101
|
Semegni JY, Wamalwa M, Gaujoux R, Harkins GW, Gray A, Martin DP. NASP: a parallel program for identifying evolutionarily conserved nucleic acid secondary structures from nucleotide sequence alignments. ACTA ACUST UNITED AC 2011; 27:2443-5. [PMID: 21757466 DOI: 10.1093/bioinformatics/btr417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
SUMMARY Many natural nucleic acid sequences have evolutionarily conserved secondary structures with diverse biological functions. A reliable computational tool for identifying such structures would be very useful in guiding experimental analyses of their biological functions. NASP (Nucleic Acid Structure Predictor) is a program that takes into account thermodynamic stability, Boltzmann base pair probabilities, alignment uncertainty, covarying sites and evolutionary conservation to identify biologically relevant secondary structures within multiple sequence alignments. Unique to NASP is the consideration of all this information together with a recursive permutation-based approach to progressively identify and list the most conserved probable secondary structures that are likely to have the greatest biological relevance. By focusing on identifying only evolutionarily conserved structures, NASP forgoes the prediction of complete nucleotide folds but outperforms various other secondary structure prediction methods in its ability to selectively identify actual base pairings. AVAILABILITY Downloable and web-based versions of NASP are freely available at http://web.cbio.uct.ac.za/~yves/nasp_portal.php CONTACT yves@cbio.uct.ac.za SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- J Y Semegni
- Computational Biology Group, Department of Clinical Laboratory Sciences, IIDMM, University of Cape Town, Observatory, Cape Town, South Africa.
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
An estimated 3% of the world's population is chronically infected with hepatitis C virus (HCV). Although HCV was discovered more than 20 y ago, its origin remains obscure largely because no closely related animal virus homolog has been identified; furthermore, efforts to understand HCV pathogenesis have been hampered by the absence of animal models other than chimpanzees for human disease. Here we report the identification in domestic dogs of a nonprimate hepacivirus. Comparative phylogenetic analysis of the canine hepacivirus (CHV) confirmed it to be the most genetically similar animal virus homolog of HCV. Bayesian Markov chains Monte Carlo and associated time to most recent common ancestor analyses suggest a mean recent divergence time of CHV and HCV clades within the past 500-1,000 y, well after the domestication of canines. The discovery of CHV may provide new insights into the origin and evolution of HCV and a tractable model system with which to probe the pathogenesis, prevention, and treatment of diseases caused by hepacivirus infection.
Collapse
|
103
|
Li H, Hughes AL, Bano N, McArdle S, Livingston S, Deubner H, McMahon BJ, Townshend-Bulson L, McMahan R, Rosen HR, Gretch DR. Genetic diversity of near genome-wide hepatitis C virus sequences during chronic infection: evidence for protein structural conservation over time. PLoS One 2011; 6:e19562. [PMID: 21573177 PMCID: PMC3088699 DOI: 10.1371/journal.pone.0019562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/09/2011] [Indexed: 01/06/2023] Open
Abstract
Infection with hepatitis C virus (HCV) is one of the leading causes of chronic hepatitis, liver cirrhosis and end-stage liver disease worldwide. The genetics of HCV infection in humans and the disease course of chronic hepatitis C are both remarkably variable. Although the response to interferon treatment is largely dependent on HCV genotypes, whether or not a relationship exists between HCV genome variability and clinical course of hepatitis C disease still remains unknown. To more thoroughly understand HCV genome evolution over time in association with disease course, near genome-wide HCV genomes present in 9 chronically infected participants over 83 total study years were sequenced. Overall, within HCV genomes, the number of synonymous substitutions per synonymous site (d(S)) significantly exceeded the number of non-synonymous substitutions per site (d(N)). Although both d(S) and d(N) significantly increased with duration of chronic infection, there was a highly significant decrease in d(N)/d(S) ratio in HCV genomes over time. These results indicate that purifying selection acted to conserve viral protein structure despite persistence of high level of nucleotide mutagenesis inherent to HCV replication. Based on liver biopsy fibrosis scores, HCV genomes from participants with advanced fibrosis had significantly greater d(S) values and lower d(N)/d(S) ratios compared to participants with mild liver disease. Over time, viral genomes from participants with mild disease had significantly greater annual changes in d(N), along with higher d(N)/d(S) ratios, compared to participants with advanced fibrosis. Yearly amino acid variations in the HCV p7, NS2, NS3 and NS5B genes were all significantly lower in participants with severe versus mild disease, suggesting possible pathogenic importance of protein structural conservation for these viral gene products.
Collapse
Affiliation(s)
- Hui Li
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Nazneen Bano
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Susan McArdle
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Stephen Livingston
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium, Anchorage, Alaska, United States of America
| | - Heike Deubner
- Department of Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Brian J. McMahon
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium, Anchorage, Alaska, United States of America
| | - Lisa Townshend-Bulson
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium, Anchorage, Alaska, United States of America
| | - Rachel McMahan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Hugo R. Rosen
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - David R. Gretch
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| |
Collapse
|
104
|
RNA structural domains in noncoding regions of the foot-and-mouth disease virus genome trigger innate immunity in porcine cells and mice. J Virol 2011; 85:6492-501. [PMID: 21525336 DOI: 10.1128/jvi.00599-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The induction of type I interferons (alpha/beta interferon [IFN-α/β]) in response to viral infection is a crucial step leading to the antiviral state in the host. Viruses produce double-stranded RNA (dsDNA) during their replication cycle that is sensed as nonself by host cells through different receptors. A signaling cascade then is activated to block viral replication and spread. Foot-and-mouth disease virus (FMDV) is a picornavirus that is highly sensitive to IFN, and it causes one of the world's most important animal diseases. In this study, we showed the ability of structural domains predicted to enclose stable dsRNA regions in the 5'- and 3'-noncoding regions (NCRs) of the FMDV genome to trigger an IFN-α/β response in porcine kidney cultured cells and newborn mice. These RNAs, generated by in vitro transcription, were able to stimulate IFN-β transcription and induce an antiviral state in SK-6 cells. The induction levels elicited by the different NCR RNAs were compared. Among them, the 3'NCR was identified as a potent IFN activator, and the features in this region involved in signaling have been analyzed. To address whether the FMDV NCR transcripts were able to trigger the innate immune response in vivo, Swiss suckling mice were inoculated intraperitoneally with the RNAs. All transcripts induced the innate response in transfected animals, measured as IFN-α/β protein levels, antiviral activity in sera, and reduced susceptibility to FMDV infection. Our work provides new insight into innate responses against FMDV and identifies these small noninfectious RNA molecules as potential adjuvants for vaccine improvement and antiviral strategies against picornaviruses.
Collapse
|
105
|
Churkin A, Cohen M, Shemer-Avni Y, Barash D. Bioinformatic analysis of the neutrality of RNA secondary structure elements across genotypes reveals evidence for direct evolution of genetic robustness in HCV. J Bioinform Comput Biol 2011; 8:1013-26. [PMID: 21121024 DOI: 10.1142/s0219720010005087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 01/11/2023]
Abstract
The properties and origin of genetic robustness have recently been investigated in several works that examined microRNA stem-loop structures, and a variety of conclusions have been reached without agreement. Considering that this is a universal phenomenon that is not restricted to miRNAs, we recall the original work on this topic that began from looking at viral RNAs of several types. We provide a link to this work by examining the neutrality of HCV structural elements, performing a detailed bioinformatic analysis using RNA secondary structure predictions across genotypes. This study provides supporting evidence for direct evolution of genetic robustness that is not limited to noncoding RNAs participating in gene regulation, but includes functionally important structural elements of the hepatitis C virus (HCV) that show excess of robustness beyond the intrinsic robustness of their stem-loop structure. These findings further support the adaptive behavior of genetic robustness in functional RNAs of various types that seem to have evolved with selection pressure towards increased robustness.
Collapse
Affiliation(s)
- Alexander Churkin
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
106
|
Sola I, Mateos-Gomez PA, Almazan F, Zuñiga S, Enjuanes L. RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biol 2011; 8:237-48. [PMID: 21378501 PMCID: PMC3230552 DOI: 10.4161/rna.8.2.14991] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 02/07/2023] Open
Abstract
Coronavirus (CoV) RNA synthesis includes the replication of the viral genome, and the transcription of sgRNAs by a discontinuous mechanism. Both processes are regulated by RNA sequences such as the 5' and 3' untranslated regions (UTRs), and the transcription regulating sequences (TRSs) of the leader (TRS-L) and those preceding each gene (TRS-Bs). These distant RNA regulatory sequences interact with each other directly and probably through protein-RNA and protein-protein interactions involving viral and cellular proteins. By analogy to other plus-stranded RNA viruses, such as polioviruses, in which translation and replication switch involves a cellular factor (PCBP) and a viral protein (3CD) it is conceivable that in CoVs the switch between replication and transcription is also associated with the binding of proteins that are specifically recruited by the replication or transcription complexes. Complexes between RNA motifs such as TRS-L and the TRS-Bs located along the CoV genome are probably formed previously to the transcription start, and most likely promote template-switch of the nascent minus RNA to the TRS-L region. Many cellular proteins interacting with regulatory CoV RNA sequences are members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA-binding proteins, involved in mRNA processing and transport, which shuttle between the nucleus and the cytoplasm. In the context of CoV RNA synthesis, these cellular ribonucleoproteins might also participate in RNA-protein complexes to bring into physical proximity TRS-L and distant TRS-B, as proposed for CoV discontinuous transcription. In this review, we summarize RNA-RNA and RNA-protein interactions that represent modest examples of complex quaternary RNA-protein structures required for the fine-tuning of virus replication. Design of chemically defined replication and transcription systems will help to clarify the nature and activity of these structures.
Collapse
Affiliation(s)
- Isabel Sola
- Department of Molecular and Cell Biology, CNB, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
107
|
Siu RWC, Fragkoudis R, Simmonds P, Donald CL, Chase-Topping ME, Barry G, Attarzadeh-Yazdi G, Rodriguez-Andres J, Nash AA, Merits A, Fazakerley JK, Kohl A. Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs. J Virol 2011; 85:2907-17. [PMID: 21191029 PMCID: PMC3067965 DOI: 10.1128/jvi.02052-10] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/20/2010] [Indexed: 11/20/2022] Open
Abstract
RNA interference (RNAi) is an important mosquito defense mechanism against arbovirus infection. In this paper we study the processes underlying antiviral RNAi in Aedes albopictus-derived U4.4 mosquito cells infected with Semliki Forest virus (SFV) (Togaviridae; Alphavirus). The production of virus-derived small interfering RNAs (viRNAs) from viral double-stranded RNA (dsRNA) is a key event in this host response. dsRNA could be formed by RNA replication intermediates, by secondary structures in RNA genomes or antigenomes, or by both. Which of these dsRNAs is the substrate for the generation of viRNAs is a fundamental question. Here we used deep sequencing of viRNAs and bioinformatic analysis of RNA secondary structures to gain insights into the characteristics and origins of viRNAs. An asymmetric distribution of SFV-derived viRNAs with notable areas of high-level viRNA production (hot spots) and no or a low frequency of viRNA production (cold spots) along the length of the viral genome with a slight bias toward the production of genome-derived viRNAs over antigenome-derived viRNAs was observed. Bioinformatic analysis suggests that hot spots of viRNA production are rarely but not generally associated with putative secondary structures in the SFV genome, suggesting that most viRNAs are derived from replicative dsRNA. A pattern of viRNAs almost identical to those of A. albopictus cells was observed for Aedes aegypti-derived Aag2 cells, suggesting common mechanisms that lead to viRNA production. Hot-spot viRNAs were found to be significantly less efficient at mediating antiviral RNAi than cold-spot viRNAs, pointing toward a nucleic acid-based viral decoy mechanism to evade the RNAi response.
Collapse
Affiliation(s)
- Ricky W. C. Siu
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Rennos Fragkoudis
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Peter Simmonds
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Claire L. Donald
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Margo E. Chase-Topping
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Gerald Barry
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ghassem Attarzadeh-Yazdi
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Julio Rodriguez-Andres
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Anthony A. Nash
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Andres Merits
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - John K. Fazakerley
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Alain Kohl
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
108
|
Nasheri N, Singaravelu R, Goodmurphy M, Lyn RK, Pezacki JP. Competing roles of microRNA-122 recognition elements in hepatitis C virus RNA. Virology 2010; 410:336-44. [PMID: 21185047 DOI: 10.1016/j.virol.2010.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/20/2010] [Accepted: 11/16/2010] [Indexed: 12/12/2022]
Abstract
MicroRNA-122 positively modulates hepatitis C virus (HCV) through direct interactions with viral RNA. Three microRNA-122 recognition elements (MREs) have been previously identified: two in the 5'UTR and one in the 3'UTR. Herein, we report the relative affinity of microRNA-122 to these sites using viral RNA-coated magnetic beads, with mutagenesis and probes to disrupt interactions of microRNA-122 at specific sites. We demonstrate cooperativity in binding between the closely spaced MREs within the 5'UTR in vitro. We also identified a well conserved fourth site in the coding region and showed that it is the highest affinity MRE site. Site-directed mutagenesis of the MREs in HCV subgenomic replicons expressed in Huh-7.5 cells demonstrated competing roles of the stimulatory MREs in the 5'UTR with the inhibitory role of an MRE in the open reading frame (ORF). These data have important implications in elucidating the mechanism of interaction between microRNA-122 and HCV RNA.
Collapse
Affiliation(s)
- Neda Nasheri
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Canada K1A 0R6
| | | | | | | | | |
Collapse
|
109
|
Sanjuán R, Bordería AV. Interplay between RNA structure and protein evolution in HIV-1. Mol Biol Evol 2010; 28:1333-8. [PMID: 21135148 DOI: 10.1093/molbev/msq329] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The genomes of many RNA viruses contain abundant secondary structures that have been shown to be important for understanding the evolution of noncoding regions and synonymous sites. However, the consequences for protein evolution are less well understood. Recently, the secondary structure of the HIV-1 RNA genome has been experimentally determined. Using this information, here we show that RNA structure and proteins do not evolve independently. A negative correlation exists between the extent of base pairing in the genomic RNA and amino acid variability. Relaxed RNA structures may favor the accumulation of genetic variation in proteins and, conversely, sequence changes driven by positive selection at the protein level may disrupt existing RNA structures. We also find that breakage of RNA base pairs might impose a fitness cost to drug resistance mutations in the protease and reverse transcriptase genes, thereby limiting their spread among untreated patients. Characterizing the evolutionary trade-offs between the selective pressures acting at the RNA and protein levels will help us to better understand the variability and evolution of HIV-1.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departamento de Genética, Universitat de València, Spain.
| | | |
Collapse
|
110
|
Gultyaev AP, Fouchier RAM, Olsthoorn RCL. Influenza virus RNA structure: unique and common features. Int Rev Immunol 2010; 29:533-56. [PMID: 20923332 DOI: 10.3109/08830185.2010.507828] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The influenza A virus genome consists of eight negative-sense RNA segments. Here we review the currently available data on structure-function relationships in influenza virus RNAs. Various ideas and hypotheses about the roles of influenza virus RNA folding in the virus replication are also discussed in relation to other viruses.
Collapse
|
111
|
Zhang X, Fan X, Xu Y, Di Bisceglie AM. Enhanced protocol for determining the 3' terminus of hepatitis C virus. J Virol Methods 2010; 167:158-64. [PMID: 20381536 PMCID: PMC2916046 DOI: 10.1016/j.jviromet.2010.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/27/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
Abstract
The determination of viral 3' ends is a routine practice in molecular biology. However, this has been a challenging task for hepatitis C virus (HCV), an enveloped single-stranded, positive-sense RNA virus classified into the Flaviviridae family. The extreme end of HCV 3' untranslated region (3'UTR), the so-called 3' X tail, was not identified at the time of HCV discovery. Complete HCV 3'UTR sequences occupy a very small percentage of the exponentially growing HCV sequence databases. Although commercial kits and experimental protocols are available, these methods are both tedious and not reproducible. A stepwise optimization procedure was developed as a simple and robust protocol for determining the complete HCV 3'UTR from clinical samples. The availability of abundant authentic sequence information for the complete HCV 3'UTR will allow full investigation of its biological role in the life cycle of HCV.
Collapse
Affiliation(s)
- Xiaoan Zhang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104, U.S.A
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaofeng Fan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104, U.S.A
- Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri 63104, U.S.A
| | - Yanjuan Xu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104, U.S.A
| | - Adrian M. Di Bisceglie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104, U.S.A
- Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri 63104, U.S.A
| |
Collapse
|
112
|
Abstract
A long reverse transcription polymerase chain reaction (LRP) protocol is described for the amplification of large RNA sequences. The amplification of near full-length hepatitis C virus (HCV) genome from serum samples is used as an example to detail each step in LRP procedure, including primer design, RNA extraction, reverse transcription, and PCR. The protocol for efficient cloning of such large amplicons is also presented. Since HCV represents a difficult template in terms of its near full-length amplification due to extensive secondary structures and low titers in clinical samples, methods described in this chapter should be applicable for other RNA viruses and cellular RNA templates.
Collapse
Affiliation(s)
- Xiaofeng Fan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
113
|
Sagan SM, Nasheri N, Luebbert C, Pezacki JP. The Efficacy of siRNAs against Hepatitis C Virus Is Strongly Influenced by Structure and Target Site Accessibility. ACTA ACUST UNITED AC 2010; 17:515-27. [DOI: 10.1016/j.chembiol.2010.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 03/31/2010] [Accepted: 04/12/2010] [Indexed: 02/05/2023]
|
114
|
Genomic features and evolutionary constraints in Saffold-like cardioviruses. J Gen Virol 2010; 91:1418-27. [DOI: 10.1099/vir.0.018887-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
115
|
González-Candelas F, López-Labrador FX. Clinical relevance of genetic heterogeneity in HCV. Future Virol 2010. [DOI: 10.2217/fvl.09.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Infection by HCV affects an estimated 170 million people worldwide and it represents one of the major causes of liver transplantation and a heavy burden to healthcare systems. As with many other RNA viruses, HCV is characterized by very high levels of genetic variation, which have been associated to differences in disease progression and efficiency of antiviral treatment. Studies show many contradictory results and little consensus on such associations. Nevertheless, some general guidelines translating research results to clinical practice have been postulated. Here, we review the main research results obtained on HCV variation so far and explore the reasons for their lack of congruence under a population genetics framework. Understanding the factors responsible for the variable dynamics of HCV diversity in human populations and variation within infected individuals is even more necessary in face of the soon-to-arrive new HCV therapies.
Collapse
Affiliation(s)
- Fernando González-Candelas
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Oficial 22085, 46071-Valencia, Spain
| | - F Xavier López-Labrador
- Genomics and Health Area, CSISP – Centre for Public Health Research, Public Health Department, Generalitat Valenciana, Av. Catalunya, 21, 46020 Valencia, Spain
| |
Collapse
|
116
|
Holmes EC. The Evolutionary Genetics of Emerging Viruses. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.110308.120248] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edward C. Holmes
- Center for Infectious Disease Dynamics, Department of Biology, Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802; and Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
117
|
Ilyinskii PO, Schmidt T, Lukashev D, Meriin AB, Thoidis G, Frishman D, Shneider AM. Importance of mRNA secondary structural elements for the expression of influenza virus genes. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:421-30. [PMID: 19594376 DOI: 10.1089/omi.2009.0036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development of novel vaccines and therapeutics often requires efficient expression of recombinant viral proteins. Here we show that mutations in essential functional regions of conserved influenza proteins NP and NS1, lead to reduced expression of these genes in vitro. According to in silico analysis, these mRNA regions possess distinct secondary structures sensitive to mutations. We identified a novel structural feature within a region in NS1 mRNA that encodes amino acids essential for NS1 function. Mutations altering this mRNA element lead to significantly reduced protein expression. Conversely, expression was not affected by mutations resulting in amino acid substitutions, when they were designed to preserve this secondary RNA structural element. Furthermore, altering this structure significantly reduced RNA transcription without affecting mRNA stability. Therefore, distinct internal secondary structures of viral mRNA may be important for viral gene expression. If such elements encode amino acids essential for the protein function, then early selection against mutations in this region will be beneficial for the virus. This might point at yet another mechanism of viral evolution, especially for RNA viruses. Finally, introducing mutations into viral genes while preserving their secondary RNA structure, suggests a new method for the generation of efficiently expressed recombinants of viral proteins.
Collapse
|
118
|
Natural insertions within the N-terminal region of the coat protein of Maize dwarf mosaic potyvirus (MDMV) have an effect on the RNA stability. Virus Genes 2009; 40:135-9. [PMID: 19937270 DOI: 10.1007/s11262-009-0425-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
A 13 amino acid residue insertion was found in the N-terminal region of the coat protein of several Maize dwarf mosaic virus isolates (MDMV). These insertions seem to be the result of a direct duplication event, but differ in some positions. In order to evaluate the influence of the insertion on the RNA secondary structure and stability, the RNA secondary structures and minimum free energies (MFE) of all existing MDMV coat protein sequences were estimated using three different softwares, the Vienna RNA Package, NUPACK, and UNAFold, and compared to the secondary structure and MFE of various random sequence collections preserving the nucleotide distribution of MDMV. The bioinformatic analysis showed that the insertion stabilizes the RNA structure of the coat protein gene.
Collapse
|
119
|
Burns CC, Campagnoli R, Shaw J, Vincent A, Jorba J, Kew O. Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J Virol 2009; 83:9957-69. [PMID: 19605476 PMCID: PMC2747992 DOI: 10.1128/jvi.00508-09] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/09/2009] [Indexed: 01/16/2023] Open
Abstract
Replicative fitness of poliovirus can be modulated systematically by replacement of preferred capsid region codons with synonymous unpreferred codons. To determine the key genetic contributors to fitness reduction, we introduced different sets of synonymous codons into the capsid coding region of an infectious clone derived from the type 2 prototype strain MEF-1. Replicative fitness in HeLa cells, measured by plaque areas and virus yields in single-step growth experiments, decreased sharply with increased frequencies of the dinucleotides CpG (suppressed in higher eukaryotes and most RNA viruses) and UpA (suppressed nearly universally). Replacement of MEF-1 capsid codons with the corresponding codons from another type 2 prototype strain (Lansing), a randomization of MEF-1 synonymous codons, increased the %G+C without increasing CpG, and reductions in the effective number of codons used had much smaller individual effects on fitness. Poliovirus fitness was reduced to the threshold of viability when CpG and UpA dinucleotides were saturated within and across synonymous codons of a capsid region interval representing only approximately 9% of the total genome. Codon replacements were associated with moderate decreases in total virion production but large decreases in the specific infectivities of intact poliovirions and viral RNAs. Replication of codon replacement viruses, but not MEF-1, was temperature sensitive at 39.5 degrees C. Synthesis and processing of viral intracellular proteins were largely unaltered in most codon replacement constructs. Replacement of natural codons with synonymous codons with increased frequencies of CpG and UpA dinucleotides may offer a general approach to the development of attenuated vaccines with well-defined antigenicities and very high genetic stabilities.
Collapse
Affiliation(s)
- Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | |
Collapse
|
120
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
121
|
Victoria M, Colina R, Miagostovich MP, Leite JP, Cristina J. Phylogenetic prediction of cis-acting elements: a cre-like sequence in Norovirus genome? BMC Res Notes 2009; 2:176. [PMID: 19735574 PMCID: PMC2749865 DOI: 10.1186/1756-0500-2-176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/07/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Discrete RNA structures such as cis-acting replication elements (cre) in the coding region of RNA virus genomes create characteristic suppression of synonymous site variability (SSSV). Different phylogenetic methods have been developed to predict secondary structures in RNA viruses, for high-resolution thermodynamic scanning and for detecting SSSV. These approaches have been successfully in predicting cis-acting signals in different members of the family Picornaviridae and Caliciviridae. In order to gain insight into the identification of cis-acting signals in viruses whose mechanisms of replication are currently unknown, we performed a phylogenetic analysis of complete genome sequences from 49 Human Norovirus (NoV) strains. FINDINGS The complete coding sequences of NoV ORF1 were obtained from the DDBJ database and aligned. Shannon entropy calculations and RNAalifold consensus RNA structure prediction identified a discrete, conserved, invariant sequence region with a characteristic AAACG cre motif at positions 240 through 291 of the RNA dependant RNA polymerase (RdRp) sequence (relative to strain [EMBL:EU794713]). This sequence region has a high probability to conform a stem-loop. CONCLUSION A new predicted stem-loop has been identified near the 5' end of the RdRp of Human NoV genome. This is the same location recently reported for Hepatovirus cre stem-loop.
Collapse
Affiliation(s)
- Matías Victoria
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-360 Rio deJaneiro, RJ, Brasil.
| | | | | | | | | |
Collapse
|
122
|
Santangelo PJ. Molecular beacons and related probes for intracellular RNA imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 2:11-9. [DOI: 10.1002/wnan.52] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
123
|
Pang PS, Planet PJ, Glenn JS. The evolution of the major hepatitis C genotypes correlates with clinical response to interferon therapy. PLoS One 2009; 4:e6579. [PMID: 19668364 PMCID: PMC2719056 DOI: 10.1371/journal.pone.0006579] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/09/2009] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Patients chronically infected with hepatitis C virus (HCV) require significantly different durations of therapy and achieve substantially different sustained virologic response rates to interferon-based therapies, depending on the HCV genotype with which they are infected. There currently exists no systematic framework that explains these genotype-specific response rates. Since humans are the only known natural hosts for HCV-a virus that is at least hundreds of years old-one possibility is that over the time frame of this relationship, HCV accumulated adaptive mutations that confer increasing resistance to the human immune system. Given that interferon therapy functions by triggering an immune response, we hypothesized that clinical response rates are a reflection of viral evolutionary adaptations to the immune system. METHODS AND FINDINGS We have performed the first phylogenetic analysis to include all available full-length HCV genomic sequences (n = 345). This resulted in a new cladogram of HCV. This tree establishes for the first time the relative evolutionary ages of the major HCV genotypes. The outcome data from prospective clinical trials that studied interferon and ribavirin therapy was then mapped onto this new tree. This mapping revealed a correlation between genotype-specific responses to therapy and respective genotype age. This correlation allows us to predict that genotypes 5 and 6, for which there currently are no published prospective trials, will likely have intermediate response rates, similar to genotype 3. Ancestral protein sequence reconstruction was also performed, which identified the HCV proteins E2 and NS5A as potential determinants of genotype-specific clinical outcome. Biochemical studies have independently identified these same two proteins as having genotype-specific abilities to inhibit the innate immune factor double-stranded RNA-dependent protein kinase (PKR). CONCLUSION An evolutionary analysis of all available HCV genomes supports the hypothesis that immune selection was a significant driving force in the divergence of the major HCV genotypes and that viral factors that acquired the ability to inhibit the immune response may play a role in determining genotype-specific response rates to interferon therapy.
Collapse
Affiliation(s)
- Phillip S. Pang
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine and Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Paul J. Planet
- Department of Pediatrics, Division of Infectious Diseases, Columbia Presbyterian Medical Center and, Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Jeffrey S. Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine and the Palo Alto Veterans Administration Medical Center, Palo Alto, California, United States of America
| |
Collapse
|
124
|
Somvanshi P, Seth PK. Predicted RNA secondary structures for the conserved regions in dengue virus. Bioinformation 2009; 3:435-9. [PMID: 19759866 PMCID: PMC2737491 DOI: 10.6026/97320630003435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/03/2009] [Accepted: 04/16/2009] [Indexed: 11/25/2022] Open
Abstract
Dengue fever, dengue hemorrhagic fever and dengue shock syndrome are the prevalent mosquito borne viral infections
worldwide. The dengue virus belongs to the genus flavivirus with conserved RNA domains peptidase_S7 and dexHc among its
members. The secondary structures for RNA domains peptidase_S7 and DexHc are hence predicted and discussed with other
known viral RNA structures to glean structural insights through comparison.
Collapse
Affiliation(s)
- Pallavi Somvanshi
- Bioinformatics Centre, Biotech Park, Sector G, Jankipuram, Lucknow 226021, Uttar Pradesh, India.
| | | |
Collapse
|
125
|
Wu B, Pogany J, Na H, Nicholson BL, Nagy PD, White KA. A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes. PLoS Pathog 2009; 5:e1000323. [PMID: 19266082 PMCID: PMC2648310 DOI: 10.1371/journal.ppat.1000323] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/03/2009] [Indexed: 01/01/2023] Open
Abstract
Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA–RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA–RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA–based interaction spanning ∼3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes. Plus-strand (i.e. messenger-sensed) RNA viruses are responsible for significant diseases in plants and animals. The single-stranded RNA genomes of these viruses serve as templates for translation of viral proteins and perform other essential functions that generally involve local RNA structures, such as RNA hairpins. Interestingly, plant tombusviruses utilize a number of long-range intra-genomic RNA–RNA interactions to regulate important events during infection of their hosts, i.e. viral translation and transcription. Here, we report that an additional essential tombusvirus process, viral RNA replication, also requires a long-range RNA–RNA interaction. Our analyses indicate a role for this RNA–based interaction in the assembly of the viral replicase, which is responsible for executing viral RNA synthesis. This information was used to generate a comprehensive higher-order RNA structural model for functional long-range interactions in the genome of this eukaryotic RNA virus. The model highlights a critical role for global RNA structure in multiple viral processes that are necessary for successful infection of hosts.
Collapse
Affiliation(s)
- Baodong Wu
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
126
|
Kapoor A, Slikas E, Simmonds P, Chieochansin T, Naeem A, Shaukat S, Alam MM, Sharif S, Angez M, Zaidi S, Delwart E. A newly identified bocavirus species in human stool. J Infect Dis 2009; 199:196-200. [PMID: 19072716 PMCID: PMC2678954 DOI: 10.1086/595831] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Viral metagenomic analysis was used to identify a previously uncharacterized parvovirus species, "HBoV2," whose closest phylogenetic relative is the human bocavirus (HBoV). HBoV2 has a genomic organization identical to that of HBoV but has only 78%, 67%, and 80% identity, respectively, with the latter's NS1, NP1, and VP1/VP2 proteins. The study used polymerase chain reaction to detect HBoV2 sequences in 5 of 98 stool samples from Pakistani children and in 3 of 699 stool samples from Edinburgh. Nearly-full-length genome sequencing revealed the presence of 3 HBoV2 genotypes and evidence of recombination between genotypes. Further studies are necessary to identify anatomical sites of HBoV2 replication and potential associations with clinical symptoms or disease.
Collapse
Affiliation(s)
- Amit Kapoor
- Blood Systems Research Institute, San Francisco CA 94118
- Dept. of Laboratory Medicine, University of California, San Francisco
| | - Elizabeth Slikas
- Blood Systems Research Institute, San Francisco CA 94118
- Dept. of Laboratory Medicine, University of California, San Francisco
| | - Peter Simmonds
- Centre for Infectious Diseases, University of Edinburgh, UK
| | | | - Asif Naeem
- National Institute of Health, Pakistan, Department of Virology
| | - Shahzad Shaukat
- National Institute of Health, Pakistan, Department of Virology
| | | | - Salmaan Sharif
- National Institute of Health, Pakistan, Department of Virology
| | - Mehar Angez
- National Institute of Health, Pakistan, Department of Virology
| | - Sohail Zaidi
- National Institute of Health, Pakistan, Department of Virology
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco CA 94118
- Dept. of Laboratory Medicine, University of California, San Francisco
| |
Collapse
|
127
|
Caugant DA. Full sequencing of viral genomes: practical strategies used for the amplification and characterization of foot-and-mouth disease virus. Methods Mol Biol 2009; 551:217-230. [PMID: 19521878 PMCID: PMC7122775 DOI: 10.1007/978-1-60327-999-4_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nucleic acid sequencing is now commonplace in most research and diagnostic virology laboratories. The data generated can be used to compare novel strains with other viruses and allow the genetic basis of important phenotypic characteristics, such as antigenic determinants, to be elucidated. Furthermore, virus sequence data can also be used to address more fundamental questions relating to the evolution of viruses. Recent advances in laboratory methodologies allow rapid sequencing of virus genomes. For the first time, this opens up the potential for using genome sequencing to reconstruct virus transmission trees with extremely high resolution and to quickly reveal and identify the origin of unresolved transmission events within discrete infection clusters. Using foot-and-mouth disease virus as an example, this chapter describes strategies that can be successfully used to amplify and sequence the full genomes of RNA viruses. Practical considerations for protocol design and optimization are discussed, with particular emphasis on the software programs used to assemble large contigs and analyze the sequence data for high-resolution epidemiology.
Collapse
|
128
|
Abstract
The following article from Reviews in Medical Virology, Genetic diversity in hepatitis C virus (HCV) a brief review, by M Irshad, published online on December 16 2008 in Wiley InterScience (www.interscience.wiley.com) has been retracted by agreement between the author, the journal Editor in Chief, P.D. Griffiths, and the publisher Wiley Blackwell. The retraction has been agreed due to overlap with the following article by P Simmonds, Genetic diversity and evolution of hepatitis C virus fifteen years on, published in Journal of General Virology, 2004, 85, 3173-3178.
Collapse
Affiliation(s)
- Mohammad Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
129
|
Wang Q, Barr I, Guo F, Lee C. Evidence of a novel RNA secondary structure in the coding region of HIV-1 pol gene. RNA (NEW YORK, N.Y.) 2008; 14:2478-88. [PMID: 18974280 PMCID: PMC2590956 DOI: 10.1261/rna.1252608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 09/24/2008] [Indexed: 05/20/2023]
Abstract
RNA secondary structures play several important roles in the human immunodeficiency virus (HIV) life cycle. To assess whether RNA secondary structure might affect the function of the HIV protease and reverse transcriptase genes, which are the main targets of anti-HIV drugs, we applied a series of different computational approaches to detect RNA secondary structures, including thermodynamic RNA folding predictions, synonymous variability analysis, and covariance analysis. Each method independently revealed strong evidence of a novel RNA secondary structure at the junction of the protease and reverse transcriptase genes, consisting of a 107-nucleotide region containing three stems, A, B, and C. First, RNA folding calculations by mfold and RNAfold both predicted the secondary structure with high confidence. Moreover, the same structure was predicted in a diverse set of reference sequences in HIV-1 group M, indicating that it is conserved across this group. Second, the predicted base-pairing regions displayed markedly reduced synonymous variation (approximately threefold lower than average) in a data set of 20,000 HIV-1 subtype B sequences from clinical samples. Third, independent analysis of covariation between synonymous mutations in this data set identified 10 covariant mutation pairs forming two diagonals that corresponded exactly to the sites predicted to base-pair in stems A and B. Finally, this structure was validated experimentally using selective 2'-hydroxyl acylation and primer extension (SHAPE). Discovery of this novel secondary structure suggests many directions for further functional investigation.
Collapse
Affiliation(s)
- Qi Wang
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
130
|
Davis M, Sagan SM, Pezacki JP, Evans DJ, Simmonds P. Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J Virol 2008; 82:11824-36. [PMID: 18799591 PMCID: PMC2583674 DOI: 10.1128/jvi.01078-08] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 09/10/2008] [Indexed: 12/24/2022] Open
Abstract
By the analysis of thermodynamic RNA secondary structure predictions, we previously obtained evidence for evolutionarily conserved large-scale ordering of RNA virus genomes (P. Simmonds, A. Tuplin, and D. J. Evans, RNA 10:1337-1351, 2004). Genome-scale ordered RNA structure (GORS) was widely distributed in many animal and plant viruses, much greater in extent than RNA structures required for viral translation or replication, but in mammalian viruses was associated with host persistence. To substantiate the existence of large-scale RNA structure differences between viruses, a large set of alignments of mammalian RNA viruses and rRNA sequences as controls were examined by thermodynamic methods (to calculate minimum free energy differences) and by algorithmically independent RNAz and Pfold methods. These methods produced generally concordant results and identified substantial differences in the degrees of evolutionarily conserved, sequence order-dependent RNA secondary structure between virus genera and groups. A probe hybridization accessibility assay was used to investigate the physical nature of GORS. Transcripts of hepatitis C virus (HCV), hepatitis G virus/GB virus-C (HGV/GBV-C), and murine norovirus, which are predicted to be structured, were largely inaccessible to hybridization in solution, in contrast to the almost universal binding of probes to a range of unstructured virus transcripts irrespective of G+C content. Using atomic force microscopy, HCV and HGV/GBV-C RNA was visualized as tightly compacted prolate spheroids, while under the same experimental conditions the predicted unstructured poliovirus and rubella virus RNA were pleomorphic and had extensively single-stranded RNA on deposition. Bioinformatic and physical characterization methods both identified fundamental differences in the configurations of viral genomic RNA that may modify their interactions with host cell defenses and their ability to persist.
Collapse
Affiliation(s)
- Matthew Davis
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom
| | | | | | | | | |
Collapse
|
131
|
A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc Natl Acad Sci U S A 2008; 105:20482-7. [PMID: 19033469 DOI: 10.1073/pnas.0807979105] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Viral metagenomics focused on particle-protected nucleic acids was used on the stools of South Asian children with nonpolio acute flaccid paralysis (AFP). We identified sequences distantly related to Seneca Valley virus and cardioviruses that were then used as genetic footholds to characterize multiple viral species within a previously unreported genus of the Picornaviridae family. The picornaviruses were detected in the stools of >40% of AFP and healthy Pakistani children. A genetically diverse and highly prevalent enteric viral infection, characteristics similar to the Enterovirus genus, was therefore identified substantially expanding the genetic diversity of the RNA viral flora commonly found in children.
Collapse
|
132
|
Yang Y, Yi M, Evans DJ, Simmonds P, Lemon SM. Identification of a conserved RNA replication element (cre) within the 3Dpol-coding sequence of hepatoviruses. J Virol 2008; 82:10118-28. [PMID: 18684812 PMCID: PMC2566277 DOI: 10.1128/jvi.00787-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022] Open
Abstract
Internally located, cis-acting RNA replication elements (cre) have been identified within the genomes of viruses representing each of the major picornavirus genera (Enterovirus, Rhinovirus, Aphthovirus, and Cardiovirus) except Hepatovirus. Previous efforts to identify a stem-loop structure with cre function in hepatitis A virus (HAV), the type species of this genus, by phylogenetic analyses or thermodynamic predictions have not succeeded. However, a region of markedly suppressed synonymous codon variability was identified in alignments of HAV sequences near the 5' end of the 3D(pol)-coding sequence of HAV, consistent with noncoding constraints imposed by an underlying RNA secondary structure. Subsequent MFOLD predictions identified a 110-nucleotide (nt) complex stem-loop in this region with a typical AAACA/G cre motif in its top loop. A potentially homologous RNA structure was identified in this region of the avian encephalitis virus genome, despite little nucleotide sequence relatedness between it and HAV. Mutations that disrupted secondary RNA structure or the AAACA/G motif, without altering the amino acid sequence of 3D(pol), ablated replication of a subgenomic HAV replicon in transfected human hepatoma cells. Replication competence could be rescued by reinsertion of the native 110-nt stem-loop structure (but not an abbreviated 45-nt stem-loop) upstream of the HAV coding sequence in the replicon. These results suggest that this stem-loop is functionally similar to cre elements of other picornaviruses and likely involved in templating VPg uridylylation as in other picornaviruses, despite its significantly larger size and lower free folding energy.
Collapse
Affiliation(s)
- Yan Yang
- Center for Hepatitis Research, 4.104 Blocker Medical Research Bldg., University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1073, USA
| | | | | | | | | |
Collapse
|
133
|
Role of the hepatitis C virus core+1 open reading frame and core cis-acting RNA elements in viral RNA translation and replication. J Virol 2008; 82:11503-15. [PMID: 18799568 DOI: 10.1128/jvi.01640-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Four conserved RNA stem-loop structures designated SL47, SL87, SL248, and SL443 have been predicted in the hepatitis C virus (HCV) core encoding region. Moreover, alternative translation products have been detected from a reading frame overlapping the core gene (core+1/ARFP/F). To study the importance of the core+1 frame and core-RNA structures for HCV replication in cell culture and in vivo, a panel of core gene silent mutations predicted to abolish core+1 translation and affecting core-RNA stem-loops were introduced into infectious-HCV genomes of the isolate JFH1. A mutation disrupting translation of all known forms of core+1 and affecting SL248 did not alter virus production in Huh7 cells and in mice xenografted with human liver tissue. However, a combination of mutations affecting core+1 at multiple codons and at the same time, SL47, SL87, and SL248, delayed RNA replication kinetics and substantially reduced virus titers. The in vivo infectivity of this mutant was impaired, and in virus genomes recovered from inoculated mice, SL87 was restored by reversion and pseudoreversion. Mutations disrupting the integrity of this stem-loop, as well as that of SL47, were detrimental for virus viability, whereas mutations disrupting SL248 and SL443 had no effect. This phenotype was not due to impaired RNA stability but to reduced RNA translation. Thus, SL47 and SL87 are important RNA elements contributing to HCV genome translation and robust replication in cell culture and in vivo.
Collapse
|
134
|
Diviney S, Tuplin A, Struthers M, Armstrong V, Elliott RM, Simmonds P, Evans DJ. A hepatitis C virus cis-acting replication element forms a long-range RNA-RNA interaction with upstream RNA sequences in NS5B. J Virol 2008; 82:9008-22. [PMID: 18614633 PMCID: PMC2546899 DOI: 10.1128/jvi.02326-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 07/02/2008] [Indexed: 12/13/2022] Open
Abstract
The genome of hepatitis C virus (HCV) contains cis-acting replication elements (CREs) comprised of RNA stem-loop structures located in both the 5' and 3' noncoding regions (5' and 3' NCRs) and in the NS5B coding sequence. Through the application of several algorithmically independent bioinformatic methods to detect phylogenetically conserved, thermodynamically favored RNA secondary structures, we demonstrate a long-range interaction between sequences in the previously described CRE (5BSL3.2, now SL9266) with a previously predicted unpaired sequence located 3' to SL9033, approximately 200 nucleotides upstream. Extensive reverse genetic analysis both supports this prediction and demonstrates a functional requirement in genome replication. By mutagenesis of the Con-1 replicon, we show that disruption of this alternative pairing inhibited replication, a phenotype that could be restored to wild-type levels through the introduction of compensating mutations in the upstream region. Substitution of the CRE with the analogous region of different genotypes of HCV produced replicons with phenotypes consistent with the hypothesis that both local and long-range interactions are critical for a fundamental aspect of genome replication. This report further extends the known interactions of the SL9266 CRE, which has also been shown to form a "kissing loop" interaction with the 3' NCR (P. Friebe, J. Boudet, J. P. Simorre, and R. Bartenschlager, J. Virol. 79:380-392, 2005), and suggests that cooperative long-range binding with both 5' and 3' sequences stabilizes the CRE at the core of a complex pseudoknot. Alternatively, if the long-range interactions were mutually exclusive, the SL9266 CRE may function as a molecular switch controlling a critical aspect of HCV genome replication.
Collapse
Affiliation(s)
- Sinéad Diviney
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
135
|
Nayak MK, Balasubramanian G, Sahoo GC, Bhattacharya R, Vinje J, Kobayashi N, Sarkar MC, Bhattacharya MK, Krishnan T. Detection of a novel intergenogroup recombinant Norovirus from Kolkata, India. Virology 2008; 377:117-23. [PMID: 18555887 DOI: 10.1016/j.virol.2008.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 04/12/2008] [Accepted: 04/19/2008] [Indexed: 10/21/2022]
Abstract
Mutation and recombination are recognized as important driving forces of evolution among RNA viruses. An intergenogroup recombinant norovirus strain [Hu/Kol/NLV/L8775/AB290150/2006/India] was detected in the faecal specimen of a 17 year old male, who had suffered from acute watery diarrhea and severe dehydration. Sequence analysis confirmed that this novel recombinant strain had a polymerase gene fragment that closely resembled a Norovirus (NoV) genogroup-I genotype-3 virus (HuCV/NLV/GI.3/VA98115/AY038598/1998/USA) and a capsid gene resembling NoV genogroup-II genotype-4 virus (NoV/Hu/GII.4/Terneuzen70/EF126964/2006/NL). The crossing over and recombination was observed at nucleotide (nt) 790 of NoV GI VA98115 strain and nt808 of NoV GII Terneuzen70 strain. In both parent strains conserved nucleotide sequence and hairpin structure (DNA secondary structure) were reported at the junction point of ORF1 and ORF2, exhibiting the mechanism of recombination in these viruses. Thus this novel recombinant NoV is another step in evolution among NoVs, indicating that constant surveillance is important to successfully monitor emergence of these strains.
Collapse
Affiliation(s)
- Mukti K Nayak
- Molecular Virology Laboratory, Diarrhoeal Disease Research and Control Centre, Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, 700010, India
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Ratra R, Lal SK. Functional genomics as a tool in virus research. Indian J Microbiol 2008; 48:195-201. [PMID: 23100713 PMCID: PMC3450177 DOI: 10.1007/s12088-008-0032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 05/10/2008] [Indexed: 01/28/2023] Open
Abstract
Genomics is the study of an organism’s entire genome. It started out as a great scientific endeavor in the 1990s which aimed to sequence the complete genomes of certain biological species. However viruses are not new to this field as complete viral genomes have routinely been sequenced since the past thirty years. The ‘genomic era’ has been said to have revolutionized biology. This knowledge of full genomes has created the field of functional genomics in today’s post-genomic era, which, is in most part concerned with the studies on the expression of the organism’s genome under different conditions. This article is an attempt to introduce its readers to the application of functional genomics to address and answer several complex biological issues in virus research.
Collapse
Affiliation(s)
- Ruchi Ratra
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | | |
Collapse
|
137
|
Simmonds P, Karakasiliotis I, Bailey D, Chaudhry Y, Evans DJ, Goodfellow IG. Bioinformatic and functional analysis of RNA secondary structure elements among different genera of human and animal caliciviruses. Nucleic Acids Res 2008; 36:2530-46. [PMID: 18319285 PMCID: PMC2377429 DOI: 10.1093/nar/gkn096] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/02/2008] [Accepted: 02/18/2008] [Indexed: 11/14/2022] Open
Abstract
The mechanism and role of RNA structure elements in the replication and translation of Caliciviridae remains poorly understood. Several algorithmically independent methods were used to predict secondary structures within the Norovirus, Sapovirus, Vesivirus and Lagovirus genera. All showed profound suppression of synonymous site variability (SSSV) at genomic 5' ends and the start of the sub-genomic (sg) transcript, consistent with evolutionary constraints from underlying RNA structure. A newly developed thermodynamic scanning method predicted RNA folding mapping precisely to regions of SSSV and at the genomic 3' end. These regions contained several evolutionarily conserved RNA secondary structures, of variable size and positions. However, all caliciviruses contained 3' terminal hairpins, and stem-loops in the anti-genomic strand invariably six bases upstream of the sg transcript, indicating putative roles as sg promoters. Using the murine norovirus (MNV) reverse-genetics system, disruption of 5' end stem-loops produced approximately 15- to 20-fold infectivity reductions, while disruption of the RNA structure in the sg promoter region and at the 3' end entirely destroyed replication ability. Restoration of infectivity by repair mutations in the sg promoter region confirmed a functional role for the RNA secondary structure, not the sequence. This study provides comprehensive bioinformatic resources for future functional studies of MNV and other caliciviruses.
Collapse
Affiliation(s)
- Peter Simmonds
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, EH9 1QH, UK.
| | | | | | | | | | | |
Collapse
|
138
|
Rapid sequence change and geographical spread of human parvovirus B19: comparison of B19 virus evolution in acute and persistent infections. J Virol 2008; 82:6427-33. [PMID: 18417586 DOI: 10.1128/jvi.00471-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvovirus B19 is a common human pathogen maintained by horizontal transmission between acutely infected individuals. However, B19 virus can also be detected in tissues throughout the life of the host, although little is understood about the nature of such persistence. In the current study, we created large VP1/2 sequence data sets of plasma- and tissue (autopsy)-derived variants of B19 virus with known sample dates to compare the rates of sequence change in exogenous virus populations with those in persistently infected individuals. By using linear regression and likelihood-based methods (such as the BEAST program), we found that plasma-derived B19 virus showed a substitution rate of 4 x 10(-4) and an unconstrained (synonymous)-substitution rate of 18 x 10(-4) per site per year, several times higher than previously estimated and within the range of values for mammalian RNA viruses. The underlying high mutation frequency implied by these substitution rates may enable rapid adaptive changes that are more commonly ascribed to RNA virus populations. These revised estimates predict that the last common ancestor for currently circulating genotype 1 variants of B19 virus existed around 1956 to 1959, fitting well with previous analyses of the B19 virus "bioportfolio" that support a complete cessation of genotype 2 infections and their replacement by genotype 1 infections in the 1960s. In contrast, the evolution of B19 virus amplified from tissue samples was best modeled by using estimated dates of primary infection rather than sample dates, consistent with slow or absent sequence change during persistence. Determining what epidemiological or biological factors led to such a complete and geographically extensive population replacement over this short period is central to further understanding the nature of parvovirus evolution.
Collapse
|
139
|
Washenberger CL, Han JQ, Kechris KJ, Jha BK, Silverman RH, Barton DJ. Hepatitis C virus RNA: dinucleotide frequencies and cleavage by RNase L. Virus Res 2007; 130:85-95. [PMID: 17604869 PMCID: PMC2186174 DOI: 10.1016/j.virusres.2007.05.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 12/25/2022]
Abstract
Ribonuclease L (RNase L) is an antiviral endoribonuclease that cleaves hepatitis C virus (HCV) RNA at single-stranded UA and UU dinucleotides throughout the open reading frame (ORF). To determine whether RNase L exerts evolutionary pressure on HCV we examined the frequencies of UA and UU dinucleotides in 162 RNA sequences from the Los Alamos National Labs HCV Database (http://hcv.lanl.gov). Considering the base composition of the HCV ORFs, both UA and UU dinucleotides were less frequent than predicted in each of 162 HCV RNAs. UA dinucleotides were significantly less frequent than predicted at each of the three codon positions while UU dinucleotides were less frequent than predicted predominantly at the wobble position of codons. UA and UU dinucleotides were among the least abundant dinucleotides in HCV RNA ORFs. Furthermore, HCV genotype 1 RNAs have a lower frequency of UA and UU dinucleotides than genotype 2 and 3 RNAs, perhaps contributing to increased resistance of HCV genotype 1 infections to interferon therapy. In vitro, RNase L cleaved both HCV genotype 1 and 2 RNAs efficiently. Thus, RNase L can cleave HCV RNAs efficiently and variably reduced frequencies of UA and UU dinucleotides in HCV RNA ORFs are consistent with the selective pressure of RNase L.
Collapse
Affiliation(s)
| | - Jian-Qiu Han
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Katherina J. Kechris
- Department of Preventive Medicine and Biometrics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Babal Kant Jha
- Department of Cancer Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Robert H. Silverman
- Department of Cancer Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195
| | - David J. Barton
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- Program in Molecular Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
140
|
3' RNA elements in hepatitis C virus replication: kissing partners and long poly(U). J Virol 2007; 82:184-95. [PMID: 17942554 DOI: 10.1128/jvi.01796-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hepatitis C virus (HCV) genomic RNA possesses conserved structural elements that are essential for its replication. The 3' nontranslated region (NTR) contains several of these elements: a variable region, the poly(U/UC) tract, and a highly conserved 3' X tail, consisting of stem-loop 1 (SL1), SL2, and SL3. Studies of drug-selected, cell culture-adapted subgenomic replicons have indicated that an RNA element within the NS5B coding region, 5BSL3.2, forms a functional kissing-loop tertiary structure with part of the 3' NTR, 3' SL2. Recent advances now allow the efficient propagation of unadapted HCV genomes in the context of a complete infectious life cycle (HCV cell culture [HCVcc]). Using this system, we determine that the kissing-loop interaction between 5BSL3.2 and 3' SL2 is required for replication in the genotype 2a HCVcc context. Remarkably, the overall integrity of the 5BSL3 cruciform is not an absolute requirement for the kissing-loop interaction, suggesting a model in which trans-acting factor(s) that stabilize this interaction may interact initially with the 3' X tail rather than 5BSL3. The length and composition of the poly(U/UC) tract were also critical determinants of HCVcc replication, with a length of 33 consecutive U residues required for maximal RNA amplification. Interrupting the U homopolymer with C residues was deleterious, implicating a trans-acting factor with a preference for U over mixed pyrimidine nucleotides. Finally, we show that both the poly(U) and kissing-loop RNA elements can function outside of their normal genome contexts. This suggests that the poly(U/UC) tract does not function simply as an unstructured spacer to position the kissing-loop elements.
Collapse
|
141
|
Abstract
Nucleic acids from an unidentified virus from ringed seals (Phoca hispida) were amplified using sequence-independent PCR, subcloned, and then sequenced. The full genome of a novel RNA virus was derived, identifying the first sequence-confirmed picornavirus in a marine mammal. The phylogenetic position of the tentatively named seal picornavirus 1 (SePV-1) as an outlier to the grouping of parechoviruses was found consistently in alignable regions of the genome. A mean protein sequence identity of only 19.3 to 30.0% was found between the 3D polymerase gene sequence of SePV-1 and those of other picornaviruses. The predicted secondary structure of the short 506-base 5'-untranslated region showed some attributes of a type IVB internal ribosome entry site, and the polyprotein lacked an apparent L peptide, both properties associated with the Parechovirus genus. The presence of two SePV-1 2A genes and of the canonical sequence required for cotranslational cleavage resembled the genetic organization of Ljungan virus. Minor genetic variants were detected in culture supernatants derived from 8 of 108 (7.4%) seals collected in 2000 to 2002, indicating a high prevalence of SePV-1 in this hunted seal population. The high level of genetic divergence of SePV-1 compared to other picornaviruses and its mix of characteristics relative to its closest relatives support the provisional classification of SePV-1 as the prototype for a new genus in the family Picornaviridae.
Collapse
|
142
|
Abstract
Antiviral immunity in mammals involves several levels of surveillance and effector actions by host factors to detect viral pathogens, trigger alpha/beta interferon production, and to mediate innate defenses within infected cells. Our studies have focused on understanding how these processes are regulated during infection by hepatitis C virus (HCV) and West Nile virus (WNV). Both viruses are members of the Flaviviridae and are human pathogens, but they each mediate a very different disease and course of infection. Our results demonstrate common and unique innate immune interactions of each virus that govern antiviral immunity and demonstrate the central role of alpha/beta interferon immune defenses in controlling the outcome of infection.
Collapse
Affiliation(s)
- Brian C Keller
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Cynthia L. Johnson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrea Kaup Erickson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Gale
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
143
|
Branscum AJ, Johnson WO, Thurmond MC. BAYESIAN BETA REGRESSION: APPLICATIONS TO HOUSEHOLD EXPENDITURE DATA AND GENETIC DISTANCE BETWEEN FOOT-AND-MOUTH DISEASE VIRUSES. AUST NZ J STAT 2007. [DOI: 10.1111/j.1467-842x.2007.00481.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
144
|
Collective properties of evolving molecular quasispecies. BMC Evol Biol 2007; 7:110. [PMID: 17620110 PMCID: PMC1934359 DOI: 10.1186/1471-2148-7-110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 07/09/2007] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND RNA molecules, through their dual appearance as sequence and structure, represent a suitable model to study evolutionary properties of quasispecies. The essential ingredient in this model is the differentiation between genotype (molecular sequences which are affected by mutation) and phenotype (molecular structure, affected by selection). This framework allows a quantitative analysis of organizational properties of quasispecies as they adapt to different environments, such as their robustness, the effect of the degeneration of the sequence space, or the adaptation under different mutation rates and the error threshold associated. RESULTS We describe and analyze the structural properties of molecular quasispecies adapting to different environments both during the transient time before adaptation takes place and in the asymptotic state, once optimization has occurred. We observe a minimum in the adaptation time at values of the mutation rate relatively far from the phenotypic error threshold. Through the definition of a consensus structure, it is shown that the quasispecies retains relevant structural information in a distributed fashion even above the error threshold. This structural robustness depends on the precise shape of the secondary structure used as target of selection. Experimental results available for natural RNA populations are in qualitative agreement with our observations. CONCLUSION Adaptation time of molecular quasispecies to a given environment is optimized at values of the mutation rate well below the phenotypic error threshold. The optimal value results from a trade-off between diversity generation and fixation of advantageous mutants. The critical value of the mutation rate is a function not only of the sequence length, but also of the specific properties of the environment, in this case the selection pressure and the shape of the secondary structure used as target phenotype. Certain functional motifs of RNA secondary structure that withstand high mutation rates (as the ubiquitous hairpin motif) might appear early in evolution and be actually frozen evolutionary accidents.
Collapse
|
145
|
Abstract
Characterisation of new viruses is often hindered by difficulties in amplifying them in cell culture, limited antigenic/serological cross-reactivity or the lack of nucleic acid hybridisation to known viral sequences. Numerous molecular methods have been used to genetically characterise new viruses without prior in vitro replication or the use of virus-specific reagents. In the recent metagenomic studies viral particles from uncultured environmental and clinical samples have been purified and their nucleic acids randomly amplified prior to subcloning and sequencing. Already known and novel viruses were then identified by comparing their translated sequence to those of viral proteins in public sequence databases. Metagenomic approaches to viral characterisation have been applied to seawater, near shore sediments, faeces, serum, plasma and respiratory secretions and have broadened the range of known viral diversity. Selection of samples with high viral loads, purification of viral particles, removal of cellular nucleic acids, efficient sequence-independent amplification of viral RNA and DNA, recognisable sequence similarities to known viral sequences and deep sampling of the nucleic acid populations through large scale sequencing can all improve the yield of new viruses. This review lists some of the animal viruses recently identified using sequence-independent methods, current laboratory and bioinformatics methods, together with their limitations and potential improvements. Viral metagenomic approaches provide novel opportunities to generate an unbiased characterisation of the viral populations in various organisms and environments.
Collapse
Affiliation(s)
- Eric L Delwart
- Blood Systems Research Institute, University of California, San Francisco, CA 94118, USA.
| |
Collapse
|
146
|
Pybus OG, Rambaut A, Belshaw R, Freckleton RP, Drummond AJ, Holmes EC. Phylogenetic evidence for deleterious mutation load in RNA viruses and its contribution to viral evolution. Mol Biol Evol 2007; 24:845-52. [PMID: 17218639 DOI: 10.1093/molbev/msm001] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Populations of RNA viruses are often characterized by abundant genetic variation. However, the relative fitness of these mutations is largely unknown, although this information is central to our understanding of viral emergence, immune evasion, and drug resistance. Here we develop a phylogenetic method, based on the distribution of nonsynonymous and synonymous changes, to assess the relative fitness of polymorphisms in the structural genes of 143 RNA viruses. This reveals that a substantial proportion of the amino acid variation observed in natural populations of RNA viruses comprises transient deleterious mutations that are later purged by purifying selection, potentially limiting virus adaptability. We also demonstrate, for the first time, the existence of a relationship between amino acid variability and the phylogenetic distribution of polymorphisms. From this relationship, we propose an empirical threshold for the maximum viable deleterious mutation load in RNA viruses.
Collapse
Affiliation(s)
- Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
147
|
Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, Akira S, Fujita T, Gale M. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 2007; 104:582-7. [PMID: 17190814 PMCID: PMC1766428 DOI: 10.1073/pnas.0606699104] [Citation(s) in RCA: 570] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Indexed: 12/25/2022] Open
Abstract
RIG-I is an RNA helicase containing caspase activation and recruitment domains (CARDs). RNA binding and signaling by RIG-I are implicated in pathogen recognition and triggering of IFN-alpha/beta immune defenses that impact cell permissiveness for hepatitis C virus (HCV). Here we evaluated the processes that control RIG-I signaling. RNA binding studies and analysis of cells lacking RIG-I, or the related MDA5 protein, demonstrated that RIG-I, but not MDA5, efficiently binds to secondary structured HCV RNA to confer induction of IFN-beta expression. We also found that LGP2, a helicase related to RIG-I and MDA5 but lacking CARDs and functioning as a negative regulator of host defense, binds HCV RNA. In resting cells, RIG-I is maintained as a monomer in an autoinhibited state, but during virus infection and RNA binding it undergoes a conformation shift that promotes self-association and CARD interactions with the IPS-1 adaptor protein to signal IFN regulatory factor 3- and NF-kappaB-responsive genes. This reaction is governed by an internal repressor domain (RD) that controls RIG-I multimerization and IPS-1 interaction. Deletion of the RIG-I RD resulted in constitutive signaling to the IFN-beta promoter, whereas RD expression alone prevented signaling and increased cellular permissiveness to HCV. We identified an analogous RD within LGP2 that interacts in trans with RIG-I to ablate self-association and signaling. Thus, RIG-I is a cytoplasmic sensor of HCV and is governed by RD interactions that are shared with LGP2 as an on/off switch controlling innate defenses. Modulation of RIG-I/LGP2 interaction dynamics may have therapeutic implications for immune regulation.
Collapse
Affiliation(s)
| | - Reiko Hirai
- Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; and
| | | | | | | | - Sangita C. Sinha
- Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75235-9048
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 560-0043, Japan
| | - Takashi Fujita
- Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; and
| | | |
Collapse
|
148
|
Hraber PT, Fischer W, Bruno WJ, Leitner T, Kuiken C. Comparative analysis of hepatitis C virus phylogenies from coding and non-coding regions: the 5' untranslated region (UTR) fails to classify subtypes. Virol J 2006; 3:103. [PMID: 17169155 PMCID: PMC1764733 DOI: 10.1186/1743-422x-3-103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 12/14/2006] [Indexed: 01/06/2023] Open
Abstract
Background The duration of treatment for HCV infection is partly indicated by the genotype of the virus. For studies of disease transmission, vaccine design, and surveillance for novel variants, subtype-level classification is also needed. This study used the Shimodaira-Hasegawa test and related statistical techniques to compare phylogenetic trees obtained from coding and non-coding regions of a whole-genome alignment for the reliability of subtyping in different regions. Results Different regions of the HCV genome yield inconsistent phylogenies, which can lead to erroneous conclusions about classification of a given infection. In particular, the highly conserved 5' untranslated region (UTR) yields phylogenetic trees with topologies that differ from the HCV polyprotein and complete genome phylogenies. Phylogenetic trees from the NS5B gene reliably cluster related subtypes, and yield topologies consistent with those of the whole genome and polyprotein. Conclusion These results extend those from previous studies and indicate that, unlike the NS5B gene, the 5' UTR contains insufficient variation to resolve HCV classifications to the level of viral subtype, and fails to distinguish genotypes reliably. Use of the 5' UTR for clinical tests to characterize HCV infection should be replaced by a subtype-informative test.
Collapse
Affiliation(s)
- Peter T Hraber
- Theoretical Biology and Biophysics, T-10 MS K710, Los Alamos National Laboratory, Los Alamos NM 87545 USA
| | - William Fischer
- Theoretical Biology and Biophysics, T-10 MS K710, Los Alamos National Laboratory, Los Alamos NM 87545 USA
| | - William J Bruno
- Theoretical Biology and Biophysics, T-10 MS K710, Los Alamos National Laboratory, Los Alamos NM 87545 USA
| | - Thomas Leitner
- Theoretical Biology and Biophysics, T-10 MS K710, Los Alamos National Laboratory, Los Alamos NM 87545 USA
| | - Carla Kuiken
- Theoretical Biology and Biophysics, T-10 MS K710, Los Alamos National Laboratory, Los Alamos NM 87545 USA
| |
Collapse
|
149
|
Romero TA, Tumban E, Jun J, Lott WB, Hanley KA. Secondary structure of dengue virus type 4 3' untranslated region: impact of deletion and substitution mutations. J Gen Virol 2006; 87:3291-3296. [PMID: 17030863 DOI: 10.1099/vir.0.82182-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several studies have generated computer-based predictions of secondary structure of the 3' untranslated region (UTR) of Dengue virus (DEN); however, experimental verification of the formation of these structures in vitro is lacking. This study assessed the congruence of Mfold predictions of secondary structure of the core region of the DEN type 4 3' UTR with nuclease maps of this region. Maps and predictions were largely consistent. Maps supported the existence of previously predicted pseudoknots and identified putative regions of dynamic folding. Additionally, this study investigated previously identified conserved elements in the flavivirus 3' UTR that differ among viruses with different modes of transmission. Specific regions of mosquito-borne DEN type 4 were either deleted or replaced with homologous sequences from tick-borne Langat virus. All of these mutations caused substantial distortion of secondary structure, yet viruses carrying these mutations were viable.
Collapse
Affiliation(s)
- Tammy A Romero
- Molecular Biology Program, New Mexico State University (NMSU), Las Cruces, NM 88003, USA
| | - Ebenezer Tumban
- Molecular Biology Program, New Mexico State University (NMSU), Las Cruces, NM 88003, USA
| | - Jeongwon Jun
- Molecular Biology Program, New Mexico State University (NMSU), Las Cruces, NM 88003, USA
| | - William B Lott
- School of Life Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University (NMSU), Las Cruces, NM 88003, USA
| |
Collapse
|
150
|
Gultyaev AP, Heus HA, Olsthoorn RCL. An RNA conformational shift in recent H5N1 influenza A viruses. ACTA ACUST UNITED AC 2006; 23:272-6. [PMID: 17090581 DOI: 10.1093/bioinformatics/btl559] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED Recent outbreaks of avian influenza are being caused by unusually virulent H5N1 strains. It is unknown what makes these recent H5N1 strains more aggressive than previously circulating strains. Here, we have compared more than 3000 RNA sequences of segment 8 of type A influenza viruses and found a unique single nucleotide substitution typically associated with recent H5N1 strains. By phylogenetic analysis, biochemical and biophysical experiments, we demonstrate that this substitution dramatically affects the equilibrium between a hairpin and a pseudoknot conformation near the 3' splice-site of the NS gene. This conformational shift may have consequences for splicing regulation of segment 8 mRNA. Our data suggest that besides changes at the protein level, changes in RNA secondary structure should be seriously considered when attempting to explain influenza virus evolution. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|