101
|
Washida H, Kaneko S, Crofts N, Sugino A, Wang C, Okita TW. Identification of cis-localization elements that target glutelin RNAs to a specific subdomain of the cortical endoplasmic reticulum in rice endosperm cells. PLANT & CELL PHYSIOLOGY 2009; 50:1710-4. [PMID: 19605415 DOI: 10.1093/pcp/pcp103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rice glutelin RNAs are localized to the cisternal endoplasmic reticulum (ER) by a regulated RNA transport process requiring specific cis-localization elements. We set out to identify these glutelin sequences by their dominant character of being able to re-direct the normal protein body ER localization of a maize 10 kDa delta-zein RNA to the cisternal ER. In situ RNA localization analysis showed that the glutelin RNA contains multiple cis-localization elements; two located at the 5' and 3' ends of the coding sequences and a third located within the 3'-untranslated region. These three regions contain two conserved sequences, suggesting that these RNA recognition signals may be sequence based.
Collapse
Affiliation(s)
- Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | | | |
Collapse
|
102
|
Zhou Y, Rong L, Zhang J, Aloysius C, Pan Q, Liang C. Insulin-like growth factor II mRNA binding protein 1 modulates Rev-dependent human immunodeficiency virus type 1 RNA expression. Virology 2009; 393:210-20. [PMID: 19726068 DOI: 10.1016/j.virol.2009.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/02/2009] [Accepted: 08/04/2009] [Indexed: 01/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) needs to overcome cellular counter mechanisms such as to successfully propagate itself. Results of our recent studies show that overexpression of insulin-like growth factor II mRNA binding protein 1 (IMP1) inhibits production of infectious HIV-1 particles through adversely affecting virus maturation. Here, we report that IMP1 interacts with HIV-1 Rev protein and its ectopic expression causes relocation of Rev from the nucleus to the cytoplasm. In accordance with this observation, ectopic expression of IMP1 severely diminishes Rev-dependent expression of CAT enzyme and disturbs HIV-1 RNA expression by causing accumulation of the multiple spliced viral RNA. Results of mutagenesis analysis further reveal that the KH4 domain represents the key element of IMP1 in modulating HIV-1 RNA expression. Taken together, these data suggest, in addition to hampering virus assembly, that IMP1 also has an effect on Rev-dependent viral RNA expression.
Collapse
Affiliation(s)
- Yongdong Zhou
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
103
|
Andreassi C, Riccio A. To localize or not to localize: mRNA fate is in 3'UTR ends. Trends Cell Biol 2009; 19:465-74. [PMID: 19716303 DOI: 10.1016/j.tcb.2009.06.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 01/30/2023]
Abstract
Translation of localized mRNA is a fast and efficient way of reacting to extracellular stimuli with the added benefit of providing spatial resolution to the cellular response. The efficacy of this adaptive response ultimately relies on the ability to express a particular protein at the right time and in the right place. Although mRNA localization is a mechanism shared by most organisms, it is especially relevant in highly polarized cells, such as differentiated neurons. 3'-Untranslated regions (3'UTRs) of mRNAs are critical both for the targeting of transcripts to specific subcellular compartments and for translational control. Here we review recent studies that indicate how, in response to extracellular cues, nuclear and cytoplasmic remodeling of the 3'UTR contributes to mRNA localization and local protein synthesis.
Collapse
Affiliation(s)
- Catia Andreassi
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
104
|
Arthur PK, Claussen M, Koch S, Tarbashevich K, Jahn O, Pieler T. Participation of Xenopus Elr-type proteins in vegetal mRNA localization during oogenesis. J Biol Chem 2009; 284:19982-92. [PMID: 19458392 DOI: 10.1074/jbc.m109.009928] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Directional transport of specific mRNAs is of primary biological relevance. In Xenopus oocytes, mRNA localization to the vegetal pole is important for germ layer formation and germ cell development. Using a biochemical approach, we identified Xenopus Elr-type proteins, homologs of the Hu/ELAV proteins, as novel components of the vegetal mRNA localization machinery. They bind specifically to the localization elements of several different vegetally localizing Xenopus mRNAs, and they are part of one RNP together with other localization proteins, such as Vg1RBP and XStaufen 1. Blocking Elr-type protein binding by either localization element mutagenesis or antisense morpholino oligonucleotide-mediated masking of their target RNA structures, as well as overexpression of wild type and mutant ElrB proteins, interferes with vegetal localization in Xenopus oocytes.
Collapse
Affiliation(s)
- Patrick K Arthur
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
105
|
Snee MJ, Macdonald PM. Bicaudal C and trailer hitch have similar roles in gurken mRNA localization and cytoskeletal organization. Dev Biol 2009; 328:434-44. [PMID: 19217894 PMCID: PMC2850203 DOI: 10.1016/j.ydbio.2009.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 01/13/2009] [Accepted: 02/03/2009] [Indexed: 01/16/2023]
Abstract
Bicaudal C and trailer hitch are both required for dorsoventral patterning of the Drosophila oocyte. Each mutant produces ventralized eggs, a phenotype typically associated with failure of the oocyte to provide a dorsalization signal--the Gurken protein--to the follicle cells. Bicaudal C and trailer hitch are both implicated in post-transcriptional gene regulation. Bicaudal C acts in recruiting a deadenylase to specific mRNAs, leading to translational repression. The role of trailer hitch is less well defined, but mutants have defects in protein secretion, and show aberrant distribution of an endoplasmic reticulum exit site marker whose mRNA is associated with Trailer hitch protein. We show that Bicaudal C and trailer hitch interact genetically. Mutants of these two genes have shared defects in localization of gurken and other anteriorly-localized mRNAs, as well as altered microtubule organization which may underlie the mRNA localization defects. Bicaudal C and trailer hitch mutants also share a syndrome of actin-related abnormalities, including the formation of ectopic actin cages near the anterior of the oocyte. The cages sequester Gurken protein, blocking its secretion and thus interfering with signaling of the follicle cells to specify dorsal fate.
Collapse
Affiliation(s)
- Mark J Snee
- Institute for Cellular and Molecular Biology, Section of Molecular, Cell, and Developmental Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
106
|
Mili S, Macara IG. RNA localization and polarity: from A(PC) to Z(BP). Trends Cell Biol 2009; 19:156-64. [PMID: 19251418 PMCID: PMC2844668 DOI: 10.1016/j.tcb.2009.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 01/14/2023]
Abstract
Cell polarization relies on the asymmetric organization of cellular structures and activities, and is fundamentally important both during development and for the proper function of most somatic cells. Asymmetries in the distribution and activity of proteins can be achieved through localization of RNA molecules that usually give rise to proteins at specific subcellular sites. It is increasingly appreciated that this is a widely used mechanism affecting protein function at multiple levels. The description of a new RNA localization pathway involving the tumor-suppressor protein APC raises questions regarding coordination between distinct localization pathways and their effects on protein function and cell polarity.
Collapse
Affiliation(s)
- Stavroula Mili
- Dept. of Microbiology, Center for Cell Signaling, University of Virginia, HSC, Charlottesville VA 22908-0577, U.S.A
| | - Ian G. Macara
- Dept. of Microbiology, Center for Cell Signaling, University of Virginia, HSC, Charlottesville VA 22908-0577, U.S.A
| |
Collapse
|
107
|
Bontems F, Stein A, Marlow F, Lyautey J, Gupta T, Mullins MC, Dosch R. Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol 2009; 19:414-22. [PMID: 19249209 DOI: 10.1016/j.cub.2009.01.038] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/22/2008] [Accepted: 01/15/2009] [Indexed: 01/11/2023]
Abstract
In many animals, gamete formation during embryogenesis is specified by maternal cytoplasmic determinants termed germ plasm. During oogenesis, germ plasm forms a distinct cellular structure such as pole plasm in Drosophila or the Balbiani body, an aggregate of organelles also found in mammals. However, in vertebrates, the key regulators of germ plasm assembly are largely unknown. Here, we show that, at the beginning of zebrafish oogenesis, the germ plasm defect in bucky ball (buc) mutants precedes the loss of polarity, indicating that Buc primarily controls Balbiani body formation. Moreover, we molecularly identify the buc gene, which is exclusively expressed in the ovary with a novel, dynamic mRNA localization pattern first detectable within the Balbiani body. We find that a Buc-GFP fusion localizes to the Balbiani body during oogenesis and with the germ plasm during early embryogenesis, consistent with a role in germ plasm formation. Interestingly, overexpression of buc seems to generate ectopic germ cells in the zebrafish embryo. Because we discovered buc homologs in many vertebrate genomes, including mammals, these results identify buc as the first gene necessary and sufficient for germ plasm organization in vertebrates.
Collapse
Affiliation(s)
- Franck Bontems
- Department of Zoology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
108
|
Vuppalanchi D, Willis DE, Twiss JL. Regulation of mRNA transport and translation in axons. Results Probl Cell Differ 2009; 48:193-224. [PMID: 19582411 DOI: 10.1007/400_2009_16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Movement of mRNAs into axons occurs by active transport by microtubules through the activity of molecular motor proteins. mRNAs are sequestered into granular-like particles, referred to as transport ribonucleoprotein particles (RNPs) that mediate transport into the axonal compartment. The interaction of mRNA binding proteins with targeted mRNA is a key event in regulating axonal mRNA localization and subsequent localized translation of mRNAs. Several growth-modulating stimuli have been shown to regulate axonal mRNA localization. These do so by activating specific intracellular signaling pathways that converge upon RNA binding proteins and other components of the transport RNP to regulate their activity specifically. Transport can be both positively and negatively regulated by individual stimuli with regard to individual mRNAs. Consequently, there is exquisite specificity for regulating the axon's composition of mRNAs and proteins that control expression in the axon. Finally, recent studies indicate that axotomy can also trigger changes in axonal mRNA composition by specifically shifting the populations of mRNAs that are transported into distal axons.
Collapse
|
109
|
Abstract
RNA-protein interactions profoundly impact organismal development and function through their contributions to the basal gene expression machineries and their regulation of post-transcriptional processes. The repertoire of predicted RNA binding proteins (RBPs) in plants is particularly large, suggesting that the RNA-protein interactome in plants may be more complex and dynamic even than that in metazoa. To dissect RNA-protein interaction networks, it is necessary to identify the RNAs with which each RBP interacts and to determine how those interactions influence RNA fate and downstream processes. Identification of the native RNA ligands of RBPs remains a challenge, but several high-throughput methods for the analysis of RNAs that copurify with specific RBPs from cell extract have been reported recently. This chapter reviews approaches for defining the native RNA ligands of RBPs on a genome-wide scale and provides a protocol for a method that has been used to this end for RBPs that localize to the chloroplast.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
110
|
Prucca CG, Slavin I, Quiroga R, Elías EV, Rivero FD, Saura A, Carranza PG, Luján HD. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 2008; 456:750-4. [DOI: 10.1038/nature07585] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/06/2008] [Indexed: 12/25/2022]
|
111
|
Colomina N, Ferrezuelo F, Wang H, Aldea M, Garí E. Whi3, a developmental regulator of budding yeast, binds a large set of mRNAs functionally related to the endoplasmic reticulum. J Biol Chem 2008; 283:28670-9. [PMID: 18667435 PMCID: PMC2661415 DOI: 10.1074/jbc.m804604200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/28/2008] [Indexed: 01/07/2023] Open
Abstract
Whi3 is an RNA-binding protein associated with the endoplasmic reticulum (ER) that binds the CLN3 mRNA and plays a key role in the efficient retention of cyclin Cln3 at the ER. In the present work, we have identified new Whi3-associated mRNAs by a genomic approach. A large and significant number of these Whi3 targets encode for membrane and exocytic proteins involved in processes such as transport and cell wall biogenesis. Consistent with the genomic data, we have observed that cell wall integrity is compromised in Whi3-deficient cells and found strong genetic interactions between WHI3 and the cell integrity pathway. Whi3-associated mRNAs are enriched in clusters of the tetranucleotide GCAU, and mutation of the GCAU clusters in the CLN3 mRNA caused a reduction in its association to Whi3, suggesting that these sequences may act as cis-determinants for binding. Our data suggest that Whi3 is involved in the regulation and/or localization of a large subset of mRNAs functionally related to the ER and, since it is important for different molecular processes such as cytoplasmic retention or exocytic traffic of proteins, we propose that Whi3 is a general modulator of protein fate in budding yeast.
Collapse
Affiliation(s)
- Neus Colomina
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Catalonia, Spain
| | | | | | | | | |
Collapse
|
112
|
Russo A, Cirulli C, Amoresano A, Pucci P, Pietropaolo C, Russo G. cis-acting sequences and trans-acting factors in the localization of mRNA for mitochondrial ribosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:820-9. [PMID: 18790094 DOI: 10.1016/j.bbagrm.2008.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/30/2008] [Accepted: 08/15/2008] [Indexed: 12/25/2022]
Abstract
mRNA localization is a conserved post-transcriptional process crucial for a variety of systems. Although several mechanisms have been identified, emerging evidence suggests that most transcripts reach the protein functional site by moving along cytoskeleton elements. We demonstrated previously that mRNA for mitochondrial ribosomal proteins are asymmetrically distributed in the cytoplasm, and that localization in the proximity of mitochondria is mediated by the 3'-UTR. Here we show by biochemical analysis that these mRNA transcripts are associated with the cytoskeleton through the microtubule network. Cytoskeleton association is functional for their intracellular localization near the mitochondrion, and the 3'-UTR is involved in this cytoskeleton-dependent localization. To identify the minimal elements required for localization, we generated DNA constructs containing, downstream from the GFP gene, deletion mutants of mitochondrial ribosomal protein S12 3'-UTR, and expressed them in HeLa cells. RT-PCR analysis showed that the localization signals responsible for mRNA localization are located in the first 154 nucleotides. RNA pull-down assays, mass spectrometry, and RNP immunoprecipitation assay experiments, demonstrated that mitochondrial ribosomal protein S12 3'-UTR interacts specifically with TRAP1 (tumor necrosis factor receptor-associated protein1), hnRNPM4 (heterogeneous nuclear ribonucleoprotein M4), Hsp70 and Hsp60 (heat shock proteins 70 and 60), and alpha-tubulin in vitro and in vivo.
Collapse
Affiliation(s)
- Annapina Russo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Napoli 80131, Italy
| | | | | | | | | | | |
Collapse
|
113
|
Boylan KLM, Mische S, Li M, Marqués G, Morin X, Chia W, Hays TS. Motility screen identifies Drosophila IGF-II mRNA-binding protein--zipcode-binding protein acting in oogenesis and synaptogenesis. PLoS Genet 2008; 4:e36. [PMID: 18282112 PMCID: PMC2242817 DOI: 10.1371/journal.pgen.0040036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/26/2007] [Indexed: 01/27/2023] Open
Abstract
The localization of specific mRNAs can establish local protein gradients that generate and control the development of cellular asymmetries. While all evidence underscores the importance of the cytoskeleton in the transport and localization of RNAs, we have limited knowledge of how these events are regulated. Using a visual screen for motile proteins in a collection of GFP protein trap lines, we identified the Drosophila IGF-II mRNA-binding protein (Imp), an ortholog of Xenopus Vg1 RNA binding protein and chicken zipcode-binding protein. In Drosophila, Imp is part of a large, RNase-sensitive complex that is enriched in two polarized cell types, the developing oocyte and the neuron. Using time-lapse confocal microscopy, we establish that both dynein and kinesin contribute to the transport of GFP-Imp particles, and that regulation of transport in egg chambers appears to differ from that in neurons. In Drosophila, loss-of-function Imp mutations are zygotic lethal, and mutants die late as pharate adults. Imp has a function in Drosophila oogenesis that is not essential, as well as functions that are essential during embryogenesis and later development. Germline clones of Imp mutations do not block maternal mRNA localization or oocyte development, but overexpression of a specific Imp isoform disrupts dorsal/ventral polarity. We report here that loss-of-function Imp mutations, as well as Imp overexpression, can alter synaptic terminal growth. Our data show that Imp is transported to the neuromuscular junction, where it may modulate the translation of mRNA targets. In oocytes, where Imp function is not essential, we implicate a specific Imp domain in the establishment of dorsoventral polarity.
Collapse
Affiliation(s)
- Kristin L. M Boylan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sarah Mische
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mingang Li
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Guillermo Marqués
- Department of Cell Biology, The University of Alabama at Birmingham, Alabama, United States of America
| | - Xavier Morin
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), CNRS UMR6216 INSERM-Université de la Méditerrannée, Marseilles, France
| | - William Chia
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Thomas S Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
114
|
Mili S, Moissoglu K, Macara IG. Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 2008; 453:115-9. [PMID: 18451862 PMCID: PMC2782773 DOI: 10.1038/nature06888] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
RNA localization is important for the establishment and maintenance of polarity in multiple cell types. Localized RNAs are usually transported along microtubules or actin filaments and become anchored at their destination to some underlying subcellular structure. Retention commonly involves actin or actin-associated proteins, although cytokeratin filaments and dynein anchor certain RNAs. RNA localization is important for diverse processes ranging from cell fate determination to synaptic plasticity; however, so far there have been few comprehensive studies of localized RNAs in mammalian cells. Here we have addressed this issue, focusing on migrating fibroblasts that polarize to form a leading edge and a tail in a process that involves asymmetric distribution of RNAs. We used a fractionation scheme combined with microarrays to identify, on a genome-wide scale, RNAs that localize in protruding pseudopodia of mouse fibroblasts in response to migratory stimuli. We find that a diverse group of RNAs accumulates in such pseudopodial protrusions. Through their 3' untranslated regions these transcripts are anchored in granules concentrated at the plus ends of detyrosinated microtubules. RNAs in the granules associate with the adenomatous polyposis coli (APC) tumour suppressor and the fragile X mental retardation protein (FMRP). APC is required for the accumulation of transcripts in protrusions. Our results suggest a new type of RNA anchoring mechanism as well as a new, unanticipated function for APC in localizing RNAs.
Collapse
Affiliation(s)
- Stavroula Mili
- Department of Microbiology, Center for Cell Signaling, University of Virginia, HSC, Charlottesville, Virginia 22908-0577, USA.
| | | | | |
Collapse
|
115
|
Insulin-like growth factor II mRNA binding protein 1 associates with Gag protein of human immunodeficiency virus type 1, and its overexpression affects virus assembly. J Virol 2008; 82:5683-92. [PMID: 18385235 DOI: 10.1128/jvi.00189-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The assembly of human immunodeficiency virus type 1 (HIV-1) particles is driven by viral Gag protein. This function of Gag not only benefits from its self-multimerization property but also depends on its interaction with a number of cellular factors such as TSG101 and ALIX/AIP1 that promote virus budding and release from cell surfaces. However, interaction with Gag also allows some cellular factors such as APOBEC3G and Trim5alpha to access viral replication machinery and block viral replication. In this study, we report a new HIV-1 Gag-binding factor named insulin-like growth factor II mRNA binding protein 1 (IMP1). Gag-IMP1 interaction requires the second zinc finger of the nucleocapsid (NC) domain of Gag and the KH3 and KH4 domains of IMP1. A fourfold reduction of HIV-1 infectivity was seen with overexpression of the wild-type IMP1 and its mutant that is able to interact with Gag but not with overexpression of IMP1 mutants exhibiting Gag-binding deficiency. The decreased viral infectivity was further shown as a result of diminished viral RNA packaging, abrogated Gag processing on the cellular membranes, and impeded maturation of virus particles. Together, these results demonstrate that IMP1 interacts with HIV-1 Gag protein and is able to block the formation of infectious HIV-1 particles.
Collapse
|
116
|
Smirnov A, Tarassov I, Mager-Heckel AM, Letzelter M, Martin RP, Krasheninnikov IA, Entelis N. Two distinct structural elements of 5S rRNA are needed for its import into human mitochondria. RNA (NEW YORK, N.Y.) 2008; 14:749-59. [PMID: 18314502 PMCID: PMC2271358 DOI: 10.1261/rna.952208] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
RNA import into mitochondria is a widespread phenomenon. Studied in details for yeast, protists, and plants, it still awaits thorough investigation for human cells, in which the nuclear DNA-encoded 5S rRNA is imported. Only the general requirements for this pathway have been described, whereas specific protein factors needed for 5S rRNA delivery into mitochondria and its structural determinants of import remain unknown. In this study, a systematic analysis of the possible role of human 5S rRNA structural elements in import was performed. Our experiments in vitro and in vivo show that two distinct regions of the human 5S rRNA molecule are needed for its mitochondrial targeting. One of them is located in the proximal part of the helix I and contains a conserved uncompensated G:U pair. The second and most important one is associated with the loop E-helix IV region with several noncanonical structural features. Destruction or even destabilization of these sites leads to a significant decrease of the 5S rRNA import efficiency. On the contrary, the beta-domain of the 5S rRNA was proven to be dispensable for import, and thus it can be deleted or substituted without affecting the 5S rRNA importability. This finding was used to demonstrate that the 5S rRNA can function as a vector for delivering heterologous RNA sequences into human mitochondria. 5S rRNA-based vectors containing a substitution of a part of the beta-domain by a foreign RNA sequence were shown to be much more efficiently imported in vivo than the wild-type 5S rRNA.
Collapse
Affiliation(s)
- Alexandre Smirnov
- Department of Molecular and Cellular Genetics, UMR 7156, Centre National de Recherche Scientifique-Université Louis Pasteur,Strasbourg 67084, France
| | | | | | | | | | | | | |
Collapse
|
117
|
Paquin N, Chartrand P. Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol 2008; 18:105-11. [PMID: 18262421 DOI: 10.1016/j.tcb.2007.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Active mRNA transport and localization is an efficient way for cells to regulate the site and time of expression of specific proteins. Recent publications have identified factors involved in the sorting and translational regulation of bud-localized transcripts in Saccharomyces cerevisiae and uncovered interplay between mRNA trafficking, translational regulation and ER inheritance. mRNA localization at the bud tip of yeast cells depends on the She2p-She3p-Myo4p complex. To avoid any ectopic expression, translation of the bud-localized ASH1 mRNA is repressed by the translational repressors Puf6p and Khd1p during its transport. As this complex reaches the bud tip, phosphorylation of Khd1p by the membrane-associated kinase Yck1p activates the local translation of this transcript, thereby defining a fine-tuning mechanism of Ash1p expression.
Collapse
Affiliation(s)
- Nicolas Paquin
- Département de Biochimie, Université de Montréal, Montréal, Québec, H3C 3J7 Canada
| | | |
Collapse
|
118
|
Reining in RNA. Workshop on intracellular RNA localization and localized translation. EMBO Rep 2007; 9:22-6. [PMID: 18084187 DOI: 10.1038/sj.embor.7401140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 11/19/2007] [Indexed: 12/14/2022] Open
|
119
|
Leygue E. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer. NUCLEAR RECEPTOR SIGNALING 2007; 5:e006. [PMID: 17710122 PMCID: PMC1948073 DOI: 10.1621/nrs.05006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/26/2007] [Indexed: 11/20/2022]
Abstract
The steroid receptor RNA activator (SRA) is a unique modulator of steroid receptor transcriptional activity, as it is able to mediate its coregulatory effects as a RNA molecule. Recent findings, however, have painted a more complex picture of the SRA gene (SRA1) products. Indeed, even though SRA was initially thought to be noncoding, several RNA isoforms have now been found to encode an endogenous protein (SRAP), which is well conserved among Chordata. Although the function of SRAP remains largely unknown, it has been proposed that, much like its corresponding RNA, the protein itself might regulate estrogen and androgen receptor signaling pathways. As such, data suggest that both SRA and SRAP might participate in the mechanisms underlying breast, as well as prostate tumorigenesis. This review summarizes the published literature dealing with these two faces of the SRA gene products and underscores the relevance of this bifaceted system to breast cancer development.
Collapse
Affiliation(s)
- Etienne Leygue
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|