101
|
Imaging HIV-1 Genomic DNA from Entry through Productive Infection. J Virol 2017; 91:JVI.00034-17. [PMID: 28250118 DOI: 10.1128/jvi.00034-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023] Open
Abstract
In order to track the fate of HIV-1 particles from early entry events through productive infection, we developed a method to visualize HIV-1 DNA reverse transcription complexes by the incorporation and fluorescent labeling of the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) into nascent viral DNA during cellular entry. Monocyte-derived macrophages were chosen as natural targets of HIV-1, as they do not divide and therefore do not incorporate EdU into chromosomal DNA, which would obscure the detection of intranuclear HIV-1 genomes. Using this approach, we observed distinct EdU puncta in the cytoplasm of infected cells within 12 h postinfection and subsequent accumulation of puncta in the nucleus, which remained stable through 5 days. The depletion of the restriction factor SAMHD1 resulted in a markedly increased number of EdU puncta, allowing efficient quantification of HIV-1 reverse transcription events. Analysis of HIV-1 isolates bearing defined mutations in the capsid protein revealed differences in their cytoplasmic and nuclear accumulation, and data from quantitative PCR analysis closely recapitulated the EdU results. RNA fluorescence in situ hybridization identified actively transcribing, EdU-labeled HIV-1 genomes in productively infected cells, and immunofluorescence analysis confirmed that CDK9, phosphorylated at serine 175, was recruited to RNA-positive HIV-1 DNA, providing a means to directly observe transcriptionally active HIV-1 genomes in productively infected cells. Overall, this system allows stable labeling and monitoring of HIV genomic DNA within infected cells during cytoplasmic transit, nuclear import, and mRNA synthesis.IMPORTANCE The fates of HIV-1 reverse transcription products within infected cells are not well understood. Although previous imaging approaches identified HIV-1 intermediates during early stages of infection, few have connected these events with the later stages that ultimately lead to proviral transcription and the production of progeny virus. Here we developed a technique to label HIV-1 genomes using modified nucleosides, allowing subsequent imaging of cytoplasmic and nuclear HIV-1 DNA in infected monocyte-derived macrophages. We used this technique to track the efficiency of nuclear entry as well as the fates of HIV-1 genomes in productively and nonproductively infected macrophages. We visualized transcriptionally active HIV-1 DNA, revealing that transcription occurs in a subset of HIV-1 genomes in productively infected cells. Collectively, this approach provides new insights into the nature of transcribing HIV-1 genomes and allows us to track the entire course of infection in macrophages, a key target of HIV-1 in infected individuals.
Collapse
|
102
|
Abstract
INTRODUCTION A number of cyclin-dependent kinases (CDKs) mediate key steps in the HIV-1 replication cycle and therefore have potential to serve as therapeutic targets for HIV-1 infection, especially in HIV-1 cure strategies. Current HIV-1 cure strategies involve the development of small molecules that are able to activate HIV-1 from latent infection, thereby allowing the immune system to recognize and clear infected cells. Areas covered: The role of seven CDK family members in the HIV-1 replication cycle is reviewed, with a focus on CDK9, as the mechanism whereby the viral Tat protein utilizes CDK9 to enhance viral replication is known in considerable detail. Expert opinion: Given the essential roles of CDKs in cellular proliferation and gene expression, small molecules that inhibit CDKs are unlikely to be feasible therapeutics for HIV-1 infection. However, small molecules that activate CDK9 and other select CDKs such as CDK11 have potential to reactivate latent HIV-1 and contribute to a functional cure of infection.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX USA
| |
Collapse
|
103
|
Da Silva Santos C, Tartour K, Cimarelli A. A Novel Entry/Uncoating Assay Reveals the Presence of at Least Two Species of Viral Capsids During Synchronized HIV-1 Infection. PLoS Pathog 2016; 12:e1005897. [PMID: 27690375 PMCID: PMC5045187 DOI: 10.1371/journal.ppat.1005897] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
To better characterize the behavior of HIV-1 capsids we developed EURT, for Entry/Uncoating assay based on core-packaged RNA availability and Translation. EURT is an alternative to Blam-Vpr, but as reporter RNA translation relies on core opening, it can be used to study viral capsids behavior. Our study reveals the existence of two major capsid species, a dead end one in which the viral genome is readily exposed to the cytoplasm and a functional one in which such exposure requires artificial core destabilization. Although reverse transcription drives a faster loss of susceptibility of viral cores to high doses of PF74, it does not lead to higher exposure of the viral genome, implying that viral cores protect the genome irrespectively of reverse transcription. Lastly, IFNα drifts cores from functional to non-functional species, revealing a novel core-destabilizing activity. This assay sheds new light on the behavior of viral cores inside target cells. Following viral-to-cellular membrane fusion, the HIV-1 genome is propelled inside the cell as part of an higher order nucleoproteic structure often referred to as viral core, or capsid. Here, we have developed a novel entry/uncoating assay based on the degree of exposure of a virion-packaged mRNA reporter to the translation machinery (EURT). Using this assay, we highlight here that at least two measurable kinds of viral capsids coexist during HIV-1 infection: one defined as open, in which the viral genome is readily accessible to translation and another that we define as closed, in which access to the genome is prevented until the artificial destabilization of capsids. Our data points to the former as dead-end products of infection and indicate the latter as the commonly referred infectious viral cores. Interestingly, we show here that despite the fact that reverse transcription reshapes viral cores, these structures maintain an exquisite ability to shield the viral genome from the cytoplasmic environment. Finally, IFNα that negatively impacts HIV-1 replication increases the proportion of open viral cores to the detriment of closed ones, suggesting a core-destabilizing activity driven by interferon-regulated proteins. Overall, this assay sheds new light on the behavior of viral cores inside target cells.
Collapse
Affiliation(s)
- Claire Da Silva Santos
- CIRI, Centre International de Recherche en Infectiologie, 46 Allée d’Italie, Lyon F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Université Claude Bernard Lyon I, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- Université de Lyon, Lyon, France
| | - Kevin Tartour
- CIRI, Centre International de Recherche en Infectiologie, 46 Allée d’Italie, Lyon F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Université Claude Bernard Lyon I, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- Université de Lyon, Lyon, France
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, 46 Allée d’Italie, Lyon F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Université Claude Bernard Lyon I, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|