101
|
Yin J, Shine L, Raycroft F, Deeti S, Reynolds A, Ackerman KM, Glaviano A, O'Farrell S, O'Leary O, Kilty C, Kennedy C, McLoughlin S, Rice M, Russell E, Higgins DG, Hyde DR, Kennedy BN. Inhibition of the Pim1 oncogene results in diminished visual function. PLoS One 2012; 7:e52177. [PMID: 23300608 PMCID: PMC3530609 DOI: 10.1371/journal.pone.0052177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022] Open
Abstract
Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye, as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3–5 days post-fertilisation, times associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1 kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1 morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the Pim1 oncogene is required for normal visual function.
Collapse
Affiliation(s)
- Jun Yin
- UCD School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Lisa Shine
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Francis Raycroft
- Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sudhakar Deeti
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Alison Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kristin M. Ackerman
- Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Antonino Glaviano
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Sean O'Farrell
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Olivia O'Leary
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Claire Kilty
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Ciaran Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Sarah McLoughlin
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Megan Rice
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Eileen Russell
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Desmond G. Higgins
- UCD School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Hyde
- Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Breandan N. Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
102
|
Jopling C, Suñé G, Faucherre A, Fabregat C, Izpisua Belmonte JC. Hypoxia induces myocardial regeneration in zebrafish. Circulation 2012; 126:3017-27. [PMID: 23151342 DOI: 10.1161/circulationaha.112.107888] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hypoxia plays an important role in many biological/pathological processes. In particular, hypoxia is associated with cardiac ischemia. which, although initially inducing a protective response, will ultimately lead to the death of cardiomyocytes and loss of tissue, severely affecting cardiac functionality. Although myocardial damage/loss remains an insurmountable problem for adult mammals, the same is not true for adult zebrafish, which are able to completely regenerate their heart after extensive injury. Myocardial regeneration in zebrafish involves the dedifferentiation and proliferation of cardiomyocytes to replace the damaged/missing tissue; at present, however, little is known about what factors regulate this process. METHODS AND RESULTS We surmised that ventricular amputation would lead to hypoxia induction in the myocardium of zebrafish and that this may play a role in regulating the regeneration of the missing cardiac tissue. Using a combination of O(2) perturbation, conditional transgenics, in vitro cell culture, and microarray analysis, we found that hypoxia induces cardiomyocytes to dedifferentiate and proliferate during heart regeneration in zebrafish and have identified a number of genes that could play a role in this process. CONCLUSION These results indicate that hypoxia plays a positive role during heart regeneration, which should be taken into account in future strategies aimed at inducing heart regeneration in humans.
Collapse
Affiliation(s)
- Chris Jopling
- The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|