101
|
Surender EM, Bradberry SJ, Bright SA, McCoy CP, Williams DC, Gunnlaugsson T. Luminescent Lanthanide Cyclen-Based Enzymatic Assay Capable of Diagnosing the Onset of Catheter-Associated Urinary Tract Infections Both in Solution and within Polymeric Hydrogels. J Am Chem Soc 2016; 139:381-388. [DOI: 10.1021/jacs.6b11077] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Esther M. Surender
- School
of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity
College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Samuel J. Bradberry
- School
of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity
College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Sandra A. Bright
- School
of Biochemistry and Immunology, Trinity Biomedical Sciences Institute
(TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Colin P. McCoy
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, U.K
| | - D. Clive Williams
- School
of Biochemistry and Immunology, Trinity Biomedical Sciences Institute
(TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity
College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
102
|
Mazzei L, Cianci M, Musiani F, Lente G, Palombo M, Ciurli S. Inactivation of urease by catechol: Kinetics and structure. J Inorg Biochem 2016; 166:182-189. [PMID: 27888701 DOI: 10.1016/j.jinorgbio.2016.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
Urease is a Ni(II)-containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbamate at a rate 1015 times higher than the uncatalyzed reaction. Urease is a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Therefore, efficient urease inhibitors are actively sought. In this study, we describe a molecular characterization of the interaction between urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) with catechol, a model polyphenol. In particular, catechol irreversibly inactivates both SPU and JBU with a complex radical-based autocatalytic multistep mechanism. The crystal structure of the SPU-catechol complex, determined at 1.50Å resolution, reveals the structural details of the enzyme inhibition.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Michele Cianci
- European Molecular Biology Laboratory, DESY, Hamburg, Germany
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Gábor Lente
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Hungary
| | - Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy.
| |
Collapse
|
103
|
Abdullah MAA, Abuo-Rahma GEDAA, Abdelhafez ESMN, Hassan HA, Abd El-Baky RM. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives. Bioorg Chem 2016; 70:1-11. [PMID: 27908539 DOI: 10.1016/j.bioorg.2016.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/29/2016] [Accepted: 11/06/2016] [Indexed: 11/30/2022]
Abstract
New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC50=1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease.
Collapse
Affiliation(s)
- Mohammed A A Abdullah
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | | | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Rehab M Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
104
|
Hameed A, Al-Rashida M, Uroos M, Abid Ali S, Khan KM. Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opin Ther Pat 2016; 27:63-79. [PMID: 27774821 DOI: 10.1080/13543776.2017.1252752] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.
Collapse
Affiliation(s)
- Abdul Hameed
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - Mariya Al-Rashida
- b Department of Chemistry , Forman Christian College (A Chartered University) , Lahore , Pakistan
| | - Maliha Uroos
- c Institute of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Syed Abid Ali
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - Khalid Mohammed Khan
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| |
Collapse
|
105
|
3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg Med Chem 2016; 24:4519-4527. [DOI: 10.1016/j.bmc.2016.07.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/14/2022]
|
106
|
Fabini E, Zambelli B, Mazzei L, Ciurli S, Bertucci C. Surface plasmon resonance and isothermal titration calorimetry to monitor the Ni(II)-dependent binding of Helicobacter pylori NikR to DNA. Anal Bioanal Chem 2016; 408:7971-7980. [DOI: 10.1007/s00216-016-9894-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 02/03/2023]
|
107
|
Macegoniuk K, Grela E, Palus J, Rudzińska-Szostak E, Grabowiecka A, Biernat M, Berlicki Ł. 1,2-Benzisoselenazol-3(2H)-one Derivatives As a New Class of Bacterial Urease Inhibitors. J Med Chem 2016; 59:8125-33. [DOI: 10.1021/acs.jmedchem.6b00986] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Katarzyna Macegoniuk
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Grela
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jerzy Palus
- Department
of Organic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Monika Biernat
- Department
of Microbiology, Medical University of Wrocław, Tytusa Chałubińskiego
4, 50-368 Wrocław, Poland
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
108
|
Grela E, Dziełak A, Szydłowska K, Mucha A, Kafarski P, Grabowiecka AM. Whole-cell Proteus mirabilis urease inhibition by aminophosphinates for the control of struvite formation. J Med Microbiol 2016; 65:1123-1129. [PMID: 27550502 DOI: 10.1099/jmm.0.000342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The study evaluated the in vitro impact of a series of aminophosphinic urease inhibitors on Proteusmirabilis. The group of compounds comprised structurally diverse analogues of diamidophosphate built on an N-C-P scaffold. The influence of urease inhibition on urea-splitting activity was assessed by whole-cell pH-static kinetic measurements. The potential to prevent struvite formation was determined by monitoring changes in pH and ionic composition of artificial urine medium during P. mirabilis growth. The most active compounds exhibited stronger positive effect on urine stability than the acknowledged inhibitor acetohydroxamic acid. The high anti-ureolytic and pH-stabilizing effect of urease inhibitors 4 and 14 was well correlated with their reported kinetic properties against pure urease from P. mirabilis (Ki values of 0.62±0.09 and 0.202±0.057 µM, respectively, compared to 5.7±0.4 µM for acetohydroxamic acid). The effect of repressed ureolysis upon the viability of Proteus cells was studied using MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] metabolic efficiency assay and LIVE/DEAD fluorescent staining. Most of the compounds caused whole-cell dehydrogenase activity loss; four structures (1, 2, 4 and 14) reduced the culture viability by nearly 70 % at 1 mM concentration. Results of dual fluorescent staining suggested that besides urea-splitting prevention, the structures additionally exerted an outer-membrane-destabilizing effect.
Collapse
Affiliation(s)
- Ewa Grela
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Anna Dziełak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Katarzyna Szydłowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | | |
Collapse
|
109
|
Rauf MK, Zaib S, Talib A, Ebihara M, Badshah A, Bolte M, Iqbal J. Solution-phase microwave assisted parallel synthesis, biological evaluation and in silico docking studies of N,N'-disubstituted thioureas derived from 3-chlorobenzoic acid. Bioorg Med Chem 2016; 24:4452-4463. [PMID: 27480030 DOI: 10.1016/j.bmc.2016.07.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
A facile and robust microwave-assisted solution phase parallel synthesis protocol was exercised for the development of a 38-member library of N,N'-disubstituted thiourea analogues (1-38) by using an identical set of conditions. The reaction time for synthesis of N,N'-disubstituted thiourea analogues was drastically reduced from a reported duration of 8-12h for conventional methods to only 1.5-2.0min. All the derivatives (1-38) were characterized by physico-analytical techniques such as elemental analysis in combination with FT-IR, (1)H, (13)C NMR and by single crystal XRD analysis have also been performed. These compounds were screened for their in vitro urease inhibition activities. Majority of compounds exhibited potent urease inhibition activities, however, the most significant activity was found for 16, with an IC50 value of 1.23±0.1μM. Furthermore, the synthesized compounds were screened for their cytotoxic potential against lungs cancer cell lines. Cell culture studies demonstrated significant toxicity of the compounds on the cell lines, and the levels of toxicity were altered in the presence of various side groups. The molecular docking studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the urease enzymes. These compounds have a great potential and significance for further investigations.
Collapse
Affiliation(s)
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Ammara Talib
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Masahiro Ebihara
- Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Amin Badshah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Michael Bolte
- Institut für Anorganische Chemie, J.W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| |
Collapse
|
110
|
Xie J, Lin Z, Xian Y, Kong S, Lai Z, Ip S, Chen H, Guo H, Su Z, Yang X, Xu Y, Su Z. (−)-Patchouli alcohol protects against Helicobacter pylori urease-induced apoptosis, oxidative stress and inflammatory response in human gastric epithelial cells. Int Immunopharmacol 2016; 35:43-52. [DOI: 10.1016/j.intimp.2016.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/15/2016] [Accepted: 02/20/2016] [Indexed: 02/07/2023]
|
111
|
Hassan STS, Žemlička M. Plant-Derived Urease Inhibitors as Alternative Chemotherapeutic Agents. Arch Pharm (Weinheim) 2016; 349:507-22. [DOI: 10.1002/ardp.201500019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Sherif T. S. Hassan
- Faculty of Pharmacy; Department of Natural Drugs; University of Veterinary and Pharmaceutical Sciences Brno; Brno Czech Republic
| | - Milan Žemlička
- Department of Pharmacognosy and Botany; University of Veterinary Medicine and Pharmacy in Košice; Košice Slovak Republic
| |
Collapse
|
112
|
Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease. J Inorg Biochem 2016; 154:42-9. [DOI: 10.1016/j.jinorgbio.2015.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/22/2015] [Accepted: 11/01/2015] [Indexed: 11/21/2022]
|
113
|
Hameed A, Yaqub M, Hussain M, Hameed A, Ashraf M, Asghar H, Quart-ul-Ain QUA, Naseer MM, Mahmood K, Muddassar M, Tahir MN, Shafiq Z. Coumarin-based thiosemicarbazones as potent urease inhibitors: synthesis, solid state self-assembly and molecular docking. RSC Adv 2016. [DOI: 10.1039/c6ra12827k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of coumarin-based thiosemicarbazones and their metal complexes have been synthesized and their in vitro potency against urease was evaluated.
Collapse
Affiliation(s)
- Aminah Hameed
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan-60800
- Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan-60800
- Pakistan
| | - Mazhar Hussain
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan-60800
- Pakistan
| | - Abdul Hameed
- H. E. J. Research Institute of Chemistry
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| | - Muhammad Ashraf
- Department of Biochemistry
- Islamia University
- Bahawalpur
- Pakistan
| | - Humna Asghar
- Department of Biochemistry
- Islamia University
- Bahawalpur
- Pakistan
| | | | | | - Khalid Mahmood
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan-60800
- Pakistan
| | - Muhammad Muddassar
- Department of Biosciences
- COMSATS Institute of Information Technology
- Islamabad
- Pakistan
| | | | - Zahid Shafiq
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan-60800
- Pakistan
| |
Collapse
|
114
|
Ponnuvel S, Subramanian B, Ponnuraj K. Conformational Change Results in Loss of Enzymatic Activity of Jack Bean Urease on Its Interaction with Silver Nanoparticle. Protein J 2015; 34:329-37. [DOI: 10.1007/s10930-015-9627-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
115
|
Synthesis and evaluation of N-analogs of 1,2-diarylethane as Helicobacter pylori urease inhibitors. Bioorg Med Chem 2015; 23:4508-4513. [DOI: 10.1016/j.bmc.2015.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 11/18/2022]
|
116
|
Hameed A, Khan KM, Zehra ST, Ahmed R, Shafiq Z, Bakht SM, Yaqub M, Hussain M, de la Vega de León A, Furtmann N, Bajorath J, Shad HA, Tahir MN, Iqbal J. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorg Chem 2015; 61:51-7. [DOI: 10.1016/j.bioorg.2015.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/01/2015] [Accepted: 06/20/2015] [Indexed: 11/28/2022]
|
117
|
Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies. Bioorg Med Chem 2015; 23:6049-58. [PMID: 26081763 DOI: 10.1016/j.bmc.2015.05.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 11/23/2022]
Abstract
In this study 36 new compounds were synthesized by condensing barbituric acid or thiobarbituric acid and respective anilines (bearing different substituents) in the presence of triethyl orthoformate in good yields. In vitro urease inhibition studies against jack bean urease revealed that barbituric acid derived compounds (1-9 and 19-27) were found to exhibit low to moderate activity however thiobarbituric acid derived compounds (10-18 and 28-36) showed significant inhibition activity at low micro-molar concentrations. Among the synthesized compounds, compounds (15), (12), (10), (36), (16) and (35) showed excellent urease inhibition with IC50 values 8.53 ± 0.027, 8.93 ± 0.027, 12.96 ± 0.13, 15 ± 0.098, 18.9 ± 0.027 and 19.7 ± 0.63 μM, respectively, even better than the reference compound thiourea (IC50 = 21 ± 0.011). The compound (11) exhibited comparable activity to the standard with IC50 value 21.83 ± 0.19 μM. In silico molecular docking studies for most active compounds (10), (12), (15), (16), (35) and (36) and two inactive compounds (3) and (6) were performed to predict the binding patterns.
Collapse
|
118
|
Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13:269-84. [PMID: 25853778 DOI: 10.1038/nrmicro3432] [Citation(s) in RCA: 2149] [Impact Index Per Article: 214.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary tract infections (UTIs) are a severe public health problem and are caused by a range of pathogens, but most commonly by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus. High recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly increase the economic burden of these infections. In this Review, we discuss how basic science studies are elucidating the molecular details of the crosstalk that occurs at the host-pathogen interface, as well as the consequences of these interactions for the pathophysiology of UTIs. We also describe current efforts to translate this knowledge into new clinical treatments for UTIs.
Collapse
|
119
|
Yu XD, Zheng RB, Xie JH, Su JY, Huang XQ, Wang YH, Zheng YF, Mo ZZ, Wu XL, Wu DW, Liang YE, Zeng HF, Su ZR, Huang P. Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:69-78. [PMID: 25557028 DOI: 10.1016/j.jep.2014.12.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 09/07/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baicalin and scutellarin are the principal bioactive components of Scutellaria baicalensis Georgi which has extensively been incorporated into heat-clearing and detoxification formulas for the treatment of Helicobacter pylori-related gastrointestinal disorders in traditional Chinese medicine. However, the mechanism of action remained to be defined. AIM OF THE STUDY To explore the inhibitory effect, kinetics and mechanism of Helicobacter pylori urease (the vital pathogenetic factor for Helicobacter pylori infection) inhibition by baicalin and scutellarin, for their therapeutic potential. MATERIALS AND METHODS The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of baicalin and scutellarin was characterized with IC50 values, compared to acetohydroxamic acid (AHA), a well known Helicobacter pylori urease inhibitor. Lineweaver-Burk and Dixon plots for the Helicobacter pylori urease inhibition of baicalin and scutellarin was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni(2+) binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. Moreover, cytotoxicity experiment using Gastric Epithelial Cells (GES-1) was evaluated. RESULTS Baicalin and scutellarin effectively suppressed Helicobacter pylori urease in dose-dependent and time-independent manner with IC50 of 0.82±0.07 mM and 0.47±0.04 mM, respectively, compared to AHA (IC50=0.14±0.05 mM). Structure-activity relationship disclosed 4'-hydroxyl gave flavones an advantage to binding with Helicobacter pylori urease. Kinetic analysis revealed that the types of inhibition were non-competitive and reversible with inhibition constant Ki of 0.14±0.01 mM and 0.18±0.02 mM for baicalin and scutellarin, respectively. The mechanism of urease inhibition was considered to be blockage of the SH groups of Helicobacter pylori urease, since thiol reagents (L,D-dithiothreitol, L-cysteine and glutathione) abolished the inhibitory action and competitive active site Ni(2+) binding inhibitors (boric acid and sodium fluoride) carried invalid effect. Molecular docking study further supported the structure-activity analysis and indicated that baicalin and scutellarin interacted with the key residues Cys321 located on the mobile flap through S-H·π interaction, but did not interact with active site Ni(2+). Moreover, Baicalin (at 0.59-1.05 mM concentrations) and scutellarin (at 0.23-0.71 mM concentrations) did not exhibit significant cytotoxicity to GES-1. CONCLUSIONS Baicalin and scutellarin were non-competitive inhibitors targeting sulfhydryl groups especially Cys321 around the active site of Helicobacter pylori urease, representing potential to be good candidate for future research as urease inhibitor for treatment of Helicobacter pylori infection. Furthermore, our work gave additional scientific support to the use of Scutellaria baicalensis in traditional Chinese medicine (TCM) to treat gastrointestinal disorders.
Collapse
Affiliation(s)
- Xiao-Dan Yu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Rong-Bo Zheng
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou, Guangdong 510450, P.R. China
| | - Jian-Hui Xie
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Ji-Yan Su
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xiao-Qi Huang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Yong-Hong Wang
- Guangdong Institute of Microbiology, Guangzhou 510006, P.R. China
| | - Yi-Feng Zheng
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Zhi-Zhun Mo
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xiao-Li Wu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Dian-Wei Wu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Ye-er Liang
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China.
| | - Zi-Ren Su
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou, University of Chinese Medicine, Dongguan 523000, P.R. China
| | - Ping Huang
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China.
| |
Collapse
|
120
|
Macegoniuk K, Dziełak A, Mucha A, Berlicki Ł. Bis(aminomethyl)phosphinic Acid, a Highly Promising Scaffold for the Development of Bacterial Urease Inhibitors. ACS Med Chem Lett 2015; 6:146-50. [PMID: 25699141 DOI: 10.1021/ml500380f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
Inhibitors of bacterial ureases are considered to be promising compounds in the treatment of infections caused by Helicobacter pylori in the gastric tract and/or by urealytic bacteria (e.g., Proteus species) in the urinary tract. A new, extended transition state scaffold, bis(aminomethyl)phosphinic acid, was successfully explored for the construction of effective enzyme inhibitors. A reliable methodology for the synthesis of phosphinate analogues in a three-component Mannich-type reaction was elaborated. The obtained molecules were assayed against ureases purified from Sporosarcina pasteurii and Proteus mirabilis, and aminomethyl(N-n-hexylaminomethyl)phosphinic acid was found to be the most potent inhibitor, with a K i = 108 nM against the S. pasteurii enzyme.
Collapse
Affiliation(s)
- Katarzyna Macegoniuk
- Department of Bioorganic
Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Dziełak
- Department of Bioorganic
Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic
Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic
Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
121
|
Benini S, Cianci M, Mazzei L, Ciurli S. Fluoride inhibition of Sporosarcina pasteurii urease: structure and thermodynamics. J Biol Inorg Chem 2014; 19:1243-61. [DOI: 10.1007/s00775-014-1182-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/30/2014] [Indexed: 01/25/2023]
|
122
|
Saeed A, Imran A, Channar PA, Shahid M, Mahmood W, Iqbal J. 2-(Hetero(aryl)methylene)hydrazine-1-carbothioamides as Potent Urease Inhibitors. Chem Biol Drug Des 2014; 85:225-30. [DOI: 10.1111/cbdd.12379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Aamer Saeed
- Department of Chemistry; Quaid-I-Azam University; Islamabad 45320 Pakistan
| | - Aqeel Imran
- Centre for Advanced Drug Research; COMSATS Institute of Information Technology; Abbottabad Postal Code 22060 Pakistan
| | - Pervaiz A. Channar
- Department of Chemistry; Quaid-I-Azam University; Islamabad 45320 Pakistan
| | - Mohammad Shahid
- Department of Bioinformatics; Fraunhofer Institute SCAI; Sankt Augustin Germany
| | - Wajahat Mahmood
- Centre for Advanced Drug Research; COMSATS Institute of Information Technology; Abbottabad Postal Code 22060 Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research; COMSATS Institute of Information Technology; Abbottabad Postal Code 22060 Pakistan
| |
Collapse
|
123
|
Affiliation(s)
- Michael J Maroney
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
124
|
Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur J Med Chem 2013; 68:212-21. [DOI: 10.1016/j.ejmech.2013.07.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022]
|
125
|
Fluorimetric urease inhibition assay on a multilayer microfluidic chip with immunoaffinity immobilized enzyme reactors. Anal Biochem 2013; 441:51-7. [DOI: 10.1016/j.ab.2013.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/02/2013] [Accepted: 06/07/2013] [Indexed: 02/07/2023]
|
126
|
Loes AN, Ruyle L, Arvizu M, Gresko KE, Wilson AL, Deutch CE. Inhibition of urease activity in the urinary tract pathogen Staphylococcus saprophyticus. Lett Appl Microbiol 2013; 58:31-41. [PMID: 24001038 DOI: 10.1111/lam.12153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED Urease is a virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus. The susceptibility of this enzyme to chemical inhibition was determined using soluble extracts of Staph. saprophyticus strain ATCC 15305. Acetohydroxamic acid (Ki = 8.2 μg ml(-1) = 0.106 mmol l(-1) ) and DL-phenylalanine hydroxamic acid (Ki = 21 μg ml(-1) = 0.116 mmol l(-1) ) inhibited urease activity competitively. The phosphorodiamidate fluorofamide also caused competitive inhibition (Ki = 0.12 μg ml(-1) = 0.553 μmol l(-1) = 0.000553 mmol l(-1) ), but the imidazole omeprazole had no effect. Two flavonoids found in green tea extract [(+)-catechin hydrate (Ki = 357 μg ml(-1) = 1.23 mmol l(-1) ) and (-)-epigallocatechin gallate (Ki = 210 μg ml(-1) = 0.460 mmol l(-1) )] gave mixed inhibition. Acetohydroxamic acid, DL-phenylalanine hydroxamic acid, fluorofamide, (+)-catechin hydrate and (-)-epigallocatechin gallate also inhibited urease activity in whole cells of strains ATCC 15305, ATCC 35552 and ATCC 49907 grown in a rich medium or an artificial urine medium. Addition of acetohydroxamic acid or fluorofamide to cultures of Staph. saprophyticus in an artificial urine medium delayed the increase in pH that normally occurs during growth. These results suggest that urease inhibitors may be useful for treating urinary tract infections caused by Staph. saprophyticus. SIGNIFICANCE AND IMPACT OF THE STUDY The enzyme urease is a virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus. We have shown that urease activity in cell-free extracts and whole bacterial cells is susceptible to inhibition by hydroxamates, phosphorodiamidates and flavonoids, but not by imidazoles. Acetohydroxamic acid and fluorofamide in particular can temporarily delay the increase in pH that occurs when Staph. saprophyticus is grown in an artificial urine medium. These results suggest that urease inhibitors may be useful as chemotherapeutic agents for the treatment of urinary tract infections caused by this micro-organism.
Collapse
Affiliation(s)
- A N Loes
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Phoenix, AZ, USA
| | | | | | | | | | | |
Collapse
|
127
|
Ibrar A, Khan I, Abbas N. Structurally Diversified Heterocycles and Related Privileged Scaffolds as Potential Urease Inhibitors: A Brief Overview. Arch Pharm (Weinheim) 2013; 346:423-46. [DOI: 10.1002/ardp.201300041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 12/31/2022]
|
128
|
The crystal structure of Sporosarcina pasteurii urease in a complex with citrate provides new hints for inhibitor design. J Biol Inorg Chem 2013; 18:391-9. [DOI: 10.1007/s00775-013-0983-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/29/2013] [Indexed: 11/26/2022]
|
129
|
Adsul LK, Bandgar BP, Chavan HV, Jalde SS, Dhakane VD, Shirfule AL. Synthesis and biological evaluation of novel series of aminopyrimidine derivatives as urease inhibitors and antimicrobial agents. J Enzyme Inhib Med Chem 2012; 28:1316-23. [PMID: 23230954 DOI: 10.3109/14756366.2012.740477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel series of carbazole substituted aminopyrimidines (5a-p) were synthesized and screened for their in vitro urease inhibition and antimicrobial activity. Among the compounds, 4-(2,4-dichlorophenyl)-6-(9-methyl-9H-carbazol-3-yl)-pyrimidin-2-amine (5i) was found to be the most potent showing urease inhibitory activity with an IC50 value 19.4 ± 0.43 µM. Compounds 5c, 5g, 5j and 5o showed good activity against all selected bacterial strains and compounds 5b, 5c, 5m and 5o showed good activity against selected fungal strains. All the compounds were subjected for ADME predictions by computational method.
Collapse
Affiliation(s)
- Laxman K Adsul
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, Solapur University , Solapur, Maharashtra , India
| | | | | | | | | | | |
Collapse
|
130
|
Nabati F, Mojab F, Habibi-Rezaei M, Bagherzadeh K, Amanlou M, Yousefi B. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity. ACTA ACUST UNITED AC 2012; 20:72. [PMID: 23351780 PMCID: PMC3556030 DOI: 10.1186/2008-2231-20-72] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 11/18/2022]
Abstract
Background and purpose of the study H. pylori infection is an important etiologic impetus usually leading to gastric disease and urease enzyme is the most crucial role is to protect the bacteria in the acidic environment of the stomach. Then urease inhibitors would increase sensitivity of the bacteria in acidic medium. Methods 137 Iranian traditional medicinal plants were examined against Jack bean urease activity by Berthelot reaction. Each herb was extracted using 50% aqueous methanol. The more effective extracts were further tested and their IC50 values were determined. Results 37 plants out of the 137 crude extracts revealed strong urease inhibitory activity (more than 70% inhibition against urease activity at 10 mg/ml concentration). Nine of the whole studied plants crude extracts were found as the most effective with IC50 values less than 500 μg/ml including; Rheum ribes, Sambucus ebulus, Pistachia lentiscus, Myrtus communis, Areca catechu, Citrus aurantifolia, Myristica fragrans, Cinnamomum zeylanicum and Nicotiana tabacum. Conclusions The most potent urease inhibitory was observed for Sambucus ebulus and Rheum ribes extracts with IC50 values of 57 and 92 μg/ml, respectively.
Collapse
Affiliation(s)
- Farzaneh Nabati
- School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
131
|
Xiao ZP, Wang XD, Peng ZY, Huang S, Yang P, Li QS, Zhou LH, Hu XJ, Wu LJ, Zhou Y, Zhu HL. Molecular docking, kinetics study, and structure-activity relationship analysis of quercetin and its analogous as Helicobacter pylori urease inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10572-10577. [PMID: 23067328 DOI: 10.1021/jf303393n] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It was disclosed in our group for the first time that the flavonoids in Lonicera japonica Thunb. are related to its therapy for gastric ulcer. Based on this finding, 20 flavonoids were selected for Helicobacter pylori urease inhibitory activity evaluation, and quercetin showed excellent potency with IC(50) of 11.2 ± 0.9 μM. Structure-activity relationship analysis revealed that removal of the 5-, 3-, or 3'-OH in quercetin led to a sharp decrease in activity. Thus, 3- and 5-OH as well as 3',4'-dihydroxyl groups are believed to be the key structural characteristics for active compounds, which was supported by the molecular docking study. Meanwhile, the results obtained from molecular docking and enzymatic kinetics research strongly suggested that quercetin is a noncompetitive urease inhibitor, indicating that quercetin may be able to tolerate extensive structural modification irrespective of the shape of the active site cavity and could be used as a lead candidate for the development of novel urease inhibitors.
Collapse
Affiliation(s)
- Zhu-Ping Xiao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Jishou 416000, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Temperature- and pressure-dependent stopped-flow kinetic studies of jack bean urease. Implications for the catalytic mechanism. J Biol Inorg Chem 2012; 17:1123-34. [PMID: 22890689 PMCID: PMC3442171 DOI: 10.1007/s00775-012-0926-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/14/2012] [Indexed: 12/03/2022]
Abstract
Abstract Urease, a Ni-containing metalloenzyme, features an activity that has profound medical and agricultural implications. The mechanism of this activity, however, has not been as yet thoroughly established. Accordingly, to improve its understanding, in this study we analyzed the steady-state kinetic parameters of the enzyme (jack bean), KM and kcat, measured at different temperatures and pressures. Such an analysis is useful as it provides information on the molecular nature of the intermediate and transition states of the catalytic reaction. We measured the parameters in a noninteracting buffer using a stopped-flow technique in the temperature range 15–35 °C and in the pressure range 5–132 MPa, the pressure-dependent measurements being the first of their kind performed for urease. While temperature enhanced the activity of urease, pressure inhibited the enzyme; the inhibition was biphasic. Analyzing KM provided the characteristics of the formation of the ES complex, and analyzing kcat, the characteristics of the activation of ES. From the temperature-dependent measurements, the energetic parameters were derived, i.e. thermodynamic ΔHo and ΔSo for ES formation, and kinetic ΔH≠ and ΔS≠ for ES activation, while from the pressure-dependent measurements, the binding ΔVb and activation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Updelta V_{\rm cat}^{ \ne } $$\end{document} volumes were determined. The thermodynamic and activation parameters obtained are discussed in terms of the current proposals for the mechanism of the urease reaction, and they are found to support the mechanism proposed by Benini et al. (Structure 7:205–216; 1999), in which the Ni–Ni bridging hydroxide—not the terminal hydroxide—is the nucleophile in the catalytic reaction. Graphical abstract ![]()
Collapse
|
133
|
Vítor JMB, Vale FF. Alternative therapies for Helicobacter pylori: probiotics and phytomedicine. ACTA ACUST UNITED AC 2012; 63:153-64. [PMID: 22077218 DOI: 10.1111/j.1574-695x.2011.00865.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a common human pathogen infecting about 30% of children and 60% of adults worldwide and is responsible for diseases such as gastritis, peptic ulcer and gastric cancer. Treatment against H. pylori is based on the use of antibiotics, but therapy failure can be higher than 20% and is essentially due to an increase in the prevalence of antibiotic-resistant bacteria, which has led to the search for alternative therapies. In this review, we discuss alternative therapies for H. pylori, mainly phytotherapy and probiotics. Probiotics are live organisms or produced substances that are orally administrated, usually in addition to conventional antibiotic therapy. They may modulate the human microbiota and promote health, prevent antibiotic side effects, stimulate the immune response and directly compete with pathogenic bacteria. Phytomedicine consists of the use of plant extracts as medicines or health-promoting agents, but in most cases the molecular mode of action of the active ingredients of these herbal extracts is unknown. Possible mechanisms include inhibition of H. pylori urease enzyme, disruption of bacterial cell membrane, and modulation of the host immune system. Other alternative therapies are also reviewed.
Collapse
Affiliation(s)
- Jorge M B Vítor
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
134
|
Mucha A, Kafarski P, Berlicki Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J Med Chem 2011; 54:5955-80. [PMID: 21780776 DOI: 10.1021/jm200587f] [Citation(s) in RCA: 502] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | |
Collapse
|
135
|
Berlicki L, Bochno M, Grabowiecka A, Białas A, Kosikowska P, Kafarski P. N-substituted aminomethanephosphonic and aminomethane-P-methylphosphinic acids as inhibitors of ureases. Amino Acids 2011; 42:1937-45. [PMID: 21559954 PMCID: PMC3325405 DOI: 10.1007/s00726-011-0920-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/16/2011] [Indexed: 10/31/2022]
Abstract
Small unextended molecules based on the diamidophosphate structure with a covalent carbon-to-phosphorus bond to improve hydrolytic stability were developed as a novel group of inhibitors to control microbial urea decomposition. Applying a structure-based inhibitor design approach using available crystal structures of bacterial urease, N-substituted derivatives of aminomethylphosphonic and P-methyl-aminomethylphosphinic acids were designed and synthesized. In inhibition studies using urease from Bacillus pasteurii and Canavalia ensiformis, the N,N-dimethyl derivatives of both lead structures were most effective with dissociation constants in the low micromolar range (Ki=13±0.8 and 0.62±0.09 μM, respectively). Whole-cell studies on a ureolytic strain of Proteus mirabilis showed the high efficiency of N,N-dimethyl and N-methyl derivatives of aminomethane-P-methylphosphinic acids for urease inhibition in pathogenic bacteria. The high hydrolytic stability of selected inhibitors was confirmed over a period of 30 days using NMR technique.
Collapse
Affiliation(s)
- Lukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | | | | | | | | | | |
Collapse
|