101
|
Posttranscriptional Regulation of Splicing Factor SRSF1 and Its Role in Cancer Cell Biology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:287048. [PMID: 26273603 PMCID: PMC4529898 DOI: 10.1155/2015/287048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/16/2014] [Indexed: 01/23/2023]
Abstract
Over the past decade, alternative splicing has been progressively recognized as a major mechanism regulating gene expression patterns in different tissues and disease states through the generation of multiple mRNAs from the same gene transcript. This process requires the joining of selected exons or usage of different pairs of splice sites and is regulated by gene-specific combinations of RNA-binding proteins. One archetypical splicing regulator is SRSF1, for which we review the molecular mechanisms and posttranscriptional modifications involved in its life cycle. These include alternative splicing of SRSF1 itself, regulatory protein phosphorylation events, and the role of nuclear versus cytoplasmic SRSF1 localization. In addition, we resume current knowledge on deregulated SRSF1 expression in tumors and describe SRSF1-regulated alternative transcripts with functional consequences for cancer cell biology at different stages of tumor development.
Collapse
|
102
|
Corkery DP, Holly AC, Lahsaee S, Dellaire G. Connecting the speckles: Splicing kinases and their role in tumorigenesis and treatment response. Nucleus 2015; 6:279-88. [PMID: 26098145 PMCID: PMC4615201 DOI: 10.1080/19491034.2015.1062194] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative pre-mRNA splicing in higher eukaryotes enhances transcriptome complexity and proteome diversity. Its regulation is mediated by a complex RNA-protein network that is essential for the maintenance of cellular and tissue homeostasis. Disruptions to this regulatory network underlie a host of human diseases and contribute to cancer development and progression. The splicing kinases are an important family of pre-mRNA splicing regulators, , which includes the CDC-like kinases (CLKs), the SRSF protein kinases (SRPKs) and pre-mRNA splicing 4 kinase (PRP4K/PRPF4B). These splicing kinases regulate pre-mRNA splicing via phosphorylation of spliceosomal components and serine-arginine (SR) proteins, affecting both their nuclear localization within nuclear speckle domains as well as their nucleo-cytoplasmic shuttling. Here we summarize the emerging evidence that splicing kinases are dysregulated in cancer and play important roles in both tumorigenesis as well as therapeutic response to radiation and chemotherapy.
Collapse
Affiliation(s)
- Dale P Corkery
- a Department of Biochemistry & Molecular Biology ; Dalhousie University ; Halifax , Nova Scotia , Canada
| | | | | | | |
Collapse
|
103
|
Shilo A, Siegfried Z, Karni R. The role of splicing factors in deregulation of alternative splicing during oncogenesis and tumor progression. Mol Cell Oncol 2015; 2:e970955. [PMID: 27308389 PMCID: PMC4905244 DOI: 10.4161/23723548.2014.970955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 04/18/2023]
Abstract
In past decades, cancer research has focused on genetic alterations that are detected in malignant tissues and contribute to the initiation and progression of cancer. These changes include mutations, copy number variations, and translocations. However, it is becoming increasingly clear that epigenetic changes, including alternative splicing, play a major role in cancer development and progression. There are relatively few studies on the contribution of alternative splicing and the splicing factors that regulate this process to cancer development and progression. Recently, multiple studies have revealed altered splicing patterns in cancers and several splicing factors were found to contribute to tumor development. Studies using high-throughput genomic analysis have identified mutations in components of the core splicing machinery and in splicing factors in several cancers. In this review, we will highlight new findings on the role of alternative splicing and its regulators in cancer initiation and progression, in addition to novel approaches to correct oncogenic splicing.
Collapse
Affiliation(s)
- Asaf Shilo
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology; Institute for Medical Research Israel-Canada; Hebrew University-Hadassah Medical School; Ein Karem, Jerusalem, Israel
- Correspondence to: Rotem Karni;
| |
Collapse
|
104
|
Wojtuszkiewicz A, Assaraf YG, Maas MJP, Kaspers GJL, Jansen G, Cloos J. Pre-mRNA splicing in cancer: the relevance in oncogenesis, treatment and drug resistance. Expert Opin Drug Metab Toxicol 2014; 11:673-89. [PMID: 25495223 DOI: 10.1517/17425255.2015.993316] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Aberrant pre-mRNA splicing in cancer is emerging as an important determinant of oncogenesis, response to treatment and anticancer drug resistance. At the same time, the spliceosome has become a target for a novel class of pre-clinical chemotherapeutics with a potential future application in cancer treatment. Taken together, these findings offer novel opportunities for the enhancement of the efficacy of cancer therapy. AREAS COVERED This review presents a comprehensive overview of the molecular mechanisms involved in splicing and current developments regarding splicing aberrations in relation to several aspects of cancer formation and therapy. Identified mutations in the various components of the spliceosome and their implications for cancer prognosis are delineated. Moreover, the contribution of abnormal splicing patterns as well as deregulated splicing factors to chemoresistance is discussed, along with novel splicing-based therapeutic approaches. EXPERT OPINION Significant progress has been made in deciphering the role of splicing factors in cancer including carcinogenesis and drug resistance. Splicing-based prognostic tools as well as therapeutic options hold great potential towards improvements in cancer therapy. However, gaining more in-depth molecular insight into the consequences of mutations in various components of the splicing machinery as well as of cellular effects of spliceosome inhibition is a prerequisite to establish the role of splicing in tumor progression and treatment options, respectively.
Collapse
Affiliation(s)
- Anna Wojtuszkiewicz
- VU University Medical Center, Department of Pediatric Oncology/Hematology , Amsterdam , The Netherlands
| | | | | | | | | | | |
Collapse
|
105
|
Abelin ACT, Marinov GK, Williams BA, McCue K, Wold BJ. A ratiometric-based measure of gene co-expression. BMC Bioinformatics 2014; 15:331. [PMID: 25411051 PMCID: PMC4289233 DOI: 10.1186/1471-2105-15-331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/18/2014] [Indexed: 12/02/2022] Open
Abstract
Background Gene co-expression analysis has previously been based on measures that include correlation coefficients and mutual information, as well as newcomers such as MIC. These measures depend primarily on the degree of association between the RNA levels of two genes and to a lesser extent on their variability. They focus on the similarity of expression value trajectories that change in like manner across samples. However there are relationships of biological interest for which these classical measures are expected to be insensitive. These include genes whose expression levels are ratiometrically stable and genes whose variance is tightly constrained. Large-scale studies of relatively homogeneous samples, including single cell RNA-seq, are experimental settings in which such relationships might be especially pertinent. Results We develop and implement a ratiometric approach for detecting gene associations (abbreviated RA). It is based on the coefficient of variation of the measured expression ratio of each pair of genes. We apply it to a collection of lymphoblastoid RNA-seq data from the 1000 Genomes Project Consortium, a typical sample set with high overall homogeneity. RA is a selective method, reporting in this case ~1/4 of all possible gene pairs, yet these relationships include a distilled picture of biological relationships previously found by other methods. In addition, RA reveals expression relationships that are not detected by traditional correlation and mutual information methods. We also analyze data from individual lymphoblastoid cells and show that desirable properties of the RA method extend to single-cell RNA-seq. Conclusion We show that our ratiometric method identifies biologically significant relationships that are often missed or low-ranked by conventional association-based methods when applied to a relatively homogenous dataset. The results open new questions about the regulatory mechanisms that produce strong RA relationships. RA is scalable and potentially well suited for the analysis of thousands of bulk-RNA or single-cell transcriptomes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-331) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
106
|
Mavrou A, Brakspear K, Hamdollah-Zadeh M, Damodaran G, Babaei-Jadidi R, Oxley J, Gillatt DA, Ladomery MR, Harper SJ, Bates DO, Oltean S. Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. Oncogene 2014; 34:4311-9. [PMID: 25381816 PMCID: PMC4351909 DOI: 10.1038/onc.2014.360] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/31/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Angiogenesis is required for tumour growth and is induced principally by VEGF-A. VEGF-A pre-mRNA is alternatively spliced at the terminal exon to produce two families of isoforms, pro- and anti-angiogenic, only the former of which is upregulated in prostate cancer. In renal epithelial cells and colon cancer cells, the choice of VEGF splice isoforms is controlled by the splicing factor SRSF1, phosphorylated by SRPK1. Immunohistochemistry staining of human samples revealed a significant increase in SRPK1 expression both in prostate intra-epithelial neoplasia lesions as well as malignant adenocarcinoma compared to benign prostate tissue. We therefore tested the hypothesis that the selective upregulation of pro-angiogenic VEGF in prostate cancer may be under the control of SRPK1 activity. A switch in the expression of VEGF165 towards the anti-angiogenic splice isoform, VEGF165b, was seen in PC-3 cells with SRPK1 knock-down (KD). PC-3 SRPK1-KD cells resulted in tumours that grew more slowly in xenografts, with decreased microvessel density. No effect was seen as a result of SRPK1-KD on growth, proliferation, migration and invasion capabilities of PC-3 cells in vitro. Small molecule inhibitors of SRPK1 switched splicing towards the anti-angiogenic isoform VEGF165b in PC3 cells and decreased tumour growth when administered intraperitoneally in an orthotopic mouse model of prostate cancer. Our study suggests that modulation of SRPK1 and subsequent inhibition of tumour angiogenesis by regulation of VEGF splicing can alter prostate tumour growth and supports further studies into the use of SRPK1 inhibition as a potential anti-angiogenic therapy in prostate cancer.
Collapse
Affiliation(s)
- A Mavrou
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - K Brakspear
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - M Hamdollah-Zadeh
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - G Damodaran
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - R Babaei-Jadidi
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - J Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
| | - D A Gillatt
- Department of Urological Sciences, North Bristol NHS Trust, Bristol, UK
| | - M R Ladomery
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - S J Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - D O Bates
- 1] School of Physiology and Pharmacology, University of Bristol, Bristol, UK [2] Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - S Oltean
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
107
|
Lin JC, Lin CY, Tarn WY, Li FY. Elevated SRPK1 lessens apoptosis in breast cancer cells through RBM4-regulated splicing events. RNA (NEW YORK, N.Y.) 2014; 20:1621-31. [PMID: 25140042 PMCID: PMC4174443 DOI: 10.1261/rna.045583.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imbalanced splicing of premessenger RNA is typical of tumorous malignancies, and the regulatory mechanisms involved in several tumorigenesis-associated splicing events are identified. Elevated expression of serine-arginine protein kinase 1 (SRPK1) may participate in the pathway responsible for the dysregulation of splicing events in malignant tumor cells. In this study, we observed a correlation between the cytoplasmic accumulation of RNA-binding motif protein 4 (RBM4) and up-regulated SRPK1 in breast cancer cells. The production of the IR-B and MCL-1S transcripts was induced separately by the overexpression of RBM4 and SRPK1 gene silencing. Overexpressed RBM4 simultaneously bound to the CU-rich elements within the MCL-1 exon2 and the downstream intron, which subsequently facilitated the exclusion of the regulated exon. Breast cancer cells are deprived of apoptotic resistance through the RBM4-mediated up-regulation of the IR-B and MCL-1S transcripts. These findings suggest that the splicing events regulated by the SRPK1-RMB4 network may contribute to tumorigenesis through altered sensitivity to apoptotic signals in breast cancer cells.
Collapse
MESH Headings
- Apoptosis
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Proliferation
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Staging
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan
| | - Fang-Yu Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| |
Collapse
|
108
|
Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, Motizuki M, Masuyama K, Miyazawa K. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 2014; 289:27386-99. [PMID: 25143390 DOI: 10.1074/jbc.m114.589432] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ESRP1 (epithelial splicing regulatory protein 1) and ESRP2 regulate alternative splicing events associated with epithelial phenotypes of cells, and both are down-regulated during the epithelial-mesenchymal transition. However, little is known about their expression and functions during carcinogenesis. In this study, we found that expression of both ESRP1 and ESRP2 is plastic: during oral squamous cell carcinogenesis, these proteins are up-regulated relative to their levels in normal epithelium but down-regulated in invasive fronts. Importantly, ESRP1 and ESRP2 are re-expressed in the lymph nodes, where carcinoma cells metastasize and colonize. In head and neck carcinoma cell lines, ESRP1 and ESRP2 suppress cancer cell motility through distinct mechanisms: knockdown of ESRP1 affects the dynamics of the actin cytoskeleton through induction of Rac1b, whereas knockdown of ESRP2 attenuates cell-cell adhesion through increased expression of epithelial-mesenchymal transition-associated transcription factors. Down-regulation of ESRP1 and ESRP2 is thus closely associated with a motile phenotype of cancer cells.
Collapse
Affiliation(s)
- Hiroki Ishii
- From the Departments of Biochemistry, Otolaryngology, Head and Neck Surgery, and
| | | | - Kei Sakamoto
- the Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Tetsuo Kondo
- Human Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898 and
| | - Ryohei Katoh
- Human Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898 and
| | | | | | | | | |
Collapse
|
109
|
Gammons MV, Lucas R, Dean R, Coupland SE, Oltean S, Bates DO. Targeting SRPK1 to control VEGF-mediated tumour angiogenesis in metastatic melanoma. Br J Cancer 2014; 111:477-85. [PMID: 25010863 PMCID: PMC4119992 DOI: 10.1038/bjc.2014.342] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 01/06/2023] Open
Abstract
Background: Current therapies for metastatic melanoma are targeted either at cancer mutations driving growth (e.g., vemurafenib) or immune-based therapies (e.g., ipilimumab). Tumour progression also requires angiogenesis, which is regulated by VEGF-A, itself alternatively spliced to form two families of isoforms, pro- and anti-angiogenic. Metastatic melanoma is associated with a splicing switch to pro-angiogenic VEGF-A, previously shown to be regulated by SRSF1 phosphorylation by SRPK1. Here, we show a novel approach to preventing angiogenesis—targeting splicing factor kinases that are highly expressed in melanomas. Methods: We used RT–PCR, western blotting and immunohistochemistry to investigate SRPK1, SRSF1 and VEGF expression in tumour cells, and in vivo xenograft assays to investigate SRPK1 knockdown and inhibition in vivo. Results: In both uveal and cutaneous melanoma cell lines, SRPK1 was highly expressed, and inhibition of SRPK1 by knockdown or with pharmacological inhibitors reduced pro-angiogenic VEGF expression maintaining the production of anti-angiogenic VEGF isoforms. Both pharmacological SRPK1 inhibitors and SRPK1 knockdown reduced growth of human melanomas in vivo, but neither affected cell proliferation in vitro. Conclusions: These results suggest that selective blocking of pro-angiogenic isoforms by inhibiting splice-site selection with SRPK1 inhibitors reduces melanoma growth. SRPK1 inhibitors may be used as therapeutic agents.
Collapse
Affiliation(s)
- M V Gammons
- Microvascular Research Laboratories, School of Physiology and Pharmacology, Preclinical Veterinary Sciences Building, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - R Lucas
- Microvascular Research Laboratories, School of Physiology and Pharmacology, Preclinical Veterinary Sciences Building, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - R Dean
- Microvascular Research Laboratories, School of Physiology and Pharmacology, Preclinical Veterinary Sciences Building, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - S E Coupland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - S Oltean
- Microvascular Research Laboratories, School of Physiology and Pharmacology, Preclinical Veterinary Sciences Building, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - D O Bates
- 1] Microvascular Research Laboratories, School of Physiology and Pharmacology, Preclinical Veterinary Sciences Building, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK [2] Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK
| |
Collapse
|
110
|
Das S, Krainer AR. Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res 2014; 12:1195-204. [PMID: 24807918 DOI: 10.1158/1541-7786.mcr-14-0131] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Serine/Arginine Splicing Factor 1 (SRSF1) is the archetype member of the SR protein family of splicing regulators. Since its discovery over two decades ago, SRSF1 has been repeatedly surprising and intriguing investigators by the plethora of complex biologic pathways it regulates. These include several key aspects of mRNA metabolism, such as mRNA splicing, stability, and translation, as well as other mRNA-independent processes, such as miRNA processing, protein sumoylation, and the nucleolar stress response. In this review, the structural features of SRSF1 are discussed as they relate to the intricate mechanism of splicing and the multiplicity of functions it performs. Similarly, a list of relevant alternatively spliced transcripts and SRSF1 interacting proteins is provided. Finally, emphasis is given to the deleterious consequences of overexpression of the SRSF1 proto-oncogene in human cancers, and the complex mechanisms and pathways underlying SRSF1-mediated transformation. The accumulated knowledge about SRSF1 provides critical insight into the integral role it plays in maintaining cellular homeostasis and suggests new targets for anticancer therapy. Mol Cancer Res; 12(9); 1195-204. ©2014 AACR.
Collapse
Affiliation(s)
- Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
111
|
Pesson M, Eymin B, De La Grange P, Simon B, Corcos L. A dedicated microarray for in-depth analysis of pre-mRNA splicing events: application to the study of genes involved in the response to targeted anticancer therapies. Mol Cancer 2014; 13:9. [PMID: 24428911 PMCID: PMC3899606 DOI: 10.1186/1476-4598-13-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/09/2014] [Indexed: 12/22/2022] Open
Abstract
Alternative pre-mRNA splicing (AS) widely expands proteome diversity through the combinatorial assembly of exons. The analysis of AS on a large scale, by using splice-sensitive microarrays, is a highly efficient method to detect the majority of known and predicted alternative transcripts for a given gene. The response to targeted anticancer therapies cannot easily be anticipated without prior knowledge of the expression, by the tumor, of target proteins or genes. To analyze, in depth, transcript structure and levels for genes involved in these responses, including AKT1-3, HER1-4, HIF1A, PIK3CA, PIK3R1-2, VEGFA-D and PIR, we engineered a dedicated gene chip with coverage of an average 185 probes per gene and, especially, exon-exon junction probes. As a proof of concept, we demonstrated the ability of such a chip to detect the effects of over-expressed SRSF2 RNA binding protein on the structure and abundance of mRNA products in H358 lung cancer cells conditionally over-expressing SRSF2. Major splicing changes were observed, including in HER1/EGFR pre-mRNA, which were also seen in human lung cancer samples over-expressing the SRSF2 protein. In addition, we showed that variations in HER1/EGFR pre-mRNA splicing triggered by SRSF2 overexpression in H358 cells resulted in a drop in HER1/EGFR protein level, which correlated with increased sensitivity to gefitinib, an EGFR tyrosine kinase inhibitor. We propose, therefore, that this novel tool could be especially relevant for clinical applications, with the aim to predict the response before treatment.
Collapse
Affiliation(s)
| | | | | | | | - Laurent Corcos
- UMR INSERM U1078-UBO, Equipe ECLA, Faculté de Médecine, 22 Avenue Camille Desmoulins, 29200 Brest, France.
| |
Collapse
|
112
|
de Miguel FJ, Sharma RD, Pajares MJ, Montuenga LM, Rubio A, Pio R. Identification of alternative splicing events regulated by the oncogenic factor SRSF1 in lung cancer. Cancer Res 2013; 74:1105-15. [PMID: 24371231 DOI: 10.1158/0008-5472.can-13-1481] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal alternative splicing has been associated with cancer. Genome-wide microarrays can be used to detect differential splicing events. In this study, we have developed ExonPointer, an algorithm that uses data from exon and junction probes to identify annotated cassette exons. We used the algorithm to profile differential splicing events in lung adenocarcinoma A549 cells after downregulation of the oncogenic serine/arginine-rich splicing factor 1 (SRSF1). Data were generated using two different microarray platforms. The PCR-based validation rate of the top 20 ranked genes was 60% and 100%. Functional enrichment analyses found a substantial number of splicing events in genes related to RNA metabolism. These analyses also identified genes associated with cancer and developmental and hereditary disorders, as well as biologic processes such as cell division, apoptosis, and proliferation. Most of the top 20 ranked genes were validated in other adenocarcinoma and squamous cell lung cancer cells, with validation rates of 80% to 95% and 70% to 75%, respectively. Moreover, the analysis allowed us to identify four genes, ATP11C, IQCB1, TUBD1, and proline-rich coiled-coil 2C (PRRC2C), with a significantly different pattern of alternative splicing in primary non-small cell lung tumors compared with normal lung tissue. In the case of PRRC2C, SRSF1 downregulation led to the skipping of an exon overexpressed in primary lung tumors. Specific siRNA downregulation of the exon-containing variant significantly reduced cell growth. In conclusion, using a novel analytical tool, we have identified new splicing events regulated by the oncogenic splicing factor SRSF1 in lung cancer.
Collapse
Affiliation(s)
- Fernando J de Miguel
- Authors' Affiliations: Division of Oncology, Center for Applied Medical Research (CIMA); Departments of Histology and Pathology and Biochemistry and Genetics, Schools of Science and Medicine, University of Navarra, Pamplona; and CEIT and TECNUN, University of Navarra, San Sebastian, Spain
| | | | | | | | | | | |
Collapse
|
113
|
Gu J, Xuan Z. Inferring the perturbed microRNA regulatory networks in cancer using hierarchical gene co-expression signatures. PLoS One 2013; 8:e81032. [PMID: 24278370 PMCID: PMC3835731 DOI: 10.1371/journal.pone.0081032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/09/2013] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous small regulatory RNAs, play important roles in many biological and physiological processes. The perturbations of some miRNAs, which are usually called as onco-microRNAs (onco-miRs), are significantly associated with multiple stages of cancer. Although hundreds of miRNAs have been discovered, the perturbed miRNA regulatory networks and their functions are still poorly understood in cancer. Analyzing the expression patterns of miRNA target genes is a very useful strategy to infer the perturbed miRNA networks. However, due to the complexity of cancer transcriptome, current methods often encounter low sensitivity and report few onco-miR candidates. Here, we developed a new method, named miRHiC (enrichment analysis of miRNA targets in Hierarchical gene Co-expression signatures), to infer the perturbed miRNA regulatory networks by using the hierarchical co-expression signatures in large-scale cancer gene expression datasets. The method can infer onco-miR candidates and their target networks which are only linked to sub-clusters of the differentially expressed genes at fine scales of the co-expression hierarchy. On two real datasets of lung cancer and hepatocellular cancer, miRHiC uncovered several known onco-miRs and their target genes (such as miR-26, miR-29, miR-124, miR-125 and miR-200) and also identified many new candidates (such as miR-149, which is inferred in both types of cancers). Using hierarchical gene co-expression signatures, miRHiC can greatly increase the sensitivity for inferring the perturbed miRNA regulatory networks in cancer. All Perl scripts of miRHiC and the detailed documents are freely available on the web at http://bioinfo.au.tsinghua.edu.cn/member/jgu/miRHiC/.
Collapse
Affiliation(s)
- Jin Gu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division/Center for Synthetic and Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China
- * E-mail:
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| |
Collapse
|
114
|
Ladomery M. Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol 2013; 2013:463786. [PMID: 24101931 PMCID: PMC3786539 DOI: 10.1155/2013/463786] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/01/2013] [Indexed: 01/16/2023] Open
Abstract
The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.
Collapse
Affiliation(s)
- Michael Ladomery
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
115
|
Naro C, Sette C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int J Cell Biol 2013; 2013:151839. [PMID: 24069033 PMCID: PMC3771450 DOI: 10.1155/2013/151839] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large macromolecular complex, the spliceosome, whose activity needs a fine regulation exerted by cis-acting RNA sequence elements and trans-acting RNA binding proteins (RBP). The activity of both core spliceosomal components and accessory splicing factors is modulated by their reversible phosphorylation. The kinases and phosphatases involved in these posttranslational modifications significantly contribute to AS regulation and to its integration in the complex regulative network that controls gene expression in eukaryotic cells. Herein, we will review the major canonical and noncanonical splicing factor kinases and phosphatases, focusing on those whose activity has been implicated in the aberrant splicing events that characterize neoplastic transformation.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
116
|
Chesnais V, Kosmider O, Damm F, Itzykson R, Bernard OA, Solary E, Fontenay M. Spliceosome mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia. Oncotarget 2013; 3:1284-93. [PMID: 23327988 PMCID: PMC3717792 DOI: 10.18632/oncotarget.749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The recently discovered spliceosome mutations represent a group of acquired genetic alterations that affect both myeloid and lymphoid malignancies. A substantial proportion of patients with myelodysplastic syndromes (MDS), chronic myelomonocytoic leukemia (CMML) or chronic lymphocytic leukemia (CLL) harbor such mutations, which are often missense in type. Genotype-phenotype correlations have been observed, including the clustering of ring sideroblasts with SF3B1 mutations in MDS. Spliceosome mutations might result in defective small nuclear ribonucleoprotein complexes assembly on the pre-mRNA, deregulated global and alternative mRNA splicing, nuclear-cytoplasm export, and unpliced mRNA degradation, and thus may alter the expression of multiple genes. In the current review, we discuss the potential role of these mutations in cell transformation and how they could impact the therapeutic approaches.
Collapse
|
117
|
Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013; 122:191-207. [PMID: 23525660 DOI: 10.1007/s00412-013-0407-z] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.
Collapse
|
118
|
Edmond V, Merdzhanova G, Gout S, Brambilla E, Gazzeri S, Eymin B. A new function of the splicing factor SRSF2 in the control of E2F1-mediated cell cycle progression in neuroendocrine lung tumors. Cell Cycle 2013; 12:1267-78. [PMID: 23518498 DOI: 10.4161/cc.24363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transcription factor E2F1 belongs to the E2F family and plays a crucial role during cell cycle progression and apoptosis. Ser/Arg-Rich (SR) proteins are a family of RNA-binding phosphoproteins that control both constitutive and alternative pre-mRNA splicing events. We previously identified the SR protein SRSF2 as a new transcriptional target of E2F1 and demonstrated that both proteins cooperate to induce apoptosis in non-small cell lung carcinoma. In this study, we postulated that SRSF2 is also involved in the proliferative functions of E2F1. Using IHC, we first demonstrate that SRSF2 and its phosphorylated form (P-SRSF2) are overexpressed in neuroendocrine lung tumors that are highly proliferative tumors expressing high levels of E2F1. Importantly, we show a direct correlation between cyclin E, an E2F1-target gene controlling S phase, and P-SRSF2 proteins levels (p = 0.0083), suggesting a role of SRSF2 in E2F1-mediated cellular proliferation. Accordingly, using neuroendocrine lung carcinoma cell lines, we demonstrate that SRSF2 is a cell cycle-regulated protein involved in entry and progression into S phase. We also provide evidence that SRSF2 interacts with E2F1 and stimulates its transcriptional control of cell cycle target genes such as cyclin E. Finally, we show that inhibition of AKT signaling pathway prevents SRSF2 phosphorylation and activity toward E2F1 transcriptional function. Taken together, these results identify a new role of SRSF2 in the control of cell cycle progression and reinforce the functional link between SRSF2 and E2F1 proteins.
Collapse
Affiliation(s)
- Valerie Edmond
- INSERM, U823, Equipe 2 Bases Moléculaires de la Progression des Cancers du Poumon, Grenoble, France
| | | | | | | | | | | |
Collapse
|
119
|
Patnaik MM, Lasho TL, Finke CM, Hanson CA, Hodnefield JM, Knudson RA, Ketterling RP, Pardanani A, Tefferi A. Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol 2013; 88:201-6. [PMID: 23335386 DOI: 10.1002/ajh.23373] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 01/19/2023]
Abstract
SRSF2, SF3B1, and U2AF35 (U2AF1) are the three most frequent genes involved with spliceosome mutations in myeloid malignancies. SF3B1 mutations are most frequent (~80%) in myelodysplastic syndromes (MDS) with ring sideroblasts (RS) but lack prognostic relevance. SRSF2 mutations are associated with shortened overall (OS) and leukemia-free survival (LFS) in both MDS and myelofibrosis. In this study of 226 patients with chronic myelomonocytic leukemia (CMML), mutational frequencies were 40% for SRSF2 (all affecting P95), 6% for SF3B1 (primarily K700E) and 9% for U2AF35 (mostly S34F and Q157P/R). These mutations were mutually exclusive and 54% of the patients displayed at least one mutation. The three mutation groups were phenotypically similar, with the exception of higher RS% (P < 0.0001) in patients with SF3B1 mutations. At a median follow-up of 15 months, 176 (78%) deaths and 32 (14%) leukemic transformations were documented. OS (median survivals of 17, 16, 17, and 20 months; P = 0.48) and LFS (leukemic transformation rates of 17, 13, 15, and 5%; P = 0.63) were similar among patients with none of the three mutations, SRSF2, SF3B1, or U2AF35 mutations, respectively. We conclude that SRSF2 is the most frequently mutated spliceosome gene in CMML but neither it nor SF3B1 or U2AF35 mutations are prognostically relevant.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|