101
|
Guo L, Hua K. Cervical Cancer: Emerging Immune Landscape and Treatment. Onco Targets Ther 2020; 13:8037-8047. [PMID: 32884290 PMCID: PMC7434518 DOI: 10.2147/ott.s264312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Immune cells are essential for defending the body’s balance and have increasingly been implicated in controlling tumor growth. In cervical cancer (CC), the immune landscape is extensively connected with human papillomavirus (HPV) status. Recent insights from studies have revealed that as a result of infection with HPV, immune cell populations such as lymphocytes or monocytes change during carcinogenesis. Immune therapy, in particular checkpoint inhibitors, those targeting PD-1 or PD-L1, has shown promising efficacy. This article reviews the immune landscape and immunotherapy of CC.
Collapse
Affiliation(s)
- Luopei Guo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Keqin Hua
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| |
Collapse
|
102
|
Wu S, Wu Y, Lu Y, Yue Y, Cui C, Yu M, Wang S, Liu M, Zhao Y, Sun Z. STAT1 expression and HPV16 viral load predict cervical lesion progression. Oncol Lett 2020; 20:28. [PMID: 32774501 PMCID: PMC7405543 DOI: 10.3892/ol.2020.11889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the fourth leading cause of cancer-associated mortality worldwide. However, its underlying molecular mechanisms are unclear. It is important to explore these mechanisms in order to identify novel diagnostic and prognostic biomarkers. The present study determined the association between STAT1 and human papillomavirus (HPV)16 in cervical lesions. STAT1 expression was detected by immunohistochemistry. Quantitative PCR was used to detect HPV16 viral load and STAT1 expression in cervical lesions. The potential associations among STAT1 expression, HPV16 viral load and the severity of cervical lesions in patients were analyzed using receiver operating characteristic (ROC) curves. The Cancer Genome Atlas database was used to analyze STAT1 expression and survival. High STAT1 expression was observed in 10.71 (3/28), 41.18 (14/34), 53.06 (26/49) and 90.00% (27/30) of normal tissue, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL) and cervical squamous cell carcinoma samples, respectively. The HPV16 copy number gradually increased with the progression of cervical lesions, with the highest copy number observed in cervical cancer samples. In addition, STAT1 expression was positively correlated with HPV16 viral load. Furthermore, ROC curve analysis demonstrated that the combination of STAT1 expression and HPV16 viral load was able to differentiate between LSIL/HSIL and cervical cancer samples. Bioinformatics analysis revealed that STAT1 expression was associated with improved survival in cervical cancer. Additionally, STAT1 expression was positively associated with the progression of cervical lesions, and HPV16 viral load may affect STAT1 expression. Overall, these findings indicate that STAT1 may be an indicator of the status of cervical lesions.
Collapse
Affiliation(s)
- Si Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yingying Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yiping Lu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Changwan Cui
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Yu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuang Wang
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Liu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Zhao
- Medical Examination Center, Shenyang Red Cross Hospital, Shenyang, Liaoning 110013, P.R. China
| | - Zhengrong Sun
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
103
|
Carrillo-Beltrán D, Muñoz JP, Guerrero-Vásquez N, Blanco R, León O, de Souza Lino V, Tapia JC, Maldonado E, Dubois-Camacho K, Hermoso MA, Corvalán AH, Calaf GM, Boccardo E, Aguayo F. Human Papillomavirus 16 E7 Promotes EGFR/PI3K/AKT1/NRF2 Signaling Pathway Contributing to PIR/NF-κB Activation in Oral Cancer Cells. Cancers (Basel) 2020; 12:cancers12071904. [PMID: 32679705 PMCID: PMC7409273 DOI: 10.3390/cancers12071904] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
A subset of oral carcinomas is etiologically related to high-risk human papillomavirus (HR-HPV) infection, with HPV16 being the most frequent HR-HPV type found in these carcinomas. The oncogenic role of HR-HPV is strongly dependent on the overexpression of E6 and E7 oncoproteins, which, in turn, induce p53 and pRb degradation, respectively. Additionally, it has been suggested that HR-HPV oncoproteins are involved in the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), inducing cancer progression and metastasis. Previously, we reported that HPV16 E7 oncoprotein promotes Pirin upregulation resulting in increased epithelial–mesenchymal transition (EMT) and cell migration, with Pirin being an oxidative stress sensor and activator of NF-κB. In this study, we demonstrate the mechanism by which HPV16 E7-mediated Pirin overexpression occurs by promoting EGFR/PI3K/AKT1/NRF2 signaling, thus causing PIR/NF-κB activation in oral tumor cells. Our results demonstrate a new mechanism by which E7 contributes to oral cancer progression, proposing PIR as a potential new therapeutic target.
Collapse
Affiliation(s)
- Diego Carrillo-Beltrán
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (D.C.-B.); (N.G.-V.); (R.B.)
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapaca, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Nahir Guerrero-Vásquez
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (D.C.-B.); (N.G.-V.); (R.B.)
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (D.C.-B.); (N.G.-V.); (R.B.)
| | - Oscar León
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Osorno 933, Chile;
| | - Vanesca de Souza Lino
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - Julio C. Tapia
- Programa Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (J.C.T.); (E.M.)
| | - Edio Maldonado
- Programa Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (J.C.T.); (E.M.)
| | - Karen Dubois-Camacho
- Innate Immunity Laboratory, Immunology Program, Instituto de Ciencias biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (K.D.-C.); (M.A.H.)
| | - Marcela A. Hermoso
- Innate Immunity Laboratory, Immunology Program, Instituto de Ciencias biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (K.D.-C.); (M.A.H.)
| | - Alejandro H. Corvalán
- Hematology and Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapaca, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil;
- Correspondence: (E.B.); (F.A.)
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (D.C.-B.); (N.G.-V.); (R.B.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Correspondence: (E.B.); (F.A.)
| |
Collapse
|
104
|
Cancer Patients Have a Higher Risk Regarding COVID-19 - and Vice Versa? Pharmaceuticals (Basel) 2020; 13:ph13070143. [PMID: 32640723 PMCID: PMC7408191 DOI: 10.3390/ph13070143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The world is currently suffering from a pandemic which has claimed the lives of over 230,000 people to date. The responsible virus is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causes the coronavirus disease 2019 (COVID-19), which is mainly characterized by fever, cough and shortness of breath. In severe cases, the disease can lead to respiratory distress syndrome and septic shock, which are mostly fatal for the patient. The severity of disease progression was hypothesized to be related to an overshooting immune response and was correlated with age and comorbidities, including cancer. A lot of research has lately been focused on the pathogenesis and acute consequences of COVID-19. However, the possibility of long-term consequences caused by viral infections which has been shown for other viruses are not to be neglected. In this regard, this opinion discusses the interplay of SARS-CoV-2 infection and cancer with special focus on the inflammatory immune response and tissue damage caused by infection. We summarize the available literature on COVID-19 suggesting an increased risk for severe disease progression in cancer patients, and we discuss the possibility that SARS-CoV-2 could contribute to cancer development. We offer lines of thought to provide ideas for urgently needed studies on the potential long-term effects of SARS-CoV-2 infection.
Collapse
|
105
|
MicroRNA-18a targeting of the STK4/MST1 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS Pathog 2020; 16:e1008624. [PMID: 32555725 PMCID: PMC7326282 DOI: 10.1371/journal.ppat.1008624] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/30/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy worldwide. They are the aetiological agents of almost all cervical cancers as well as a sub-set of other anogenital and head and neck cancers. Hijacking of host cellular pathways is essential for virus pathogenesis; however, a major challenge remains to identify key host targets and to define their contribution to HPV-driven malignancy. The Hippo pathway regulates epithelial homeostasis by down-regulating the function of the transcription factor YAP. Increased YAP expression has been observed in cervical cancer but the mechanisms driving this increase remain unclear. We found significant down-regulation of the master Hippo regulatory kinase STK4 (also termed MST1) in cervical disease samples and cervical cancer cell lines compared with healthy controls. Re-introduction of STK4 inhibited the proliferation of HPV positive cervical cells and this corresponded with decreased YAP nuclear localization and decreased YAP-dependent gene expression. The HPV E6 and E7 oncoproteins maintained low STK4 expression in cervical cancer cells by upregulating the oncomiR miR-18a, which directly targeted the STK4 mRNA 3’UTR. Interestingly, miR-18a knockdown increased STK4 expression and activated the Hippo pathway, significantly reducing cervical cancer cell proliferation. Our results identify STK4 as a key cervical cancer tumour suppressor, which is targeted via miR-18a in HPV positive tumours. Our study indicates that activation of the Hippo pathway may offer a therapeutically beneficial option for cervical cancer treatment. HPVs are the causative agents of ~5% of human cancers. Better understanding of the mechanisms by which these viruses deregulate cellular signalling pathways may offer therapeutic options for HPV-associated malignancies. The transcription factor YAP is active in cervical cancer but the mechanisms controlling its activation remain unclear. YAP is negatively regulated and sequestered in the cytoplasm through activation of the Hippo pathway. We discovered that expression of the master Hippo kinase, STK4 (also termed MST1), is reduced in HPV positive cervical cell lines and cervical disease samples. Low STK4 levels were maintained by the HPV oncogenes through up-regulation of miR-18a, which targeted the STK4 mRNA 3’UTR. Re-introduction of STK4 or bypassing miR-18a-dependent regulation de-activated YAP-driven transcription and reduced cell proliferation. Thus, our study identifies a novel interplay between HPV oncogenes and the STK4 tumour suppressor and identifies the Hippo pathway as a target for therapeutic intervention in HPV-associated malignancies.
Collapse
|
106
|
Jahanshahi M, Maleki Dana P, Badehnoosh B, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B, Moazzami B, Chaichian S. Anti-tumor activities of probiotics in cervical cancer. J Ovarian Res 2020; 13:68. [PMID: 32527332 PMCID: PMC7291573 DOI: 10.1186/s13048-020-00668-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is considered as an important malignancy among women worldwide. Currently-used treatments of cervical cancer are reported to be cytotoxic for patients. Moreover, these therapies have shown some side effects which can negatively affect the lives of women suffering from this cancer. Therefore, there is need for anti-tumor agents that are less toxic than common therapeutic drugs. Besides, applying agents for preventing or reducing the side effects of cervical cancer therapies can be effective in improving the life quality of cervical cancer patients. Studies have shown that probiotics have several effects on biological processes. One of the most prominent aspects in which probiotics play a role is in the field of cancer. There are multiple studies which have focused on the functions of probiotics in diagnosis, prevention, or treatment of cancer. Besides their direct anti-tumor activities, probiotics can be used as an additional agent for enhancing or modulating other diagnostic and therapeutic methods. Herein, the effects of probiotics on cervical cancer cells are discussed, which may be useful in the prevention and treatment of this cancer. We review the studies concerned with the roles of probiotics in modulating and reducing the gastrointestinal adverse effects caused by cervical cancer therapies. Furthermore, we cover the investigations focusing on the combination of probiotics with other drugs for diagnosis or treatment of cervical cancer.
Collapse
Affiliation(s)
- Moghaddaseh Jahanshahi
- Clinical Research Development Center (CRDC), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Chaichian
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
107
|
Hao Y, Yan Z, Zhang A, Hu S, Wang N, Luo XG, Ma W, Zhang TC, He H. IL-6/STAT3 mediates the HPV18 E6/E7 stimulated upregulation of MALAT1 gene in cervical cancer HeLa cells. Virus Res 2020; 281:197907. [DOI: 10.1016/j.virusres.2020.197907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/23/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
|
108
|
Pathak S, Wilczyński JR, Paradowska E. Factors in Oncogenesis: Viral Infections in Ovarian Cancer. Cancers (Basel) 2020; 12:E561. [PMID: 32121320 PMCID: PMC7139377 DOI: 10.3390/cancers12030561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of cancer death in women, with high-grade serous ovarian cancer (HGSOC) being the most lethal gynecologic malignancy among women. This high fatality rate is the result of diagnosis of a high number of new cases when cancer implants have already spread. The poor prognosis is due to our inadequate understanding of the molecular mechanisms preceding ovarian malignancy. Knowledge about the site of origination has been improved recently by the discovery of tube intraepithelial cancer (TIC), but the potential risk factors are still obscure. Due to high tumoral heterogeneity in OC, the establishment of early stage biomarkers is still underway. Microbial infection may induce or result in chronic inflammatory infection and in the pathogenesis of cancers. Microbiome research has shed light on the relationships between the host and microbiota, as well as the direct roles of host pathogens in cancer development, progression, and drug efficacy. While controversial, the detection of viruses within ovarian malignancies and fallopian tube tissues suggests that these pathogens may play a role in the development of OC. Genomic and proteomic approaches have enhanced the methods for identifying candidates in early screening. This article summarizes the existing knowledge related to the molecular mechanisms that lead to tumorigenesis in the ovary, as well as the viruses detected in OC cases and how they may elevate this process.
Collapse
Affiliation(s)
- Sudipta Pathak
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
109
|
AL-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Genome-Wide Tiling Array Analysis of HPV-Induced Warts Reveals Aberrant Methylation of Protein-Coding and Non-Coding Regions. Genes (Basel) 2019; 11:E34. [PMID: 31892232 PMCID: PMC7017144 DOI: 10.3390/genes11010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
The human papillomaviruses (HPV) are a group of double-stranded DNA viruses that exhibit an exclusive tropism for squamous epithelia. HPV can either be low- or high-risk depending on its ability to cause benign lesions or cancer, respectively. Unsurprisingly, the majority of epigenetic research has focused on the high-risk HPV types, neglecting the low-risk types in the process. Therefore, the main objective of this study is to better understand the epigenetics of wart formation by investigating the differences in methylation between HPV-induced cutaneous warts and normal skin. A number of clear and very significant differences in methylation patterns were found between cutaneous warts and normal skin. Around 55% of the top-ranking 100 differentially methylated genes in warts were protein coding, including the EXOC4, KCNU, RTN1, LGI1, IRF2, and NRG1 genes. Additionally, non-coding RNA genes, such as the AZIN1-AS1, LINC02008, and MGC27382 genes, constituted 11% of the top-ranking 100 differentially methylated genes. Warts exhibited a unique pattern of methylation that is a possible explanation for their transient nature. Since the genetics of cutaneous wart formation are not completely known, the findings of the present study could contribute to a better understanding of how HPV infection modulates host methylation to give rise to warts in the skin.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Firas A. Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
110
|
Morgan EL, Macdonald A. JAK2 Inhibition Impairs Proliferation and Sensitises Cervical Cancer Cells to Cisplatin-Induced Cell Death. Cancers (Basel) 2019; 11:cancers11121934. [PMID: 31817106 PMCID: PMC6966458 DOI: 10.3390/cancers11121934] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is the underlying cause of ~5% of all human cancers, including the majority of cervical carcinomas and many other ano-genital and oral cancers. A major challenge remains to identify key host targets of HPV and to reveal how they contribute to virus-mediated malignancy. The HPV E6 oncoprotein aberrantly activates the signal transducer and activator of transcription 3 (STAT3) transcription factor and this is achieved by a virus-driven increase in the levels of the pro-inflammatory cytokine interleukin-6 (IL-6) in HPV positive cervical cancers cells. Crucially, STAT3 activity is essential for the proliferation and survival of cervical cancer cells, suggesting that targeting STAT3 may have therapeutic potential. Unfortunately, the development of direct STAT3 inhibitors has been problematic in the clinic due to toxicity issues identified in early stage trials. To overcome this issue, we focused on the protein Janus kinase 2 (JAK2), which phosphorylates STAT3 and is essential for STAT3 activation. Here, we demonstrate that inhibiting JAK2 reduces cell proliferation and induces apoptosis in HPV transformed cervical cancer cells. We further establish that this is due to inhibition of phosphorylation of the JAK2 substrates STAT3 and STAT5. Finally, we demonstrate that the clinically available JAK2 inhibitor Ruxolitinib synergises with cisplatin in inducing apoptosis, highlighting JAK2 as a promising therapeutic target in HPV-driven cancers.
Collapse
|
111
|
Kaempferia parviflora Extract Inhibits STAT3 Activation and Interleukin-6 Production in HeLa Cervical Cancer Cells. Int J Mol Sci 2019; 20:ijms20174226. [PMID: 31470515 PMCID: PMC6747281 DOI: 10.3390/ijms20174226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Kaempferia parviflora (KP) has been reported to have anti-cancer activities. We previously reported its effects against cervical cancer cells and continued to elucidate the effects of KP on inhibiting the production and secretion of interleukin (IL)-6, as well as its relevant signaling pathways involved in cervical tumorigenesis. We discovered that KP suppressed epidermal growth factor (EGF)-induced IL-6 secretion in HeLa cells, and it was associated with a reduced level of Glycoprotein 130 (GP130), phosphorylated signal transducers and activators of transcription 3 (STAT3), and Mcl-1. Our data clearly showed that KP has no effect on nuclear factor kappa B (NF-κB) localization status. However, we found that KP inhibited EGF-stimulated phosphorylation of tyrosine 1045 and tyrosine 1068 of EGF receptor (EGFR) without affecting its expression level. The inhibition of EGFR activation was verified by the observation that KP significantly suppressed a major downstream MAP kinase, ERK1/2. Consistently, KP reduced the expression of Ki-67 protein, which is a cellular marker for proliferation. Moreover, KP potently inhibited phosphorylation of STAT3, Akt, and the expression of Mcl-1 in response to exogenous IL-6 stimulation. These data suggest that KP suppresses EGF-induced production of IL-6 and inhibits its autocrine IL-6/STAT3 signaling critical for maintaining cancer cell progression. We believe that KP may be a potential alternative anti-cancer agent for suppressing cervical tumorigenesis.
Collapse
|