103
|
Nyikó T, Kerényi F, Szabadkai L, Benkovics AH, Major P, Sonkoly B, Mérai Z, Barta E, Niemiec E, Kufel J, Silhavy D. Plant nonsense-mediated mRNA decay is controlled by different autoregulatory circuits and can be induced by an EJC-like complex. Nucleic Acids Res 2013; 41:6715-28. [PMID: 23666629 PMCID: PMC3711448 DOI: 10.1093/nar/gkt366] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that recognizes and degrades transcripts containing NMD cis elements in their 3′untranslated region (UTR). In yeasts, unusually long 3′UTRs act as NMD cis elements, whereas in vertebrates, NMD is induced by introns located >50 nt downstream from the stop codon. In vertebrates, splicing leads to deposition of exon junction complex (EJC) onto the mRNA, and then 3′UTR-bound EJCs trigger NMD. It is proposed that this intron-based NMD is vertebrate specific, and it evolved to eliminate the misproducts of alternative splicing. Here, we provide evidence that similar EJC-mediated intron-based NMD functions in plants, suggesting that this type of NMD is evolutionary conserved. We demonstrate that in plants, like in vertebrates, introns located >50 nt from the stop induces NMD. We show that orthologs of all core EJC components are essential for intron-based plant NMD and that plant Partner of Y14 and mago (PYM) also acts as EJC disassembly factor. Moreover, we found that complex autoregulatory circuits control the activity of plant NMD. We demonstrate that expression of suppressor with morphogenic effect on genitalia (SMG)7, which is essential for long 3′UTR- and intron-based NMD, is regulated by both types of NMD, whereas expression of Barentsz EJC component is downregulated by intron-based NMD.
Collapse
Affiliation(s)
- Tünde Nyikó
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Farkas Kerényi
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Levente Szabadkai
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna H. Benkovics
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Péter Major
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Boglárka Sonkoly
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Zsuzsanna Mérai
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Endre Barta
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Emilia Niemiec
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Joanna Kufel
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dániel Silhavy
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
- *To whom correspondence should be addressed. Tel: +36 28 526 194; Fax: +36 28 526 145;
| |
Collapse
|
105
|
Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. THE NEW PHYTOLOGIST 2013; 197:394-404. [PMID: 23163405 DOI: 10.1111/nph.12022] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/02/2012] [Indexed: 05/20/2023]
Abstract
Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Christin Korneli
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Martina Lummer
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Lionel Navarro
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), 46 Rue d'Ulm, 75230, Paris Cedex 05, France
| |
Collapse
|
106
|
Mérai Z, Benkovics AH, Nyikó T, Debreczeny M, Hiripi L, Kerényi Z, Kondorosi É, Silhavy D. The late steps of plant nonsense-mediated mRNA decay. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:50-62. [PMID: 22974464 DOI: 10.1111/tpj.12015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/27/2012] [Accepted: 09/03/2012] [Indexed: 05/10/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and degrades mRNAs containing premature termination codons (PTCs). If translation terminates at a PTC, the UPF1 NMD factor binds the terminating ribosome and recruits UPF2 and UPF3 to form a functional NMD complex, which triggers the rapid decay of the PTC-containing transcript. Although NMD deficiency is seedling lethal in plants, the mechanism of plant NMD remains poorly understood. To understand how the formation of the NMD complex leads to transcript decay we functionally mapped the UPF1 and SMG7 plant NMD factors, the putative key players of NMD target degradation. Our data indicate that the cysteine-histidine-rich (CH) and helicase domains of UPF1 are only essential for the early steps of NMD, whereas the heavily phosphorylated N- and C-terminal regions play a redundant but essential role in the target transcript degradation steps of NMD. We also show that both the N- and the C-terminal regions of SMG7 are essential for NMD. The N terminus contains a phosphoserine-binding domain that is required for the early steps of NMD, whereas the C terminus is required to trigger the degradation of NMD target transcripts. Moreover, SMG7 is a P-body component that can also remobilize UPF1 from the cytoplasm into processing bodies (P bodies). We propose that the N- and C-terminal phosphorylated regions of UPF1 recruit SMG7 to the functional NMD complex, and then SMG7 transports the PTC-containing transcripts into P bodies for degradation.
Collapse
Affiliation(s)
- Zsuzsanna Mérai
- Agricultural Biotechnology Center, Szent-Györgyi 4, H-2100, Gödöllő, Hungary
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie II/Botanik, Schänzlestrasse 1, D-79104, Freiburg, Germany
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Anna H Benkovics
- Agricultural Biotechnology Center, Szent-Györgyi 4, H-2100, Gödöllő, Hungary
- Faculty of Horticultural Science, Corvinus University of Budapest, Villányi 29-43, H-1118, Budapest, Hungary
| | - Tünde Nyikó
- Agricultural Biotechnology Center, Szent-Györgyi 4, H-2100, Gödöllő, Hungary
| | - Mónika Debreczeny
- Institut des Sciences du Végétal, CNRS UPR 2355, 91168, Gif sur Yvette, France
- BRC Institute of Biochemistry, 6726, Szeged, Hungary
| | - László Hiripi
- Agricultural Biotechnology Center, Szent-Györgyi 4, H-2100, Gödöllő, Hungary
| | - Zoltán Kerényi
- Agricultural Biotechnology Center, Szent-Györgyi 4, H-2100, Gödöllő, Hungary
| | - Éva Kondorosi
- Institut des Sciences du Végétal, CNRS UPR 2355, 91168, Gif sur Yvette, France
- BRC Institute of Biochemistry, 6726, Szeged, Hungary
| | - Dániel Silhavy
- Agricultural Biotechnology Center, Szent-Györgyi 4, H-2100, Gödöllő, Hungary
| |
Collapse
|