101
|
Paddibhatla I, Lee MJ, Kalamarz ME, Ferrarese R, Govind S. Role for sumoylation in systemic inflammation and immune homeostasis in Drosophila larvae. PLoS Pathog 2010; 6:e1001234. [PMID: 21203476 PMCID: PMC3009591 DOI: 10.1371/journal.ppat.1001234] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/18/2010] [Indexed: 01/01/2023] Open
Abstract
To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failure of the latter develops into systemic inflammatory disease, we correlated parasitic wasp-induced changes in the Drosophila larva with systemic chronic conditions in sumoylation-deficient mutants. We have previously reported that loss of either Cactus, the Drosophila (IκB) protein or Ubc9, the SUMO-conjugating enzyme, leads to constitutive activation of the humoral and cellular pathways, hematopoietic overproliferation and tumorogenesis. Here we report that parasite infection simultaneously activates NF-κB-dependent transcription of Spätzle processing enzyme (SPE) and cactus. Endogenous Spätzle protein (the Toll ligand) is expressed in immune cells and excessive SPE or Spätzle is pro-inflammatory. Consistent with this function, loss of Spz suppresses Ubc9− defects. In contrast to the pro-inflammatory roles of SPE and Spätzle, Cactus and Ubc9 exert an anti-inflammatory effect. We show that Ubc9 maintains steady state levels of Cactus protein. In a series of immuno-genetic experiments, we demonstrate the existence of a robust bidirectional interaction between blood cells and the fat body and propose that wasp infection activates Toll signaling in both compartments via extracellular activation of Spätzle. Within each organ, the IκB/Ubc9-dependent inhibitory feedback resolves immune signaling and restores homeostasis. The loss of this feedback leads to chronic inflammation. Our studies not only provide an integrated framework for understanding the molecular basis of the evolutionary arms race between insect hosts and their parasites, but also offer insights into developing novel strategies for medical and agricultural pest control. Parasitoid wasps are a large group of insects in which the female injects her eggs into the bodies of host caterpillars (also called larvae). When the wasp egg hatches, the parasite larva gradually eats the host alive and takes over its body. Soon after the parasite egg is laid, an arms race between the parasite and the host is initiated. In a dramatic and highly restrained reaction, the host's blood cells surround and choke the development of the parasite egg. This encapsulation reaction allows the host to resume its development. We use Drosophila and its natural parasites to identify the mechanism that is essential for proper activation and termination of the encapsulation reaction. Unchecked encapsulation-like reaction flares up into a chronic inflammatory blood cancer in uninfected sumoylation-deficient larvae. Our studies reveal the parallels between acute (egg encapsulation) and chronic (blood cancer) inflammation in the fly. Moreover, these parallels match the criteria for acute and chronic inflammation in mammals. We can now understand more clearly how virus-like particles and factors introduced into the host along with the wasp egg disable the host's immune system to win the host/parasite arms race.
Collapse
Affiliation(s)
- Indira Paddibhatla
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Mark J. Lee
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Marta E. Kalamarz
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Roberto Ferrarese
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Shubha Govind
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
102
|
Franco M, Seyfried NT, Brand AH, Peng J, Mayor U. A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 2010; 10:M110.002188. [PMID: 20861518 PMCID: PMC3098581 DOI: 10.1074/mcp.m110.002188] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.
Collapse
Affiliation(s)
- Maribel Franco
- CIC Biogune, Bizkaia Teknologi Parkea, 48160 Derio, Spain
| | | | | | | | | |
Collapse
|
103
|
Kuo D, Nie M, De Hoff P, Chambers M, Phillips M, Hirsch AM, Courey AJ. A SUMO-Groucho Q domain fusion protein: characterization and in vivo Ulp1-mediated cleavage. Protein Expr Purif 2010; 76:65-71. [PMID: 20732424 DOI: 10.1016/j.pep.2010.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 11/17/2022]
Abstract
We describe here a system for the expression and purification of small ubiquitin-related modifier (SUMO) fusion proteins, which often exhibit dramatically increased solubility and stability during expression in bacteria relative to unfused proteins. The vector described here allows expression of a His-tagged protein of interest fused at its N-terminus to SUMO. Using this vector, we have produced a polypeptide consisting of SUMO fused to the Q domain of Drosophila Groucho in a concentrated soluble form. Hydrodynamic analysis shows that, consistent with previous studies on full-length Groucho, the fusion protein forms an elongated tetramer, as well as higher order oligomers. After expressing a protein as a fusion to SUMO, it is often desirable to cleave the SUMO off of the fusion protein using a SUMO-specific protease such as Ulp1. To facilitate such processing, we have constructed a dual expression vector encoding two fusion proteins: one consisting of SUMO fused to Ulp1 and a second consisting of SUMO fused to a His-tagged protein of interest. The SUMO-Ulp1 cleaves both itself and the other SUMO fusion protein in the bacterial cells prior to lysis, and the proteins retain solubility after cleavage.
Collapse
Affiliation(s)
- Dennis Kuo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Xu X, Vatsyayan J, Gao C, Bakkenist CJ, Hu J. HDAC2 promotes eIF4E sumoylation and activates mRNA translation gene specifically. J Biol Chem 2010; 285:18139-18143. [PMID: 20421305 PMCID: PMC2881737 DOI: 10.1074/jbc.c110.131599] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/23/2010] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are best known as transcription corepressors through deacetylating histone tails. Here we show that HDAC2 is also involved in cap-dependent mRNA translation by promoting sumoylation of eukaryotic translation initiation factor 4E (eIF4E), which is independent of its deacetylase activity. By stimulating eIF4E sumoylation, HDAC2 induces the formation of the active eukaryotic initiation factor 4F (eIF4F) complex and induces the protein synthesis of a subset of eIF4E-responsive genes that are essential for cell proliferation and preventing apoptosis. These data demonstrate that HDAC2 has an unexpected sumoylation-promoting activity and regulates cap-dependent mRNA translation.
Collapse
Affiliation(s)
- Xiang Xu
- From the
Department of Pharmacology and Chemical Biology and
- the
State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, the Third Military Medical University, Chongqing 400042, China
| | - Jaya Vatsyayan
- From the
Department of Pharmacology and Chemical Biology and
| | - Chenxi Gao
- From the
Department of Pharmacology and Chemical Biology and
| | - Christopher J. Bakkenist
- From the
Department of Pharmacology and Chemical Biology and
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| | - Jing Hu
- From the
Department of Pharmacology and Chemical Biology and
| |
Collapse
|
105
|
Xu X, Vatsyayan J, Gao C, Bakkenist CJ, Hu J. Sumoylation of eIF4E activates mRNA translation. EMBO Rep 2010; 11:299-304. [PMID: 20224576 PMCID: PMC2854592 DOI: 10.1038/embor.2010.18] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is the cap-binding protein that binds the 5' cap structure of cellular messenger RNAs (mRNAs). Despite the obligatory role of eIF4E in cap-dependent mRNA translation, how the translation activity of eIF4E is controlled remains largely undefined. Here, we report that mammalian eIF4E is regulated by SUMO1 (small ubiquitin-related modifier 1) conjugation. eIF4E sumoylation promotes the formation of the active eIF4F translation initiation complex and induces the translation of a subset of proteins that are essential for cell proliferation and preventing apoptosis. Furthermore, disruption of eIF4E sumoylation inhibits eIF4E-dependent protein translation and abrogates the oncogenic and antiapoptotic functions associated with eIF4E. These data indicate that sumoylation is a new fundamental regulatory mechanism of protein synthesis. Our findings suggest further that eIF4E sumoylation might be important in promoting human cancers.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite 2.42D, Pittsburgh, Pennsylvania 15213, USA
- The State Key Laboratory of Trauma, Burns and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China
| | - Jaya Vatsyayan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite 2.42D, Pittsburgh, Pennsylvania 15213, USA
| | - Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite 2.42D, Pittsburgh, Pennsylvania 15213, USA
| | - Christopher J Bakkenist
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite 2.42D, Pittsburgh, Pennsylvania 15213, USA
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite 2.42D, Pittsburgh, Pennsylvania 15213, USA
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite 2.42D, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
106
|
Reo E, Seum C, Spierer P, Bontron S. Sumoylation of Drosophila SU(VAR)3-7 is required for its heterochromatic function. Nucleic Acids Res 2010; 38:4254-62. [PMID: 20299342 PMCID: PMC2910048 DOI: 10.1093/nar/gkq168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Drosophila, SU(VAR)3-7 is an essential heterochromatin component. It is required for proper chromatin condensation, and changing its dose modifies position-effect variegation. Sumoylation is a post-translational modification shown to play a role in diverse biological processes. Here, we demonstrate that sumoylation is essential for proper heterochromatin function in Drosophila through modification of SU(VAR)3-7. Indeed, SU(VAR)3-7 is sumoylated at lysine K839; this modification is required for localization of SU(VAR)3-7 at pericentric heterochromatin, chromosome 4, and telomeres. In addition, sumoylation of SU(VAR)3-7 is a prerequisite for its ability to enhance position-effect variegation. Thus, these results show that the heterochromatic function of SU(VAR)3-7 depends on its own sumoylation, and unveil a role for sumoylation in Drosophila heterochromatin.
Collapse
Affiliation(s)
- Emanuela Reo
- Department of Zoology and Animal Biology, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
107
|
SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Dev Cell 2009; 17:724-35. [PMID: 19922876 DOI: 10.1016/j.devcel.2009.10.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 08/03/2009] [Accepted: 10/08/2009] [Indexed: 11/21/2022]
Abstract
Sumoylation is a reversible posttranslational modification that plays roles in many processes, including transcriptional regulation, cell division, chromosome integrity, and DNA damage response. Using a proteomics approach, we identified approximately 250 candidate targets of sumoylation in C. elegans. One such target is the cytoplasmic intermediate filament (cIF) protein named IFB-1, which is expressed in hemidesmosome-like structures in the worm epidermis and is essential for embryonic elongation and maintenance of muscle attachment to the cuticle. In the absence of SUMO, IFB-1 formed ectopic filaments and protein aggregates in the lateral epidermis. Moreover, depletion of SUMO or mutation of the SUMO acceptor site on IFB-1 resulted in a reduction of its cytoplasmic soluble pool, leading to a decrease in its exchange rate within epidermal attachment structures. These observations indicate that SUMO regulates cIF assembly by maintaining a cytoplasmic pool of nonpolymerized IFB-1, and that this is necessary for normal IFB-1 function.
Collapse
|