101
|
Distribution and molecular evolution of bacillus anthracis genotypes in Namibia. PLoS Negl Trop Dis 2012; 6:e1534. [PMID: 22413024 PMCID: PMC3295808 DOI: 10.1371/journal.pntd.0001534] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 01/02/2012] [Indexed: 11/19/2022] Open
Abstract
The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological relationships.
Collapse
|
102
|
Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646. GENETICS RESEARCH INTERNATIONAL 2012; 2012:543286. [PMID: 22567391 PMCID: PMC3335513 DOI: 10.1155/2012/543286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023]
Abstract
Diarrheic food poisoning by bacteria of the Bacillus cereus group is mostly due to several toxins encoded in the genomes. One of them, cytotoxin K, was recently identified as responsible for severe necrotic syndromes. Cytotoxin K is similar to a class of proteins encoded by genes usually annotated as haemolysin II (hlyII) in the majority of genomes of the B. cereus group. The partially sequenced genome of Bacillus thuringiensis var israelensis ATCC35646 contains several potentially induced prophages, one of them integrated into the hlyII gene. We determined the complete sequence and established the genomic organization of this prophage-designated phIS3501. During induction of excision of this prophage with mitomycin C, intact hlyII gene is formed, thus providing to cells a genetic ability to synthesize the active toxin. Therefore, this prophage, upon its excision, can be implicated in the regulation of synthesis of the active toxin and thus in the virulence of bacterial host. A generality of selection for such systems in bacterial pathogens is indicated by the similarity of this genetic arrangement to that of Staphylococcus aureus β-haemolysin.
Collapse
|
103
|
Hampson K, Lembo T, Bessell P, Auty H, Packer C, Halliday J, Beesley CA, Fyumagwa R, Hoare R, Ernest E, Mentzel C, Metzger KL, Mlengeya T, Stamey K, Roberts K, Wilkins PP, Cleaveland S. Predictability of anthrax infection in the Serengeti, Tanzania. J Appl Ecol 2011; 48:1333-1344. [PMID: 22318563 PMCID: PMC3272456 DOI: 10.1111/j.1365-2664.2011.02030.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anthrax is endemic throughout Africa, causing considerable livestock and wildlife losses and severe, sometimes fatal, infection in humans. Predicting the risk of infection is therefore important for public health, wildlife conservation and livestock economies. However, because of the intermittent and variable nature of anthrax outbreaks, associated environmental and climatic conditions, and diversity of species affected, the ecology of this multihost pathogen is poorly understood.We explored records of anthrax from the Serengeti ecosystem in north-west Tanzania where the disease has been documented in humans, domestic animals and a range of wildlife. Using spatial and temporal case-detection and seroprevalence data from wild and domestic animals, we investigated spatial, environmental, climatic and species-specific associations in exposure and disease.Anthrax was detected annually in numerous species, but large outbreaks were spatially localized, mostly affecting a few focal herbivores.Soil alkalinity and cumulative weather extremes were identified as useful spatial and temporal predictors of exposure and infection risk, and for triggering the onset of large outbreaks.Interacting ecological and behavioural factors, specifically functional groups and spatiotemporal overlap, helped to explain the variable patterns of infection and exposure among species.Synthesis and applications. Our results shed light on ecological drivers of anthrax infection and suggest that soil alkalinity and prolonged droughts or rains are useful predictors of disease occurrence that could guide risk-based surveillance. These insights should inform strategies for managing anthrax including prophylactic livestock vaccination, timing of public health warnings and antibiotic provision in high-risk areas. However, this research highlights the need for greater surveillance (environmental, serological and case-detection-orientated) to determine the mechanisms underlying anthrax dynamics.
Collapse
Affiliation(s)
- Katie Hampson
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Rosenblueth M, Martinez-Romero JC, Reyes-Prieto M, Rogel MA, Martinez-Romero E. Environmental mycobacteria: a threat to human health? DNA Cell Biol 2011; 30:633-40. [PMID: 21595554 DOI: 10.1089/dna.2011.1231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In many cases, bacterial pathogens are close relatives to nonpathogens. Pathogens seem to be limited lineages within nonpathogenic bacteria. Nonpathogenic isolates are generally more diverse and widespread in the environment and it is generally considered that environmental bacteria do not pose a risk to human health as clinical isolates do; this may not be the case with mycobacteria, but environmental mycobacteria have not been well studied. It is documented that several environmental mycobacteria constitute a source for human infections. Diverse mycobacterial environmental isolates are rarely involved in human disease. Environmental mycobacteria may have a role in degradation of different compounds. Environmental mycobacteria have had a long interaction with humans, maybe as long as the human species, and may have contributed to human evolution.
Collapse
Affiliation(s)
- Mónica Rosenblueth
- Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | | | | | | | | |
Collapse
|
105
|
Investigating the genome diversity of B. cereus and evolutionary aspects of B. anthracis emergence. Genomics 2011; 98:26-39. [PMID: 21447378 DOI: 10.1016/j.ygeno.2011.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/08/2011] [Accepted: 03/21/2011] [Indexed: 12/25/2022]
Abstract
Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax-a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a "species" DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.
Collapse
|
106
|
Gibbons HS, Broomall SM, McNew LA, Daligault H, Chapman C, Bruce D, Karavis M, Krepps M, McGregor PA, Hong C, Park KH, Akmal A, Feldman A, Lin JS, Chang WE, Higgs BW, Demirev P, Lindquist J, Liem A, Fochler E, Read TD, Tapia R, Johnson S, Bishop-Lilly KA, Detter C, Han C, Sozhamannan S, Rosenzweig CN, Skowronski EW. Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant. PLoS One 2011; 6:e17836. [PMID: 21464989 PMCID: PMC3064580 DOI: 10.1371/journal.pone.0017836] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/15/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Despite the decades-long use of Bacillus atrophaeus var. globigii (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS). RESULTS Archival strains and two "present day" type strains were compared to simulant strains on different laboratory media. Several of the samples produced multiple colony morphotypes that differed from that of an archival isolate. To trace the microevolutionary history of these isolates, we obtained WGS data for several archival and present-day strains and morphotypes. Bacillus-wide phylogenetic analysis identified B. subtilis as the nearest neighbor to B. atrophaeus. The genome of B. atrophaeus is, on average, 86% identical to B. subtilis on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the "military" isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of "military" isolates on lactate-containing media, and showed that the "military" strains exhibited a hypersporulating phenotype. CONCLUSIONS Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation.
Collapse
Affiliation(s)
- Henry S Gibbons
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Damelin LH, Paximadis M, Mavri-Damelin D, Birkhead M, Lewis DA, Tiemessen CT. Identification of predominant culturable vaginal Lactobacillus species and associated bacteriophages from women with and without vaginal discharge syndrome in South Africa. J Med Microbiol 2011; 60:180-183. [DOI: 10.1099/jmm.0.024463-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus jensenii, Lactobacillus crispatus, Lactobacillus iners, Lactobacillus gasseri and Lactobacillus vaginalis were identified by 16S rRNA gene sequencing as the predominant culturable vaginal Lactobacillus species in a group of South African women, comprising 24, 22, 10, 10 and 9 %, respectively. A significant effect of vaginal discharge syndrome (VDS) and bacterial vaginosis (BV) on the distribution of predominant Lactobacillus species was observed. Whilst L. crispatus isolates were almost equally distributed between individuals with and without VDS and were not significantly reduced in women with BV versus normal microflora, L. jensenii isolates were significantly reduced in women with VDS (P=0.022) and reduced in women with BV versus normal microflora (P=0.053). Unlike L. crispatus, L. jensenii isolates were also significantly reduced in women with BV-associated VDS versus women without VDS and with normal microflora (P=0.051). In addition, lysogeny was commonly observed for L. crispatus, with 77 % of isolates yielding phage particles with contractile and non-contractile tails. Only 29 % of L. jensenii isolates yielded phage particles, and these were visible as tailless or podo-like particles.
Collapse
Affiliation(s)
- Leonard H. Damelin
- AIDS Virus Research Unit, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| | - Maria Paximadis
- AIDS Virus Research Unit, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| | - Demetra Mavri-Damelin
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Monica Birkhead
- Electron Microscope Unit, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| | - David A. Lewis
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
- Sexually Transmitted Infections Reference Centre, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| | - Caroline T. Tiemessen
- AIDS Virus Research Unit, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| |
Collapse
|
108
|
|
109
|
Abstract
Bacillus anthracis shares many regulatory loci with the nonpathogenic Bacillus species Bacillus subtilis. One such locus is sinIR, which in B. subtilis controls sporulation, biofilm formation, motility, and competency. As B. anthracis is not known to be motile, to be naturally competent, or to readily form biofilms, we hypothesized that the B. anthracis sinIR regulon is distinct from that of B. subtilis. A genome-wide expression microarray analysis of B. anthracis parental and sinR mutant strains indicated limited convergence of the B. anthracis and B. subtilis SinR regulons. The B. anthracis regulon includes homologues of some B. subtilis SinR-regulated genes, including the signal peptidase gene sipW near the sinIR locus and the sporulation gene spoIIE. The B. anthracis SinR protein also negatively regulates transcription of genes adjacent to the sinIR locus that are unique to the Bacillus cereus group species. These include calY and inhA1, structural genes for the metalloproteases camelysin and immune inhibitor A1 (InhA1), which have been suggested to be associated with virulence in B. cereus and B. anthracis, respectively. Electrophoretic mobility shift assays revealed direct binding of B. anthracis SinR to promoter DNA from strongly regulated genes, such as calY and sipW, but not to the weakly regulated inhA1 gene. Assessment of camelysin and InhA1 levels in culture supernates from sinR-, inhA1-, and calY-null mutants showed that the concentration of InhA1 in the culture supernatant is inversely proportional to the concentration of camelysin. Our data are consistent with a model in which InhA1 protease levels are controlled at the transcriptional level by SinR and at the posttranslational level by camelysin.
Collapse
|
110
|
Jackson RW, Johnson LJ, Clarke SR, Arnold DL. Bacterial pathogen evolution: breaking news. Trends Genet 2010; 27:32-40. [PMID: 21047697 DOI: 10.1016/j.tig.2010.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/21/2010] [Accepted: 10/07/2010] [Indexed: 02/04/2023]
Abstract
The immense social and economic impact of bacterial pathogens, from drug-resistant infections in hospitals to the devastation of agricultural resources, has resulted in major investment to understand the causes and consequences of pathogen evolution. Recent genome sequencing projects have provided insight into the evolution of bacterial genome structures; revealing the impact of mobile DNA on genome restructuring and pathogenicity. Sequencing of multiple genomes of related strains has enabled the delineation of pathogen evolution and facilitated the tracking of bacterial pathogens globally. Other recent theoretical and empirical studies have shown that pathogen evolution is significantly influenced by ecological factors, such as the distribution of hosts within the environment and the effects of co-infection. We suggest that the time is ripe for experimentalists to use genomics in conjunction with evolutionary ecology experiments to further understanding of how bacterial pathogens evolve.
Collapse
Affiliation(s)
- Robert W Jackson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, UK.
| | | | | | | |
Collapse
|
111
|
Abstract
Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens.
Collapse
|
112
|
Bacterial population genomics and infectious disease diagnostics. Trends Biotechnol 2010; 28:611-8. [PMID: 20961641 DOI: 10.1016/j.tibtech.2010.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/14/2023]
Abstract
New sequencing technologies have made the production of bacterial genome sequences increasingly easy, and it can be confidently forecasted that vast genomic databases will be generated in the next few years. Here, we detail how collections of bacterial genomes from a particular species (population genomics libraries) have already been used to improve the design of several diagnostic assays for bacterial pathogens. Genome sequencing itself is also becoming more commonly used for epidemiological, forensic and clinical investigations. There is an opportunity for the further development of bioinformatic tools to bring even further value to bacterial diagnostic genomics.
Collapse
|
113
|
Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 2010; 466:334-8. [PMID: 20631792 PMCID: PMC2919852 DOI: 10.1038/nature09199] [Citation(s) in RCA: 847] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/25/2010] [Indexed: 12/12/2022]
Abstract
Viral diversity and life cycles are poorly understood in the human gut and other body habitats. Phages and their encoded functions may provide informative signatures of a human microbiota and of microbial community responses to various disturbances, and may indicate whether community health or dysfunction is manifest after apparent recovery from a disease or therapeutic intervention. Here we report sequencing of the viromes (metagenomes) of virus-like particles isolated from faecal samples collected from healthy adult female monozygotic twins and their mothers at three time points over a one-year period. We compared these data sets with data sets of sequenced bacterial 16S ribosomal RNA genes and total-faecal-community DNA. Co-twins and their mothers share a significantly greater degree of similarity in their faecal bacterial communities than do unrelated individuals. In contrast, viromes are unique to individuals regardless of their degree of genetic relatedness. Despite remarkable interpersonal variations in viromes and their encoded functions, intrapersonal diversity is very low, with >95% of virotypes retained over the period surveyed, and with viromes dominated by a few temperate phages that exhibit remarkable genetic stability. These results indicate that a predatory viral-microbial dynamic, manifest in a number of other characterized environmental ecosystems, is notably absent in the very distal intestine.
Collapse
MESH Headings
- Anaerobiosis
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- Bacteriophages/classification
- Bacteriophages/enzymology
- Bacteriophages/genetics
- Bacteriophages/isolation & purification
- DNA, Viral/analysis
- DNA, Viral/genetics
- Feces/microbiology
- Feces/virology
- Female
- Genes, Bacterial/genetics
- Genome, Bacterial/genetics
- Genome, Viral/genetics
- Heredity/genetics
- Humans
- Intestines/microbiology
- Intestines/virology
- Metagenome/genetics
- Mothers
- Prophages/classification
- Prophages/genetics
- Prophages/isolation & purification
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Time Factors
- Twins, Monozygotic/genetics
- Viral Proteins/analysis
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viruses/classification
- Viruses/genetics
- Viruses/isolation & purification
Collapse
Affiliation(s)
- Alejandro Reyes
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Valdivia-Granda WA. Bioinformatics for biodefense: challenges and opportunities. Biosecur Bioterror 2010; 8:69-77. [PMID: 20230234 DOI: 10.1089/bsp.2009.0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The intentional release of traditional or combinatorial bioweapons remains one of the most important challenges that will continue to shape homeland security. The misuse of dual-use and how-to methods and techniques in the fields of molecular, synthetic, and computational biology can lessen the technical barriers for launching attacks, even for small groups or individuals. Bioinformatics is guiding the implementation of several biodefense countermeasures. However, existing algorithms have not effectively translated available pathogen genomic data into standardized diagnostics, rational vaccine development, or broad spectrum therapeutics. Despite its potential, bioinformatics has a limited impact on forensic and intelligence operations. More than 12 biodefense databases and information exchange architectures lack interoperability and a common layer that restricts scalability and the development of biodefense enterprises. Therefore, in order to use next-generation genome sequencing for medical intelligence, forensic operations, biothreat awareness, and mitigation, the attention has to be redirected toward the development of computational biology applications. This article debates some of the challenges that the bioinformatics field confronts in terms of biodefense problems and proposes potential opportunities to use pathogen genomic data. Issues related to the analysis of pathogen genomes and emerging methods including genomic barcoding, active curation, and knowledge management and their impact on intelligence, forensics, and policymaking are discussed.
Collapse
|
115
|
Effect of bacteriaphage and exopolysaccharide on root colonization and rhizosphere competence by Pseudomonas fluorescens. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
116
|
Joyner TA, Lukhnova L, Pazilov Y, Temiralyeva G, Hugh-Jones ME, Aikimbayev A, Blackburn JK. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan. PLoS One 2010; 5:e9596. [PMID: 20231894 PMCID: PMC2834750 DOI: 10.1371/journal.pone.0009596] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/18/2010] [Indexed: 11/19/2022] Open
Abstract
Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP) to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km(2) and 8 km(2) and a 6-variable BioClim data set at 8 km(2). Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting approximately 14-16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting approximately 15% loss at 55 km(2), approximately 34% loss at 8 km(2), and approximately 30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km(2). Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B. anthracis.
Collapse
Affiliation(s)
- Timothy Andrew Joyner
- Emerging Pathogens Institute and the Department of Geography, University of Florida, Gainesville, Florida, United States of America
| | - Larissa Lukhnova
- Kazakh Science Center for Quarantine and Zoonotic Diseases, Almaty, Kazakhstan
| | - Yerlan Pazilov
- Kazakh Science Center for Quarantine and Zoonotic Diseases, Almaty, Kazakhstan
| | - Gulnara Temiralyeva
- Kazakh Science Center for Quarantine and Zoonotic Diseases, Almaty, Kazakhstan
| | - Martin E. Hugh-Jones
- Department of Environmental Science, School of the Coast and Environment, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Alim Aikimbayev
- Kazakh Science Center for Quarantine and Zoonotic Diseases, Almaty, Kazakhstan
| | - Jason K. Blackburn
- Emerging Pathogens Institute and the Department of Geography, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
117
|
Prevalence of Bacillus anthracis-like organisms and bacteriophages in the intestinal tract of the earthworm Eisenia fetida. Appl Environ Microbiol 2010; 76:2286-94. [PMID: 20118353 DOI: 10.1128/aem.02518-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stable infection of Bacillus anthracis laboratory strains with environmental bacteriophages confers survival phenotypes in soil and earthworm intestinal niches (R. Schuch and V. A. Fischetti, PLoS One 4:e6532, 2009). Here, the natural occurrence of two such B. anthracis-infective bacteriophages, Wip1 and Wip4, was examined in the intestines of Eisenia fetida earthworms as part of a 6-year longitudinal study at a Pennsylvania forest site. The Wip1 tectivirus was initially dominant before being supplanted by the Wip4 siphovirus, which was then dominant for the next 3 years. In a host range analysis of a wide-ranging group of Bacillus species and related organisms, Wip1 and Wip4 were both infective only toward B. anthracis and certain B. cereus strains. The natural host of Wip4 remained constant for 3 years and was a B. cereus strain that expressed a B. anthracis-like surface polysaccharide at septal positions on the cell surface. Next, a novel metagenomic approach was used to determine the extent to which such B. cereus- and B. anthracis-like strains are found in worms from two geographical locations. Three different enrichment strategies were used for metagenomic DNA isolation, based either on the ability of B. cereus sensu lato to form heat-resistant spores, the sensitivity of B. anthracis to the PlyG lysin, or the selective amplification of environmental phages cocultured with B. anthracis. Findings from this work indicate that B. cereus sensu lato and its phages are common inhabitants of earthworm intestines.
Collapse
|