101
|
Ivashchenko A, Berillo O, Pyrkova A, Niyazova R, Atambayeva S. MiR-3960 binding sites with mRNA of human genes. Bioinformation 2014; 10:423-7. [PMID: 25187682 PMCID: PMC4135290 DOI: 10.6026/97320630010423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
The importance of miRNA in cellular regulation is gaining momentum. Therefore, it is of interest to study miRNA in human genes. Hence, the humanmRNA sequences (12,175) were searched for miRNA binding sites and 2,563predicted sites were found. We observed that the miR-3960 has more than 1000mRNA binding sites with high affinity (with ΔG/ΔGm values greater than or equal to 90%) for 375genes. The miR-3960 has 565 binding sites in the 5'UTRs and 515 sites in theCDS of mRNAs. Nucleotide sequences of the binding sites in CDS encode for polyalanine orpolyproline. It is observed that miR-3960 has binding sites in 73 mRNAs of target genesencoded transcription factors. Thus, we document predictedproperties (polysites, sites in CDS) of uncharacterized miR-3960 binding sites. The studying of the miRNA properties is important for creation of diagnostic methods of cancer.
Collapse
Affiliation(s)
- Anatoly Ivashchenko
- National Nanotechnology Laboratory, al-Farabi Kazakh National University, Almaty-050038, Kazakhstan
| | - Olga Berillo
- National Nanotechnology Laboratory, al-Farabi Kazakh National University, Almaty-050038, Kazakhstan
| | - Anna Pyrkova
- National Nanotechnology Laboratory, al-Farabi Kazakh National University, Almaty-050038, Kazakhstan
| | - Raigul Niyazova
- National Nanotechnology Laboratory, al-Farabi Kazakh National University, Almaty-050038, Kazakhstan
| | - Shara Atambayeva
- National Nanotechnology Laboratory, al-Farabi Kazakh National University, Almaty-050038, Kazakhstan
| |
Collapse
|
102
|
Uppal A, Ferguson MK, Posner MC, Hellman S, Khodarev NN, Weichselbaum RR. Towards a molecular basis of oligometastatic disease: potential role of micro-RNAs. Clin Exp Metastasis 2014; 31:735-48. [PMID: 24968866 PMCID: PMC4138440 DOI: 10.1007/s10585-014-9664-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/09/2014] [Indexed: 02/06/2023]
Abstract
Oligometastasis is a cancer disease state characterized by a limited number of metastatic tumors involving single or few organs and with biological properties that make them potentially amenable to locoregional antitumor therapy. Current clinical data show that they are potentially curable with surgical resection or/and radiotherapy. Yet, mechanisms of progression from primary tumor to oligometastasis, rather than to polymetastases, is lacking in detail. In the current review we focus on the role of micro-RNAs in the regulation of metastases development and the role they may play in the differentiation of oligometastatic from polymetastatic progression. We also discuss the analyses of metastatic samples from oligo-and polymetastatic patients, which suggest that oligometastasis is a distinct biologic entity regulated in part by micro-RNAs. In addition, a review of the known functions of oligometastatic-specific micro-RNAs suggest that they regulate multiple steps in the metastatic cascade, including epithelial–mesenchymal transition, tumor invasion, intravasation, distant vascular extravasation and proliferation in a distant organ. Understanding the role of micro-RNAs and their target genes in oligometastatic disease may allow for the development of targeted therapies to effectively conrol the spread of metastases.
Collapse
Affiliation(s)
- Abhineet Uppal
- Department of Surgery, The University of Chicago, MC 5029, 5841 S. Maryland Ave, Chicago, IL, 60637, USA,
| | | | | | | | | | | |
Collapse
|
103
|
Bouyssou JMC, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta Rev Cancer 2014; 1845:255-65. [PMID: 24569228 DOI: 10.1016/j.bbcan.2014.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
Metastasis is a phenomenon of crucial importance in defining prognosis in patients with cancer and is often responsible for cancer-related mortality. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues, thus originating metastatic lesions. Therefore, investigating the molecular actors regulating this process may provide helpful insights in the development of efficient therapeutic responses. Recent evidences have indicated the role of microRNAs (miRNAs) in modulating the metastatic process in solid tumors. miRNAs are small regulatory non-coding RNAs that bind to specific target mRNAs, leading to translational repression. miRNAs are known to act as negative regulators of gene expression and are involved in the regulation of biological processes, including cell growth, differentiation and apoptosis, both in physiological conditions and during diseases, such as tumors. In the specific field of tumorigenesis, miRNAs play an important role in mediating oncogenesis and favoring tumor progression, as a result of their ability to modulate epithelial-to-mesenchymal transition (EMT) and other series of events facilitating the formation of metastasis. The role of miRNAs in cancer development has been widely studied and has helped elucidate events such as the change in expression of oncogenes, tumor-suppressors and cancer-related proteins. This review focuses on the mechanisms underlying the role of miRNAs as part of the metastatic process.
Collapse
Affiliation(s)
- Juliette M C Bouyssou
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA; Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Salomon Manier
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Daisy Huynh
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Samar Issa
- Ecole de Biologie Industrielle, 32 Boulevard du port, 95094 Cergy-Pontoise cedex, France
| | - Aldo M Roccaro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA.
| |
Collapse
|
104
|
Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity. Biosens Bioelectron 2014; 57:245-53. [PMID: 24594591 DOI: 10.1016/j.bios.2014.02.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 01/09/2023]
Abstract
This paper reports a microfluidic system that enables the characterization of tumor cell electrical properties where cells were aspirated through a constriction channel (cross-section area smaller than that of biological cells) with cellular impedance profiles measured and translated to specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm). Two batches of H1299 cells were quantified by the microfluidic platform with different constriction channel cross-section areas, recording no differences with statistical significance (p<0.001) in both Cspecific membrane (1.63±0.52 vs. 1.65±0.43 μF/cm(2)) and σcytoplasm (0.90±0.19 vs. 0.92±0.15S/m), and thus confirming the reliability of the microfluidic platform. For paired high- and low-metastatic carcinoma strains 95D (ncell=537) and 95C cells (ncell=486), significant differences in both Cspecific membrane (2.00±0.43 vs. 1.62±0.39 μF/cm(2)) and σcytoplasm (0.88±0.46 vs. 1.25±0.35S/m) were observed. Statistically significant difference only in Cspecific membrane (2.00±0.43 vs. 1.58±0.30 μF/cm(2)) was observed for 95D cells (ncell=537) and 95D CCNY-KD cells with single oncogene CCNY down regulation (ncell=479, CCNY is a membrane-associated protein). In addition, statistically significant difference only in σcytoplasm (0.73±0.17 vs. 1.01±0.17S/m) was observed for A549 cells (ncell=487) and A549 CypA-KD cells with single oncogene CypA down regulation (ncell=597, CypA is a cytosolic protein). These results validated the developed microfluidic platform for Cspecific membrane and σcytoplasm quantification and confirmed the feasibility of using Cspecific membrane and σcytoplasm for tumor cell classification.
Collapse
|
105
|
Shen F, Cai WS, Li JL, Feng Z, Liu QC, Xiao HQ, Cao J, Xu B. Synergism from the combination of ulinastatin and curcumin offers greater inhibition against colorectal cancer liver metastases via modulating matrix metalloproteinase-9 and E-cadherin expression. Onco Targets Ther 2014; 7:305-14. [PMID: 24570592 PMCID: PMC3933719 DOI: 10.2147/ott.s57126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver metastasis is a major cause of mortality in colorectal cancer (CRC). The current study was to investigate the ability of ulinastatin (UTI) and curcumin (CUR) to inhibit CRC liver metastases via modulating matrix metalloproteinase-9 (MMP-9) and E-cadherin expression. Human CRC HCT-116 cells were treated with compounds individually and in combination in order to understand the effect on cell migration and invasion. The HCT-116 cell line was established to stably express luciferase and green fluorescent protein (GFP) by lentiviral transduction (HCT-116-Luc-GFP). We identified an anti-metastasis effect of UTI and CUR on a CRC liver metastasis mouse model. Tumor development and therapeutic responses were dynamically tracked by bioluminescence imaging. Expression of MMP-9 and E-cadherin in metastatic tumors was detected by immunohistochemical assay. Results of wound healing and cell invasion assays suggest that treatment with UTI, CUR, and UTI plus CUR, respectively, significantly inhibit HCT-116 cell migration and invasion. Furthermore, results of CRC hepatic metastasis on a nude mouse model showed that treatment with UTI, CUR alone, and a combination notably inhibited hepatic metastases from CRC and prolonged survival of tumor-bearing mice, especially in the UTI plus CUR group. These results suggest that the combination of UTI and CUR together may offer greater inhibition against metastasis of CRC.
Collapse
Affiliation(s)
- Fei Shen
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wen-Song Cai
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiang-Lin Li
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhe Feng
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qi-cai Liu
- Experimental Medical Research Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huan-qing Xiao
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Cao
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Bo Xu
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|