101
|
Comparison of asymptomatic bacteriuria Escherichia coli isolates from healthy individuals versus those from hospital patients shows that long-term bladder colonization selects for attenuated virulence phenotypes. Infect Immun 2011; 80:668-78. [PMID: 22104113 DOI: 10.1128/iai.06191-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Asymptomatic bacteriuria (ABU) is a condition where bacteria stably colonize the urinary tract, in a manner closely resembling commensalism at other mucosal sites. The patients carry >10(5) CFU/ml for extended periods of time and rarely develop symptoms. Contrasting the properties of ABU strains to those of uropathogenic isolates causing symptomatic infection is therefore highly relevant to understand mechanisms of bacterial adaptation. The prototype ABU strain Escherichia coli 83972 has a smaller genome than uropathogenic E. coli (UPEC) strains with deletions or point mutations in several virulence genes, suggesting that ABU strains undergo a programmed reductive evolution within human hosts. This study addressed if these observations can be generalized. Strains causing ABU in outpatients or hospitalized patients after catheterization or other invasive procedures were compared to commensal E. coli isolates from the intestinal flora of healthy individuals. Notably, clonal complex 73 (CC73) was a prominent phylogenetic lineage dominated by ABU isolates. ABU isolates from outpatients and hospitalized patients had a similar overall virulence gene repertoire, which distinguished them from many commensals, but typical UPEC virulence genes were less frequently attenuated in hospital strains than in outpatient strains or commensals. The decreased virulence potential of outpatient ABU isolates relative to that of ABU strains from hospitalized patients supports the hypothesis that loss of expression or decay of virulence genes facilitates long-term carriage and adaptation to host environments.
Collapse
|
102
|
Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 2011; 43:1275-80. [PMID: 22081229 PMCID: PMC3245322 DOI: 10.1038/ng.997] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 10/05/2011] [Indexed: 01/22/2023]
Abstract
Bacterial pathogens evolve during the infection of their human hosts1-8, but separating adaptive and neutral mutations remains challenging9-11. Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course.
Collapse
|
103
|
Distinct transcriptional profiles and phenotypes exhibited by Escherichia coli O157:H7 isolates related to the 2006 spinach-associated outbreak. Appl Environ Microbiol 2011; 78:455-63. [PMID: 22081562 DOI: 10.1128/aem.06251-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2006, a large outbreak of Escherichia coli O157:H7 was linked to the consumption of ready-to-eat bagged baby spinach in the United States. The likely sources of preharvest spinach contamination were soil and water that became contaminated via cattle or feral pigs in the proximity of the spinach fields. In this study, we compared the transcriptional profiles of 12 E. coli O157:H7 isolates that possess the same two-enzyme pulsed-field gel electrophoresis (PFGE) profile and are related temporally or geographically to the above outbreak. These E. coli O157:H7 isolates included three clinical isolates, five isolates from separate bags of spinach, and single isolates from pasture soil, river water, cow feces, and a feral pig. The three clinical isolates and two spinach bag isolates grown in cultures to stationary phase showed decreased expression of many σ(S)-regulated genes, including gadA, osmE, osmY, and katE, compared with the soil, water, cow, feral pig, and the other three spinach bag isolates. The decreased expression of these σ(S)-regulated genes was correlated with the decreased resistance of the isolates to acid stress, osmotic stress, and oxidative stress but increases in scavenging ability. We also observed that intraisolate variability was much more pronounced among the clinical and spinach isolates than among the environmental isolates. Together, the transcriptional and phenotypic differences of the spinach outbreak isolates of E. coli O157:H7 support the hypothesis that some variants within the spinach bag retained characteristics of the preharvest isolates, whereas other variants with altered gene expression and phenotypes infected the human host.
Collapse
|
104
|
Reeves PR, Liu B, Zhou Z, Li D, Guo D, Ren Y, Clabots C, Lan R, Johnson JR, Wang L. Rates of mutation and host transmission for an Escherichia coli clone over 3 years. PLoS One 2011; 6:e26907. [PMID: 22046404 PMCID: PMC3203180 DOI: 10.1371/journal.pone.0026907] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/06/2011] [Indexed: 11/18/2022] Open
Abstract
Although over 50 complete Escherichia coli/Shigella genome sequences are available, it is only for closely related strains, for example the O55:H7 and O157:H7 clones of E. coli, that we can assign differences to individual evolutionary events along specific lineages. Here we sequence the genomes of 14 isolates of a uropathogenic E. coli clone that persisted for 3 years within a household, including a dog, causing a urinary tract infection (UTI) in the dog after 2 years. The 20 mutations observed fit a single tree that allows us to estimate the mutation rate to be about 1.1 per genome per year, with minimal evidence for adaptive change, including in relation to the UTI episode. The host data also imply at least 6 host transfer events over the 3 years, with 2 lineages present over much of that period. To our knowledge, these are the first direct measurements for a clone in a well-defined host community that includes rates of mutation and host transmission. There is a concentration of non-synonymous mutations associated with 2 transfers to the dog, suggesting some selection pressure from the change of host. However, there are no changes to which we can attribute the UTI event in the dog, which suggests that this occurrence after 2 years of the clone being in the household may have been due to chance, or some unknown change in the host or environment. The ability of a UTI strain to persist for 2 years and also to transfer readily within a household has implications for epidemiology, diagnosis, and clinical intervention.
Collapse
Affiliation(s)
- Peter R. Reeves
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia
| | - Bin Liu
- Tianjin Economic-Technological Development Area School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Zhemin Zhou
- Tianjin Economic-Technological Development Area School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Dan Li
- Tianjin Economic-Technological Development Area School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Dan Guo
- Tianjin Economic-Technological Development Area School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Yan Ren
- Tianjin Economic-Technological Development Area School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Connie Clabots
- Veterans Affairs Medical Center and Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - James R. Johnson
- Veterans Affairs Medical Center and Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lei Wang
- Tianjin Economic-Technological Development Area School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin, China
- * E-mail:
| |
Collapse
|
106
|
Ragnarsdóttir B, Lutay N, Grönberg-Hernandez J, Köves B, Svanborg C. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 2011; 8:449-68. [PMID: 21750501 DOI: 10.1038/nrurol.2011.100] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A functional and well-balanced immune response is required to resist most infections. Slight dysfunctions in innate immunity can turn the 'friendly' host defense into an unpleasant foe and give rise to disease. Beneficial and destructive forces of innate immunity have been discovered in the urinary tract and mechanisms by which they influence the severity of urinary tract infections (UTIs) have been elucidated. By modifying specific aspects of the innate immune response to UTI, genetic variation either exaggerates the severity of acute pyelonephritis to include urosepsis and renal scarring or protects against symptomatic disease by suppressing innate immune signaling, as in asymptomatic bacteriuria (ABU). Different genes are polymorphic in patients prone to acute pyelonephritis or ABU, respectively, and yet discussions of UTI susceptibility in clinical practice still focus mainly on social and behavioral factors or dysfunctional voiding. Is it not time for UTIs to enter the era of molecular medicine? Defining why certain individuals are protected from UTI while others have severe, recurrent infections has long been difficult, but progress is now being made, encouraging new approaches to risk assessment and therapy in this large and important patient group, as well as revealing promising facets of 'good' versus 'bad' inflammation.
Collapse
Affiliation(s)
- Bryndís Ragnarsdóttir
- Section of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, 22362 Lund, Sweden
| | | | | | | | | |
Collapse
|
107
|
Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 2011; 7:509. [PMID: 21734648 PMCID: PMC3159978 DOI: 10.1038/msb.2011.42] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/12/2011] [Indexed: 12/25/2022] Open
Abstract
Advances in DNA sequencing, high-throughput technologies, and genetic manipulation systems have enabled empirical studies of the molecular and genomic bases of adaptive evolution. This review discusses key insights learned from direct observation of the evolution process. Laboratory evolution studies provide fundamental biological insight through direct observation of the evolution process. They not only enable testing of evolutionary theory and principles, but also have applications to metabolic engineering and human health. Genome-scale tools are revolutionizing studies of laboratory evolution by providing complete determination of the genetic basis of adaptation and the changes in the organism's gene expression state. Here, we review studies centered on four central themes of laboratory evolution studies: (1) the genetic basis of adaptation; (2) the importance of mutations to genes that encode regulatory hubs; (3) the view of adaptive evolution as an optimization process; and (4) the dynamics with which laboratory populations evolve.
Collapse
|
108
|
Alizon S, Luciani F, Regoes RR. Epidemiological and clinical consequences of within-host evolution. Trends Microbiol 2010; 19:24-32. [PMID: 21055948 DOI: 10.1016/j.tim.2010.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022]
Abstract
Many viruses and bacteria are known to evolve rapidly over the course of an infection. However, epidemiological studies generally assume that within-host evolution is an instantaneous process. We argue that the dynamics of within-host evolution has implications at the within-host and at the between-host levels. We first show that epidemiologists should consider within-host evolution, notably because it affects the genotype of the pathogen that is transmitted. We then present studies that investigate evolution at the within-host level and examine the extent to which these studies can help to understand infection traits involved in the epidemiology (e.g. transmission rate, virulence, recovery rate). Finally, we discuss how new techniques for data acquisition can open new perspectives for empirical and theoretical research.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire Génétique et Évolution des Maladies Infectieuses, Unité Mixte de Recherche du Centre national de la Recherche Scientifique et de l'Institut de Recherche pour le Développement 2724, 911 avenue Agropolis, BP 64501, 34394 Montpellier CEDEX 5, France.
| | | | | |
Collapse
|