101
|
Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects. J Funct Biomater 2016; 7:jfb7040030. [PMID: 27916868 PMCID: PMC5197989 DOI: 10.3390/jfb7040030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/22/2016] [Accepted: 11/11/2016] [Indexed: 01/31/2023] Open
Abstract
Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs) were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95%) throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction.
Collapse
|
102
|
Zhou JF, Wang YG, Cheng L, Wu Z, Sun XD, Peng J. Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regen Res 2016; 11:1644-1652. [PMID: 27904497 PMCID: PMC5116845 DOI: 10.4103/1673-5374.193245] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topography. There was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jun-feng Zhou
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yi-guo Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Liang Cheng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhao Wu
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Xiao-dan Sun
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| |
Collapse
|
103
|
Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3856262. [PMID: 27556032 PMCID: PMC4983313 DOI: 10.1155/2016/3856262] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration.
Collapse
|
104
|
Schirmer KSU, Gorkin R, Beirne S, Stewart E, Thompson BC, Quigley AF, Kapsa RMI, Wallace GG. Cell compatible encapsulation of filaments into 3D hydrogels. Biofabrication 2016; 8:025013. [DOI: 10.1088/1758-5090/8/2/025013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
105
|
Effect of Artificial Nerve Conduit Vascularization on Peripheral Nerve in a Necrotic Bed. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e665. [PMID: 27257595 PMCID: PMC4874309 DOI: 10.1097/gox.0000000000000652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Several types of artificial nerve conduit have been used for bridging peripheral nerve gaps as an alternative to autologous nerves. However, their efficacy in repairing nerve injuries accompanied by surrounding tissue damage remains unclear. We fabricated a novel nerve conduit vascularized by superficial inferior epigastric (SIE) vessels and evaluated whether it could promote axonal regeneration in a necrotic bed. METHODS A 15-mm nerve conduit was implanted beneath the SIE vessels in the groin of a rat to supply it with blood vessels 2 weeks before nerve reconstruction. We removed a 13-mm segment of the sciatic nerve and then pressed a heated iron against the dorsal thigh muscle to produce a burn. The defects were immediately repaired with an autograft (n = 10), nerve conduit graft (n = 8), or vascularized nerve conduit graft (n = 8). Recovery of motor function was examined for 18 weeks after surgery. The regenerated nerves were electrophysiologically and histologically evaluated. RESULTS The vascularity of the nerve conduit implanted beneath the SIE vessels was confirmed histologically 2 weeks after implantation. Between 14 and 18 weeks after surgery, motor function of the vascularized conduit group was significantly better than that of the nonvascularized conduit group. Electrophysiological and histological evaluations revealed that although the improvement did not reach the level of reinnervation achieved by an autograft, the vascularized nerve conduit improved axonal regeneration more than did the conduit alone. CONCLUSION Vascularization of artificial nerve conduits accelerated peripheral nerve regeneration, but further research is required to improve the quality of nerve regeneration.
Collapse
|
106
|
Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:237507. [PMID: 26491662 PMCID: PMC4600484 DOI: 10.1155/2015/237507] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 01/03/2023]
Abstract
With significant advances in the research and application of nerve conduits, they have been used to repair peripheral nerve injury for several decades. Nerve conduits range from biological tubes to synthetic tubes, and from nondegradable tubes to biodegradable tubes. Researchers have explored hollow tubes, tubes filled with scaffolds containing neurotrophic factors, and those seeded with Schwann cells or stem cells. The therapeutic effect of nerve conduits is improving with increasing choice of conduit material, new construction of conduits, and the inclusion of neurotrophic factors and support cells in the conduits. Improvements in functional outcomes are expected when these are optimized for use in clinical practice.
Collapse
|
107
|
Anderson M, Shelke NB, Manoukian OS, Yu X, McCullough LD, Kumbar SG. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits. Crit Rev Biomed Eng 2015; 43:131-59. [PMID: 27278739 PMCID: PMC5266796 DOI: 10.1615/critrevbiomedeng.2015014015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration.
Collapse
Affiliation(s)
- Matthew Anderson
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
| | - Namdev B. Shelke
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
| | - Ohan S. Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ
| | | | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| |
Collapse
|