discussed in the context of how such ligands have been used to create a range of guided therapeutic agents ranging from drug-based conjugates up to targeted nanoparticles.
Collapse
Affiliation(s)
- Erik W Orava
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
112
|
Tok J, Lai J, Leung T, Li SFY. Molecular aptamer beacon for myotonic dystrophy kinase-related Cdc42-binding kinase alpha. Talanta 2010; 81:732-6. [PMID: 20188990 DOI: 10.1016/j.talanta.2010.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 11/18/2022]
Abstract
A novel strategy for the development of molecular aptamer beacon for a signal transduction protein, myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) was proposed in this work. MRCK is an important downstream effector protein of Cdc42 that phosphorylates proteins involved in organizing actin structures responsible for forming stress fibres, lamellipodia or filopodia. The simple method for MAB design could potentially be applied to other aptamers for modification into a protein probe. The MRCK aptamer was modified into a MAB by adding nucleotides on the 5' end, which are complementary to the 3' end of the aptamer so as to destroy the existing structure and change it into a MB form. In the absence of MRCK, the MAB remained a hairpin structure. However, in the presence of MRCK, the equilibrium was shifted towards the formation of the MRCK-aptamer complex, resulting in the preference for the MRCK-binding conformer, where a fluorescence-quenching pair added to the 5' and 3' ends signaled any protein-dependent conformation change. The development of MABs for signal transduction proteins will have the potential to replace antibodies for diagnostic assays as well as protein studies in cellular imaging.
Collapse
Affiliation(s)
- Junie Tok
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore
| | | | | | | |
Collapse
|
113
|
Buddai SK, Layzer JM, Lu G, Rusconi CP, Sullenger BA, Monroe DM, Krishnaswamy S. An anticoagulant RNA aptamer that inhibits proteinase-cofactor interactions within prothrombinase. J Biol Chem 2009; 285:5212-23. [PMID: 20022942 DOI: 10.1074/jbc.m109.049833] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of factor Xa with factor Va on membranes to form prothrombinase profoundly increases the rate of the proteolytic conversion of prothrombin to thrombin. We present the characterization of an RNA aptamer (RNA(11F7t)) selected from a combinatorial library based on its ability to bind factor Xa. We show that RNA(11F7t) inhibits thrombin formation catalyzed by prothrombinase without obscuring the active site of Xa within the enzyme complex. Selective inhibition of protein substrate cleavage arises from the ability of the aptamer to bind to factor Xa and exclude interactions between the proteinase and cofactor within prothrombinase. Competition for enzyme complex assembly results from the binding of RNA(11F7t) to factor Xa with nanomolar affinity in a Ca(2+)-dependent interaction. RNA(11F7t) binds equivalently to the zymogen factor X as well as derivatives lacking gamma-carboxyglutamic acid residues. We suggest that the ability of RNA(11F7t) to compete for the Xa-Va interaction with surprisingly high affinity likely reflects a significant contribution from its ability to indirectly impact regions of Xa that participate in the proteinase-cofactor interaction. Thus, despite the complexity of the macromolecular interactions that underlie the assembly of prothrombinase, efficient inhibition of enzyme complex assembly and thrombin formation can be achieved by tight binding ligands that target factor Xa in a discrete manner.
Collapse
Affiliation(s)
- Sai K Buddai
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Buff MCR, Schäfer F, Wulffen B, Müller J, Pötzsch B, Heckel A, Mayer G. Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency. Nucleic Acids Res 2009; 38:2111-8. [PMID: 20007153 PMCID: PMC2847219 DOI: 10.1093/nar/gkp1148] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aptamers that can be regulated with light allow precise control of protein activity in space and time and hence of biological function in general. In a previous study, we showed that the activity of the thrombin-binding aptamer HD1 can be turned off by irradiation using a light activatable 'caged' intramolecular antisense-domain. However, the activity of the presented aptamer in its ON state was only mediocre. Here we studied the nature of this loss in activity in detail and found that switching from 5'- to 3'-extensions affords aptamers that are even more potent than the unmodified HD1. In particular we arrived at derivatives that are now more active than the aptamer NU172 that is currently in phase 2 clinical trials as an anticoagulant. As a result, we present light-regulatable aptamers with a superior activity in their ON state and an almost digital ON/OFF behavior upon irradiation.
Collapse
Affiliation(s)
- Maximilian C R Buff
- University of Frankfurt, Cluster of Excellence Macromolecular Complexes, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
115
|
Nimjee SM, Oney S, Volovyk Z, Bompiani KM, Long SB, Hoffman M, Sullenger BA. Synergistic effect of aptamers that inhibit exosites 1 and 2 on thrombin. RNA (NEW YORK, N.Y.) 2009; 15:2105-2111. [PMID: 19846574 PMCID: PMC2779679 DOI: 10.1261/rna.1240109] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/13/2009] [Indexed: 05/28/2023]
Abstract
Thrombin is a multifunctional protease that plays a key role in hemostasis, thrombosis, and inflammation. Most thrombin inhibitors currently used as antithrombotic agents target thrombin's active site and inhibit all of its myriad of activities. Exosites 1 and 2 are distinct regions on the surface of thrombin that provide specificity to its proteolytic activity by mediating binding to substrates, receptors, and cofactors. Exosite 1 mediates binding and cleavage of fibrinogen, proteolytically activated receptors, and some coagulation factors, while exosite 2 mediates binding to heparin and to platelet receptor GPIb-IX-V. The crystal structures of two nucleic acid ligands bound to thrombin have been solved. Previously Padmanabhan and colleagues solved the structure of a DNA aptamer bound to exosite 1 and we reported the structure of an RNA aptamer bound to exosite 2 on thrombin. Based upon these structural studies we speculated that the two aptamers would not compete for binding to thrombin. We observe that simultaneously blocking both exosites with the aptamers leads to synergistic inhibition of thrombin-dependent platelet activation and procoagulant activity. This combination of exosite 1 and exosite 2 inhibitors may provide a particularly effective antithrombotic approach.
Collapse
Affiliation(s)
- Shahid M Nimjee
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Petrera NS, Stafford AR, Leslie BA, Kretz CA, Fredenburgh JC, Weitz JI. Long range communication between exosites 1 and 2 modulates thrombin function. J Biol Chem 2009; 284:25620-9. [PMID: 19589779 DOI: 10.1074/jbc.m109.000042] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although exosites 1 and 2 regulate thrombin activity by binding substrates and cofactors and by allosterically modulating the active site, it is unclear whether there is direct allosteric linkage between the two exosites. To begin to address this, we first titrated a thrombin variant fluorescently labeled at exosite 1 with exosite 2 ligands, HD22 (a DNA aptamer), gamma'-peptide (an analog of the COOH terminus of the gamma'-chain of fibrinogen) or heparin. Concentration-dependent and saturable changes in fluorescence were elicited, supporting inter-exosite linkage. To explore the functional consequences of this phenomenon, we evaluated the capacity of exosite 2 ligands to inhibit thrombin binding to gamma(A)/gamma(A)-fibrin, an interaction mediated solely by exosite 1. When gamma(A)/gamma(A)-fibrinogen was clotted with thrombin in the presence of HD22, gamma'-peptide, or prothrombin fragment 2 there was a dose-dependent and saturable decrease in thrombin binding to the resultant fibrin clots. Furthermore, HD22 reduced the affinity of thrombin for gamma(A)/gamma(A)-fibrin 6-fold and accelerated the dissociation of thrombin from preformed gamma(A)/gamma(A)-fibrin clots. Similar responses were obtained when surface plasmon resonance was used to monitor the interaction of thrombin with gamma(A)/gamma(A)-fibrinogen or fibrin. There is bidirectional communication between the exosites, because exosite 1 ligands, HD1 (a DNA aptamer) or hirudin-(54-65) (an analog of the COOH terminus of hirudin), inhibited the exosite 2-mediated interaction of thrombin with immobilized gamma'-peptide. These findings provide evidence for long range allosteric linkage between exosites 1 and 2 on thrombin, revealing further complexity to the mechanisms of thrombin regulation.
Collapse
Affiliation(s)
- Nicolas S Petrera
- Department of Medicine, McMaster University, and Henderson Research Center, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | | | | | |
Collapse
|