101
|
Zhang D, Li S, Tan Q, Pang Z. Twin-Based DNA Methylation Analysis Takes the Center Stage of Studies of Human Complex Diseases. J Genet Genomics 2012. [DOI: 10.1016/j.jgg.2012.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
102
|
Genetics of Physical Activity and Physical Inactivity in Humans. Behav Genet 2012; 42:559-78. [DOI: 10.1007/s10519-012-9534-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/28/2012] [Indexed: 01/07/2023]
|
103
|
De Moor MHM, Liu YJ, Boomsma DI, Li J, Hamilton JJ, Hottenga JJ, Levy S, Liu XG, Pei YF, Posthuma D, Recker RR, Sullivan PF, Wang L, Willemsen G, Yan H, De Geus EJC, Deng HW. Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc 2011; 41:1887-95. [PMID: 19727025 DOI: 10.1249/mss.0b013e3181a2f646] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The objective of this study was to identify genetic variants that are associated with adult leisure time exercise behavior using genome-wide association (GWA) in two independent samples. METHODS Exercise behavior was measured in 1644 unrelated Dutch and 978 unrelated American adults of European ancestry with detailed questions about type, frequency, and duration of exercise. Individuals were classified into regular exercisers or nonexercisers using a threshold of 4 MET·h (metabolic equivalents-hours per week). GWA analyses of ∼1.6 million observed and imputed Single Nucleotide Polymorphism (SNP) were conducted in both samples independently using logistic regression in SNPTEST, including sex, age, and body mass index as covariates. A meta-analysis of the results was performed using the weighted inverse variance method in METAL. RESULTS Thirty-seven novel SNPs in the PAPSS2 gene and in two intergenic regions on chromosomes 2q33.1 and 18p11.32 were associated with exercise participation (pooled P values <1.0 × 10(-5)). Previously reported associations (ACE, CASR, CYP19A1, DRD2, LEPR, and MC4R genes) or linkage findings (2p22.3, 4q28, 4q31.21 7p13, 9q31, 11p15, 13q22, 15q13, 18q12.2, 18q21.1, 19p13.3, and 20q12) were not replicated, although suggestive evidence was found for association to rs12405556 in the LEPR gene (pooled P value 9.7 × 10(-4); American sample, P value 9.8 × 10(-5)) and for association to rs8036270 in the GABRG3 gene (pooled P value 4.6 × 10(-5)) in the linkage region 15q12-13. CONCLUSIONS The heritability of leisure time exercise behavior is likely to be accounted for by many genetic variants with small effect size. These can be detected by GWA as was shown here for the PAPSS2 gene, but larger samples with genome-wide genotypes and high-quality exercise data are needed for further progress.
Collapse
Affiliation(s)
- Marleen H M De Moor
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Ahmetov II, Druzhevskaya AM, Lyubaeva EV, Popov DV, Vinogradova OL, Williams AG. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol 2011; 96:1302-10. [DOI: 10.1113/expphysiol.2011.060293] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
105
|
Eynon N, Ruiz JR, Oliveira J, Duarte JA, Birk R, Lucia A. Genes and elite athletes: a roadmap for future research. J Physiol 2011; 589:3063-70. [PMID: 21540342 DOI: 10.1113/jphysiol.2011.207035] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is compelling evidence that genetic factors influence several phenotype traits related to physical performance and training response as well as to elite athletic status. Previous case-control studies showed that ∼20 genetic variants seem to be associated with elite endurance athletic status. The present review aims to introduce novel methodological approaches in the field of sports genetics research, which can be applied in the near future to analyse the genotype profile associated with elite athletic status. These include genotype-phenotype association studies using gene expression analysis, analysis of post-transcriptional factors, particularly microRNAs, genome-wide scan linkage or genome-wide association studies, and novel algorithm approaches, such as 'genotype scores'. Several gaps in the current body of knowledge have been identified including, among others: small sample size of most athletic cohorts, lack of corroboration with replication cohorts of different ethnic backgrounds (particularly, made up of non-Caucasian athletes), the need of research accounting for the potential role of epigenetics in elite athletic performance, and also the need for future models that take into account the association between athletic status and complex gene-gene and gene-environment interactions. Some recommendations are provided to minimize research limitations in the field of sport genetics.
Collapse
Affiliation(s)
- Nir Eynon
- Department of Nutrition, Faculty of Health Sciences, Ariel University Center, Israel.
| | | | | | | | | | | |
Collapse
|
106
|
Michaëlsson K, Byberg L, Ahlbom A, Melhus H, Farahmand BY. Risk of severe knee and hip osteoarthritis in relation to level of physical exercise: a prospective cohort study of long-distance skiers in Sweden. PLoS One 2011; 6:e18339. [PMID: 21479136 PMCID: PMC3068188 DOI: 10.1371/journal.pone.0018339] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/04/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To complete long-distance ski races, regular physical exercise is required. This includes not only cross-country skiing but also endurance exercise during the snow-free seasons. The aim of this study was to determine whether the level of physical exercise is associated with future risk of severe osteoarthritis independent of previous diseases and injuries. METHODOLOGY/PRINCIPAL FINDINGS We used a cohort that consisted of 48 574 men and 5 409 women who participated in the 90 km ski race Vasaloppet at least once between 1989 and 1998. Number of performed races and finishing time were used as estimates of exercise level. By matching to the National Patient Register we identified participants with severe osteoarthritis, defined as arthroplasty of knee or hip due to osteoarthritis. With an average follow-up of 10 years, we identified 528 men and 42 women with incident osteoarthritis. The crude rate was 1.1/1000 person-years for men and 0.8/1000 person-years for women. Compared with racing once, participation in ≥ 5 races was associated with a 70% higher rate of osteoarthritis (multivariable-adjusted hazard ratio (HR) 1.72, 95% confidence interval (CI) 1.33 to 2.22). The association was dose-dependent with an adjusted HR of 1.09, 95% CI 1.05 to 1.13 for each completed race. A faster finishing time, in comparison with a slow finishing time, was also associated with an increased rate (adjusted HR 1.51, 95% CI 1.14 to 2.01). Contrasting those with 5 or more ski races and a fast finish time to those who only participated once with a slow finish time, the adjusted HR of osteoarthritis was 2.73, 95% CI 1.78 to 4.18. CONCLUSIONS/SIGNIFICANCE Participants with multiple and fast races have an increased risk of subsequent arthroplasty of knee and hip due to osteoarthritis, suggesting that intensive exercise may increase the risk.
Collapse
Affiliation(s)
- Karl Michaëlsson
- Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
107
|
Bréban S, Chappard C, Jaffré C, Briot K, Benhamou CL. Anthropometry at birth as a strong determinant factor of young women bone status: Influence of high-level physical activity. Joint Bone Spine 2011; 78:200-5. [DOI: 10.1016/j.jbspin.2010.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
|
108
|
Eynon N, Birk R. Using genetic tests for talent identification in sports: too soon to be true. J Pediatr Endocrinol Metab 2011; 24:607-8. [PMID: 21932612 DOI: 10.1515/jpem.2011.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Nir Eynon
- Department of Nutrition, School of Health Sciences, Ariel University Center, Israel
| | | |
Collapse
|
109
|
Schoenfelder M. Genetics-based performance talent research: polymorphisms as predictors of endurance performance. J Appl Physiol (1985) 2010; 108:1454-5. [DOI: 10.1152/japplphysiol.00331.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- M. Schoenfelder
- Technical University Munich, Institute of Public Health Research, Munich, Germany
| |
Collapse
|
110
|
Abstract
Recent research has analyzed the genetic factors that influence world-class athletic status. Much of what we know comes from association studies, with the ACE I/D and ACTN3 R577X polymorphisms having been extensively studied. The association between the ACTN3 R577X variation and elite athlete status in power sports is strongly documented, yet whether the current body of knowledge on other variants can be extrapolated to athletic champion status remains to be determined. Athletic champion status is a complex polygenic trait in which numerous candidate genes, complex gene–gene interactions, and environment–gene interactions are involved. Besides the need for more studies and new approaches taking into account the complexity of the problem, we believe that factors beyond genetic endowment are likely to have a stronger influence in the attainment of athletic champion status.
Collapse
|
111
|
Tan Q, Ohm Kyvik K, Kruse TA, Christensen K. Dissecting complex phenotypes using the genomics of twins. Funct Integr Genomics 2010; 10:321-7. [PMID: 20145969 DOI: 10.1007/s10142-010-0160-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 11/28/2022]
Abstract
Genetics in the post-genomic period is shifting from structural to functional genetics or genomics. Meanwhile, the use of twins is largely expanding from traditional heritability estimation for disease phenotypes to the study of both diseases and various molecular phenotypes, such as the regulatory phenotypes in functional genomics concerning gene expression and regulation, by engaging both classical twin design and marker-based gene mapping techniques in genetic epidemiology. New research designs have been proposed for making novel uses of twins in studying the molecular basis in the epigenetics of human diseases. Besides, twins not only serve as ideal samples for disease gene mapping using conventional genetic markers but also represent an excellent model for associating DNA copy number variations, a structural genetic marker, with human diseases. It is believed that, with the rapid development in biotechniques and new advances in bioinformatics, the unique samples of twins will make new contributions to our understanding of the nature and nurture in complex disease development and in human health. This paper aims at summarizing the new uses of twins in current genetic studies and suggesting novel proposes together with useful design and analytical strategies.
Collapse
Affiliation(s)
- Qihua Tan
- The Danish Twin Registry and The Danish Aging Research Center, Institute of Public Health, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000, Odense C, Denmark.
| | | | | | | |
Collapse
|
112
|
Are calcineurin genes associated with endurance phenotype traits? Eur J Appl Physiol 2010; 109:359-69. [DOI: 10.1007/s00421-010-1361-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
|
113
|
Ruiz JR, Arteta D, Buxens A, Artieda M, Gómez-Gallego F, Santiago C, Yvert T, Morán M, Lucia A. Can we identify a power-oriented polygenic profile? J Appl Physiol (1985) 2009; 108:561-6. [PMID: 20044471 DOI: 10.1152/japplphysiol.01242.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using the model originally developed by Williams and Folland (J Physiol 586: 113-121, 2008), we determined 1) a "total genotype score" (TGS, from the accumulated combination of the 6 polymorphisms, with a maximum value of "100" for the theoretically optimal polygenic score) in a group of elite power athletes, endurance athletes, and nonathletic controls, and 2) the probability for the occurrence of Spanish individuals with the "perfect" power-oriented profile (i.e., TGS = 100). We analyzed six polymorphism that are candidates to explain individual variations in elite power athletic status or power phenotypes (ACE I/D, ACTN3 R577X, AGT Met235Thr, GDF-8 K153R, IL6 -174 G/C, and NOS3 -786T>C) in 53 elite track and field power athletes (jumpers, sprinters), 100 nonathletic controls, and 100 elite endurance athletes (distance runners and road cyclists) (all Spanish Caucasian males). The mean TGS was significantly higher in power athletes (70.8 +/- 17.3) compared with endurance athletes (60.4 +/- 15.9; P < 0.001) and controls (63.3 +/- 13.2; P = 0.012), whereas it did not differ between the latter two groups (P = 0.366). A total of five power athletes (9.4%, all sprinters) had a theoretically "optimal" TGS of 100 vs. 0 subjects in the other two groups. The probability of a Spanish individual possessing a theoretically optimal polygenic profile for up to the six candidate polymorphisms we studied was very small, i.e., approximately 0.2% (or 1 in 500 Spanish individuals). We have identified a polygenic profile that allows us, at least partly, to distinguish elite power athletes from both endurance athletes and nonathletic population.
Collapse
Affiliation(s)
- Jonatan R Ruiz
- Dept. of Biosciences and Nutrition at NOVUM, Unit for Preventive Nutrition, Karolinska Institutet, Huddinge 14157, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Performance enhancing polymorphisms (PEPs) are examples of natural genetic variation that affect the outcome of athletic challenges. Elite athletes, and what separates them from the average competitor, have been the subjects of discussion and debate for decades. While training, diet, and mental fitness are all clearly important contributors to achieving athletic success, the fact that individuals reaching the pinnacle of their chosen sports often share both physical and physiological attributes suggests a role for genetics. That multiple members of a family often participate in highly competitive events, such as the Olympics, further supports this argument. In this review, we discuss what is known regarding the genes and gene families, including the mitochondrial genome, that are believed to play a role in human athletic performance. Where possible, we describe the physiological impact of the critical gene variants and consider predictions about other potentially important genes. Finally, we discuss the implications of these findings on the future for competitive athletics.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
115
|
Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, Mozhayskaya IA, Vinogradova OL, Astratenkova IV, Montgomery HE, Rogozkin VA. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet 2009; 126:751-61. [DOI: 10.1007/s00439-009-0728-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 07/25/2009] [Indexed: 11/30/2022]
|
116
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behav Genet 2009; 39:380-92. [PMID: 19288254 PMCID: PMC2688647 DOI: 10.1007/s10519-009-9260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/25/2009] [Indexed: 12/02/2022]
Abstract
The origin of individual differences in aptitude, defined as a domain-specific skill within the normal ability range, and talent, defined as a domain specific skill of exceptional quality, is under debate. The nature of the variation in aptitudes and exceptional talents across different domains was investigated in a population based twin sample. Self-report data from 1,685 twin pairs (12–24 years) were analyzed for Music, Arts, Writing, Language, Chess, Mathematics, Sports, Memory, and Knowledge. The influence of shared environment was small for both aptitude and talent. Additive and non-additive genetic effects explained the major part of the substantial familial clustering in the aptitude measures with heritability estimates ranging between .32 and .71. Heritability estimates for talents were higher and ranged between .50 and .92. In general, the genetic architecture for aptitude and talent was similar in men and women. Genetic factors contribute to a large extent to variation in aptitude and talent across different domains of intellectual, creative, and sports abilities.
Collapse
|