101
|
Keitel C, Keitel A, Benwell CSY, Daube C, Thut G, Gross J. Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum. J Neurosci 2019; 39:3119-3129. [PMID: 30770401 PMCID: PMC6468105 DOI: 10.1523/jneurosci.1633-18.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/16/2019] [Accepted: 02/03/2019] [Indexed: 01/23/2023] Open
Abstract
Two largely independent research lines use rhythmic sensory stimulation to study visual processing. Despite the use of strikingly similar experimental paradigms, they differ crucially in their notion of the stimulus-driven periodic brain responses: one regards them mostly as synchronized (entrained) intrinsic brain rhythms; the other assumes they are predominantly evoked responses [classically termed steady-state responses (SSRs)] that add to the ongoing brain activity. This conceptual difference can produce contradictory predictions about, and interpretations of, experimental outcomes. The effect of spatial attention on brain rhythms in the alpha band (8-13 Hz) is one such instance: alpha-range SSRs have typically been found to increase in power when participants focus their spatial attention on laterally presented stimuli, in line with a gain control of the visual evoked response. In nearly identical experiments, retinotopic decreases in entrained alpha-band power have been reported, in line with the inhibitory function of intrinsic alpha. Here we reconcile these contradictory findings by showing that they result from a small but far-reaching difference between two common approaches to EEG spectral decomposition. In a new analysis of previously published human EEG data, recorded during bilateral rhythmic visual stimulation, we find the typical SSR gain effect when emphasizing stimulus-locked neural activity and the typical retinotopic alpha suppression when focusing on ongoing rhythms. These opposite but parallel effects suggest that spatial attention may bias the neural processing of dynamic visual stimulation via two complementary neural mechanisms.SIGNIFICANCE STATEMENT Attending to a visual stimulus strengthens its representation in visual cortex and leads to a retinotopic suppression of spontaneous alpha rhythms. To further investigate this process, researchers often attempt to phase lock, or entrain, alpha through rhythmic visual stimulation under the assumption that this entrained alpha retains the characteristics of spontaneous alpha. Instead, we show that the part of the brain response that is phase locked to the visual stimulation increased with attention (as do steady-state evoked potentials), while the typical suppression was only present in non-stimulus-locked alpha activity. The opposite signs of these effects suggest that attentional modulation of dynamic visual stimulation relies on two parallel cortical mechanisms-retinotopic alpha suppression and increased temporal tracking.
Collapse
Affiliation(s)
- Christian Keitel
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK,
| | - Anne Keitel
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
- Psychology, School of Social Sciences, University of Dundee, Dundee DD1 4HN, UK, and
| | - Christopher S Y Benwell
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
- Psychology, School of Social Sciences, University of Dundee, Dundee DD1 4HN, UK, and
| | - Christoph Daube
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Gregor Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
- Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
102
|
The EEG signature of sensory evidence accumulation during decision formation closely tracks subjective perceptual experience. Sci Rep 2019; 9:4949. [PMID: 30894558 PMCID: PMC6426990 DOI: 10.1038/s41598-019-41024-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
How neural representations of low-level visual information are accessed by higher-order processes to inform decisions and give rise to conscious experience is a longstanding question. Research on perceptual decision making has revealed a late event-related EEG potential (the Centro-Parietal Positivity, CPP) to be a correlate of the accumulation of sensory evidence. We tested how this evidence accumulation signal relates to externally presented (physical) and internally experienced (subjective) sensory evidence. Our results show that the known relationship between the physical strength of the external evidence and the evidence accumulation signal (reflected in the CPP amplitude) is mediated by the level of subjective experience of stimulus strength. This shows that the CPP closely tracks the subjective perceptual evidence, over and above the physically presented evidence. We conclude that a remarkably close relationship exists between the evidence accumulation process (i.e. CPP) and subjective perceptual experience, suggesting that neural decision processes and components of conscious experience are tightly linked.
Collapse
|
103
|
Luo C, Chen W, Zhang Y, Gaspar CM. Rapid stream stimulation can enhance the stimulus selectivity of early evoked responses to written characters but not faces. PLoS One 2019; 14:e0213637. [PMID: 30875416 PMCID: PMC6420162 DOI: 10.1371/journal.pone.0213637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/15/2019] [Indexed: 11/23/2022] Open
Abstract
The recognition potential (RP) is an early visually evoked response (~250 ms) whose magnitude is sensitive to object recognizability and related factors. The RP is often measured when objects are embedded in a rapid stream of masking stimuli (the RSS paradigm), especially in reading research. The idea is that RSS provides greater stimulus-dependent variations in RP, compared to the corresponding variations without RSS. However, this idea has never been subject to systematic evaluation. We directly test whether RSS can enhance 2 types of RP stimulus selectivity, by measuring the RP in conditions that only differ in the presence or absence of a masking stream and in the type of stimulus shown. We measure the effect of image inversion on RP for Chinese characters (experiment 1); the effect of orthographical correctness on RP for Chinese characters (experiment 3); and as a control study, the effect of image inversion on the N170 response to faces (experiment 2). To ensure a fair comparison, the earliest negative deflections (RP/N170) measured with and without RSS should at least have similar channel ranges, and topographical distributions of both amplitude and selectivity. Our first set of results clearly supports this. Our main results clearly show an increase in stimulus-selectivity for RSS over non-RSS in both of the RP (Chinese character) experiments, but no such enhancement in the N170 (face) experiment. This provides incentive for investigations into the underlying mechanisms of selectivity enhancement. Our findings may also help to explain contradictory findings between RP/N170 studies that differ only in the use of noise masks, which is sometimes treated as trivial detail in papers that do not reference the RP/RSS literature.
Collapse
Affiliation(s)
- Canhuang Luo
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| | - Wei Chen
- Objects and Knowledge Laboratory, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ye Zhang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- * E-mail: (CMG); (YZ)
| | - Carl Michael Gaspar
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- * E-mail: (CMG); (YZ)
| |
Collapse
|
104
|
Chota S, VanRullen R. Visual Entrainment at 10 Hz Causes Periodic Modulation of the Flash Lag Illusion. Front Neurosci 2019; 13:232. [PMID: 30930740 PMCID: PMC6428772 DOI: 10.3389/fnins.2019.00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
It has long been debated whether visual processing is, at least partially, a discrete process. Although vision appears to be a continuous stream of sensory information, sophisticated experiments reveal periodic modulations of perception and behavior. Previous work has demonstrated that the phase of endogenous neural oscillations in the 10 Hz range predicts the "lag" of the flash lag effect, a temporal visual illusion in which a static object is perceived to be lagging in time behind a moving object. Consequently, it has been proposed that the flash lag illusion could be a manifestation of a periodic, discrete sampling mechanism in the visual system. In this experiment we set out to causally test this hypothesis by entraining the visual system to a periodic 10 Hz stimulus and probing the flash lag effect (FLE) at different time points during entrainment. We hypothesized that the perceived FLE would be modulated over time, at the same frequency as the entrainer (10 Hz). A frequency analysis of the average FLE time-course indeed reveals a significant peak at 10 Hz as well as a strong phase consistency between subjects (N = 25). Our findings provide causal evidence for fluctuations in temporal perception and indicate an involvement of occipital alpha oscillations.
Collapse
Affiliation(s)
- Samson Chota
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, UMR5549, Université de Toulouse, Toulouse, France
| | - Rufin VanRullen
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, UMR5549, Université de Toulouse, Toulouse, France
| |
Collapse
|
105
|
Kloosterman NA, de Gee JW, Werkle-Bergner M, Lindenberger U, Garrett DD, Fahrenfort JJ. Humans strategically shift decision bias by flexibly adjusting sensory evidence accumulation. eLife 2019; 8:e37321. [PMID: 30724733 PMCID: PMC6365056 DOI: 10.7554/elife.37321] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
Decision bias is traditionally conceptualized as an internal reference against which sensory evidence is compared. Instead, we show that individuals implement decision bias by shifting the rate of sensory evidence accumulation toward a decision bound. Participants performed a target detection task while we recorded EEG. We experimentally manipulated participants' decision criterion for reporting targets using different stimulus-response reward contingencies, inducing either a liberal or a conservative bias. Drift diffusion modeling revealed that a liberal strategy biased sensory evidence accumulation toward target-present choices. Moreover, a liberal bias resulted in stronger midfrontal pre-stimulus 2-6 Hz (theta) power and suppression of pre-stimulus 8-12 Hz (alpha) power in posterior cortex. Alpha suppression in turn was linked to the output activity in visual cortex, as expressed through 59-100 Hz (gamma) power. These findings show that observers can intentionally control cortical excitability to strategically bias evidence accumulation toward the decision bound that maximizes reward.
Collapse
Affiliation(s)
- Niels A Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchMax Planck Institute for Human DevelopmentBerlinGermany
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Jan Willem de Gee
- Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
- Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Markus Werkle-Bergner
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchMax Planck Institute for Human DevelopmentBerlinGermany
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchMax Planck Institute for Human DevelopmentBerlinGermany
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Johannes Jacobus Fahrenfort
- Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Experimental and Applied PsychologyVrije UniversiteitAmsterdamThe Netherlands
| |
Collapse
|
106
|
Wöstmann M, Waschke L, Obleser J. Prestimulus neural alpha power predicts confidence in discriminating identical auditory stimuli. Eur J Neurosci 2018; 49:94-105. [DOI: 10.1111/ejn.14226] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Malte Wöstmann
- Department of PsychologyUniversity of Lübeck Lübeck Germany
| | | | - Jonas Obleser
- Department of PsychologyUniversity of Lübeck Lübeck Germany
| |
Collapse
|
107
|
Evoked Alpha Power is Reduced in Disconnected Consciousness During Sleep and Anesthesia. Sci Rep 2018; 8:16664. [PMID: 30413741 PMCID: PMC6226534 DOI: 10.1038/s41598-018-34957-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Sleep and anesthesia entail alterations in conscious experience. Conscious experience may be absent (unconsciousness) or take the form of dreaming, a state in which sensory stimuli are not incorporated into conscious experience (disconnected consciousness). Recent work has identified features of cortical activity that distinguish conscious from unconscious states; however, less is known about how cortical activity differs between disconnected states and normal wakefulness. We employed transcranial magnetic stimulation–electroencephalography (TMS–EEG) over parietal regions across states of anesthesia and sleep to assess whether evoked oscillatory activity differed in disconnected states. We hypothesized that alpha activity, which may regulate perception of sensory stimuli, is altered in the disconnected states of rapid eye movement (REM) sleep and ketamine anesthesia. Compared to wakefulness, evoked alpha power (8–12 Hz) was decreased during disconnected consciousness. In contrast, in unconscious states of propofol anesthesia and non-REM (NREM) sleep, evoked low-gamma power (30–40 Hz) was decreased compared to wakefulness or states of disconnected consciousness. These findings were confirmed in subjects in which dream reports were obtained following serial awakenings from NREM sleep. By examining signatures of evoked cortical activity across conscious states, we identified novel evidence that suppression of evoked alpha activity may represent a promising marker of sensory disconnection.
Collapse
|
108
|
Foster JJ, Awh E. The role of alpha oscillations in spatial attention: limited evidence for a suppression account. Curr Opin Psychol 2018; 29:34-40. [PMID: 30472541 DOI: 10.1016/j.copsyc.2018.11.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
Covert spatial attention allows us to prioritize visual processing at relevant locations. A fast growing literature suggests that alpha-band (8-12 Hz) oscillations play a key role in this core cognitive process. It is clear that alpha-band activity tracks both the locus and timing of covert spatial orienting. There is limited evidence, however, for the widely embraced view that alpha oscillations suppress irrelevant visual information during spatial selection. Extant evidence is equally compatible with an account in which alpha activity enables spatial selection through signal enhancement rather than distractor suppression. Thus, more work is needed to characterize the computational role of alpha activity in spatial attention.
Collapse
Affiliation(s)
- Joshua J Foster
- Department of Psychology and Institute for Mind and Biology, University of Chicago, 940 E. 57th Street, Chicago, IL 60637, United States.
| | - Edward Awh
- Department of Psychology and Institute for Mind and Biology, University of Chicago, 940 E. 57th Street, Chicago, IL 60637, United States.
| |
Collapse
|
109
|
Keitel C, Benwell CSY, Thut G, Gross J. No changes in parieto-occipital alpha during neural phase locking to visual quasi-periodic theta-, alpha-, and beta-band stimulation. Eur J Neurosci 2018; 48:2551-2565. [PMID: 29737585 PMCID: PMC6220955 DOI: 10.1111/ejn.13935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 11/30/2022]
Abstract
Recent studies have probed the role of the parieto-occipital alpha rhythm (8-12 Hz) in human visual perception through attempts to drive its neural generators. To that end, paradigms have used high-intensity strictly-periodic visual stimulation that created strong predictions about future stimulus occurrences and repeatedly demonstrated perceptual consequences in line with an entrainment of parieto-occipital alpha. Our study, in turn, examined the case of alpha entrainment by non-predictive low-intensity quasi-periodic visual stimulation within theta- (4-7 Hz), alpha- (8-13 Hz), and beta (14-20 Hz) frequency bands, i.e., a class of stimuli that resemble the temporal characteristics of naturally occurring visual input more closely. We have previously reported substantial neural phase-locking in EEG recording during all three stimulation conditions. Here, we studied to what extent this phase-locking reflected an entrainment of intrinsic alpha rhythms in the same dataset. Specifically, we tested whether quasi-periodic visual stimulation affected several properties of parieto-occipital alpha generators. Speaking against an entrainment of intrinsic alpha rhythms by non-predictive low-intensity quasi-periodic visual stimulation, we found none of these properties to show differences between stimulation frequency bands. In particular, alpha band generators did not show increased sensitivity to alpha band stimulation and Bayesian inference corroborated evidence against an influence of stimulation frequency. Our results set boundary conditions for when and how to expect effects of entrainment of alpha generators and suggest that the parieto-occipital alpha rhythm may be more inert to external influences than previously thought.
Collapse
Affiliation(s)
- Christian Keitel
- Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
| | | | - Gregor Thut
- Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
| | - Joachim Gross
- Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
- Institut für Biomagnetismus und BiosignalanalyseWestfälische Wilhelms‐UniversitätMünsterGermany
| |
Collapse
|
110
|
Bae GY, Luck SJ. Decoding motion direction using the topography of sustained ERPs and alpha oscillations. Neuroimage 2018; 184:242-255. [PMID: 30223063 DOI: 10.1016/j.neuroimage.2018.09.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022] Open
Abstract
The present study sought to determine whether scalp electroencephalogram (EEG) signals contain decodable information about the direction of motion in random dot kinematograms (RDKs), in which the motion information is spatially distributed and mixed with random noise. Any direction of motion from 0 to 360° was possible, and observers reported the precise direction of motion at the end of a 1500-ms stimulus display. We decoded the direction of motion separately during the motion period (during which motion information was being accumulated) and the report period (during which a shift of attention was necessary to make a fine-tuned direction report). Machine learning was used to decode the precise direction of motion (within ±11.25°) from the scalp distribution of either alpha-band EEG activity or sustained event-related potentials (ERPs). We found that ERP-based decoding was above chance (1/16) during both the stimulus and the report periods, whereas alpha-based decoding was above chance only during the report period. Thus, sustained ERPs contain information about spatially distributed direction-of-motion, providing a new method for observing the accumulation of sensory information with high temporal resolution. By contrast, the scalp topography of alpha-band EEG activity appeared to mainly reflect spatially focused attentional processes rather than sensory information.
Collapse
Affiliation(s)
- Gi-Yeul Bae
- Center for Mind & Brain and Department of Psychology, University of California - Davis, Davis, 95618, CA, USA.
| | - Steven J Luck
- Center for Mind & Brain and Department of Psychology, University of California - Davis, Davis, 95618, CA, USA
| |
Collapse
|
111
|
Kienitz R, Schmiedt JT, Shapcott KA, Kouroupaki K, Saunders RC, Schmid MC. Theta Rhythmic Neuronal Activity and Reaction Times Arising from Cortical Receptive Field Interactions during Distributed Attention. Curr Biol 2018; 28:2377-2387.e5. [PMID: 30017481 PMCID: PMC6089835 DOI: 10.1016/j.cub.2018.05.086] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/26/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022]
Abstract
Growing evidence suggests that distributed spatial attention may invoke theta (3-9 Hz) rhythmic sampling processes. The neuronal basis of such attentional sampling is, however, not fully understood. Here we show using array recordings in visual cortical area V4 of two awake macaques that presenting separate visual stimuli to the excitatory center and suppressive surround of neuronal receptive fields (RFs) elicits rhythmic multi-unit activity (MUA) at 3-6 Hz. This neuronal rhythm did not depend on small fixational eye movements. In the context of a distributed spatial attention task, during which the monkeys detected a spatially and temporally uncertain target, reaction times (RTs) exhibited similar rhythmic fluctuations. RTs were fast or slow depending on the target occurrence during high or low MUA, resulting in rhythmic MUA-RT cross-correlations at theta frequencies. These findings show that theta rhythmic neuronal activity can arise from competitive RF interactions and that this rhythm may result in rhythmic RTs potentially subserving attentional sampling.
Collapse
Affiliation(s)
- Ricardo Kienitz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany; Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Schleusenweg 2-16, 60528 Frankfurt a.M., Germany; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Joscha T Schmiedt
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany
| | - Katharine A Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany
| | - Kleopatra Kouroupaki
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany
| | - Richard C Saunders
- Laboratory of Neuropsychology, NIMH, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Michael Christoph Schmid
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
112
|
Moment-to-Moment Fluctuations in Neuronal Excitability Bias Subjective Perception Rather than Strategic Decision-Making. eNeuro 2018; 5:eN-NWR-0430-17. [PMID: 29911179 PMCID: PMC6002263 DOI: 10.1523/eneuro.0430-17.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/24/2018] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Perceiving an external stimulus depends not only on the physical features of the stimulus, but also fundamentally on the current state of neuronal excitability, indexed by the power of ongoing alpha-band and beta-band oscillations (8-30 Hz). Recent studies suggest that heightened excitability does not improve perceptual precision, but biases observers to report the presence of a stimulus regardless of its physical presence. It is unknown whether this bias is due to changes in observers' subjective perceptual experience (perceptual bias) or their perception-independent decision-making strategy (decision bias). We tested these alternative interpretations in an EEG experiment in which male and female human participants performed two-interval forced choice (2IFC) detection and discrimination. According to signal detection theory, perceptual bias only affects 2IFC detection, but not discrimination, while interval decision bias should be task independent. We found that correct detection was more likely when excitability before the stimulus-present interval exceeded that before the stimulus-absent interval (i.e., 8-17 Hz power was weaker before the stimulus-present interval), consistent with an effect of excitability on perceptual bias. By contrast, discrimination accuracy was unaffected by excitability fluctuations between intervals, ruling out an effect on interval decision bias. We conclude that the current state of neuronal excitability biases the perceptual experience itself, rather than the decision process.
Collapse
|