101
|
Characterisation of ictal and interictal states of epilepsy: A system dynamic approach of principal dynamic modes analysis. PLoS One 2018; 13:e0191392. [PMID: 29351559 PMCID: PMC5774786 DOI: 10.1371/journal.pone.0191392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/04/2018] [Indexed: 11/19/2022] Open
Abstract
Epilepsy is a brain disorder characterised by the recurrent and unpredictable interruptions of normal brain function, called epileptic seizures. The present study attempts to derive new diagnostic indices which may delineate between ictal and interictal states of epilepsy. To achieve this, the nonlinear modeling approach of global principal dynamic modes (PDMs) is adopted to examine the functional connectivity of the temporal and frontal lobes with the occipital brain segment using an ensemble of paediatric EEGs having the presence of epileptic seizure. The distinct spectral characteristics of global PDMs are found to be in line with the neural rhythms of brain dynamics. Moreover, we find that the linear trends of associated nonlinear functions (ANFs) associated with the 2nd and 4th global PDMs (representing delta, theta and alpha bands) of Fp1–F3 may differentiate between ictal and interictal states of epilepsy. These findings suggest that global PDMs and their associated ANFs may offer potential utility as diagnostic neural measures for ictal and interictal states of epilepsy.
Collapse
|
102
|
Mamad O, Islam MN, Cunningham C, Tsanov M. Differential response of hippocampal and prefrontal oscillations to systemic LPS application. Brain Res 2017; 1681:64-74. [PMID: 29294350 PMCID: PMC5792247 DOI: 10.1016/j.brainres.2017.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/06/2017] [Accepted: 12/27/2017] [Indexed: 01/10/2023]
Abstract
1 mg/kg LPS i.p. injection robustly suppresses theta frequency in hippocampus. LPS administration augments delta frequency in hippocampus but not mPFC. LPS injection triggers hippocampal spike-wave discharges.
The early electrophysiological phenomena linked to systemic inflammation are largely underexplored. We developed here local field analyses to detect prodromal oscillatory abnormalities. We identified early band-specific patterns in local field potential recorded from freely-moving rats injected intraperitoneally with lipopolysaccharide (LPS, 1 mg/kg). Theta frequency was significantly reduced and this effect was not related to the decreased locomotion of the animal. Furthermore, LPS-induced alterations show a region-specific response when compared between the hippocampal region and medial prefrontal cortex. Delta mean frequency increased in the hippocampal region but not in the prefrontal cortex. We explored also the hypothesis that systemic inflammation increases the propensity of abnormally synchronized brain activity. Our data indicate that the LPS-evoked alteration of delta and theta frequency parameters reflects the formation of abnormal synchronization in similar frequency ranges. The onset of abnormal brain activity was indicated by spike-wave discharges in the range of 1–10 Hz with three main frequency domains. Importantly, the occurrence of spike-wave discharges was observed in the hippocampus but not in the cortex. In summary, the hippocampal theta rhythm is an accurate indicator of the oscillatory changes evoked by LPS application. The findings offer clear patterns of altered brain function that will facilitate mechanistic investigations of brain dysfunction and delirium occurring during sepsis.
Collapse
Affiliation(s)
- Omar Mamad
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; School of Psychology, Trinity College Dublin, Ireland
| | - Md Nurul Islam
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; School of Psychology, Trinity College Dublin, Ireland
| | - Colm Cunningham
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; School of Biochemistry and Immunology, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Marian Tsanov
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; School of Psychology, Trinity College Dublin, Ireland.
| |
Collapse
|
103
|
Minjarez B, Camarena H, Haramati J, Rodríguez-Yañez Y, Mena-Munguía S, Buriticá J, García-Leal O. Behavioral changes in models of chemoconvulsant-induced epilepsy: A review. Neurosci Biobehav Rev 2017; 83:373-380. [DOI: 10.1016/j.neubiorev.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 11/25/2022]
|
104
|
Rossi A, Murta V, Auzmendi J, Ramos AJ. Early Gabapentin Treatment during the Latency Period Increases Convulsive Threshold, Reduces Microglial Activation and Macrophage Infiltration in the Lithium-Pilocarpine Model of Epilepsy. Pharmaceuticals (Basel) 2017; 10:ph10040093. [PMID: 29182533 PMCID: PMC5748648 DOI: 10.3390/ph10040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022] Open
Abstract
The lithium-pilocarpine model of epilepsy reproduces several features of temporal lobe epilepsy in humans, including the chronological timeline of an initial latency period followed by the development of spontaneous seizures. Epilepsy therapies in humans are implemented, as a rule, after the onset of the spontaneous seizures. We here studied the potential effect on epileptogenesis of starting an early treatment during the latency period, in order to prevent the development of spontaneous seizures. Adult male Wistar rats were treated with 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once status epilepticus (SE) was achieved, it was allowed to last for 20 min, and then motor seizures were controlled with the administration of 20 mg/kg diazepam. At 1DPSE (DPSE, days post-status epilepticus), animals started to receive 400 mg/kg/day gabapentin or saline for 4 days. At 5DPSE, we observed that SE induced an early profuse microglial and astroglial reactivity, increased synaptogenic trombospondin-1 expression and reduced AQP4 expression in astroglial ending feet. Blood brain barrier (BBB) integrity seemed to be compromised, as infiltrating NG2+ macrophages and facilitated access to the CNS was observed by transplanting eGFP+ blood cells and bone marrow-derived progenitors in the SE animals. The early 4-day gabapentin treatment successfully reduced microglial cell reactivity and blood-borne cell infiltration, without significantly altering the mRNA of proinflammatory cytokines IL-1β and TNFα immediately after the treatment. After 21DSPE, another group of animals that developed SE and received 4 days of gabapentin treatment, were re-exposed to subconvulsive accumulative doses of pilocarpine (10 mg/kg/30 min) and were followed by recording the Racine scale reached. Early 4-day gabapentin treatment reduced the Racine scale reached by the animals, reduced animal mortality, and reduced the number of animals that achieved SE (34% vs. 72%). We conclude that early gabapentin treatment following SE, during the latency period, is able to reduce neuroinflammation and produces a persistent effect that limits seizures and increases convulsive threshold, probably by restricting microglial reactivity and spurious synaptogenesis.
Collapse
Affiliation(s)
- Alicia Rossi
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires CP1121, Argentina.
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Jerónimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| | - Alberto Javier Ramos
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires CP1121, Argentina.
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Profesor E. De Robertis" IBCN UBA-CONICET, Buenos Aires CP1121, Argentina.
| |
Collapse
|
105
|
Moezi L, Yahosseini S, Jamshidzadeh A, Dastgheib M, Pirsalami F. Sub-chronic boldine treatment exerts anticonvulsant effects in mice. Neurol Res 2017; 40:146-152. [PMID: 29157166 DOI: 10.1080/01616412.2017.1402500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Boldine is an aporphine alkaloid which is best known for its antioxidant, anti-inflammatory and cytoprotective characteristics. It seems that all these activities are related to boldine ability to scavenge reactive free radicals. As indicated by several pieces of evidence, free radicals generation are involved in initiation and propagation of epilepsy. METHODS In this study, we investigated the sub-chronic effects of boldine on intraperitoneal and intravenous pentylenetetrazole (PTZ) models and electroshock-induced seizure in mice. Mice in treatment groups received different doses of boldine (once in a day for 8 days, ip.) and control group received solvent. We also evaluated the role of antioxidant activity of boldine as a part of its anti-seizure activity. RESULTS The results demonstrated that sub-chronic administration of boldine increased time latencies to the onset of myoclonic and clonic seizure induced by intraperitoneal PTZ model and increased clonic seizure threshold in intravenous PTZ model. It also decreased tonic hind limb extension duration in the electroshock-induced seizure model. Co-administration of boldine with a non-effective dose of vitamin C induced the anticonvulsant activity of vitamin C. Superoxide dismutase (SOD) activity in the brain tissue of animals was increased following sub-chronic administration of boldine which all indicated antioxidant activity of boldine may be a part of its anticonvulsant activity. DISCUSSION The anticonvulsant effects of boldine in three different animal models of epilepsy have been indicated. We have also shown that the antioxidant role of boldine might be a part of its anticonvulsant effect.
Collapse
Affiliation(s)
- Leila Moezi
- a Department of Pharmacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Siranoush Yahosseini
- c Department of Pharmacology and Toxicology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Akram Jamshidzadeh
- b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Pharmacology and Toxicology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mona Dastgheib
- a Department of Pharmacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Fateme Pirsalami
- a Department of Pharmacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
106
|
Hamada NM, Ashour RH, Shalaby AA, El-Beltagi HM. Calcitonin potentiates the anticonvulsant and antinociceptive effects of valproic acid and pregabalin in pentylenetetrazole-kindled mice. Eur J Pharmacol 2017; 818:351-355. [PMID: 29104044 DOI: 10.1016/j.ejphar.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 01/22/2023]
Abstract
Antiepileptic drugs are the backbone for epilepsy management. Epilepsy may be accompanied by decreased pain threshold. Thus, anticonvulsant agents with antinociceptive properties are of great importance. This study investigated the possible anticonvulsant and antinociceptive effects of calcitonin in combination with either valproic acid or pregabalin and whether these effects might occur through γ-aminobutyric acid (GABA) modulation. Eighty-four male Balb/C mice were divided into 7 groups: control-naïve, pentylenetetrazole (PTZ)-induced seizures, PTZ-calcitonin, PTZ-valproic acid, PTZ-pregabalin, PTZ-calcitonin-valproic acid (PCV) combination, and PTZ-calcitonin-pregabalin (PCP) combination. PTZ was used in a sub-convulsive dosage, every other day for 11 injections. Drugs were given i.p. 30min before PTZ. After each PTZ injection, mice were put under observation and PTZ-provoked seizures were assessed. After the last dose of PTZ, the hot plate test was used to assess antinociceptive properties. Also, brain GABA neurotransmitter was evaluated by immunoassay. Repeated injection of PTZ induced chemical kindling. Calcitonin was found to have significant antinociceptive property as shown by hot plate latency. The beneficial effects of PCV and PCP combination were statistically significant in epilepsy and pain models as compared to valproic acid and pregabalin. The antiepileptic and antinociceptive activity of calcitonin may not relate to the GABAergic system. Calcitonin enhanced the anticonvulsant and antinociceptive effects of either valproic acid or pregabalin. This new treatment "calcitonin add-on" may provide an improved range of options for patients with refractory epilepsy which is still an important risk factor for sudden death.
Collapse
Affiliation(s)
- Nada M Hamada
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, 60 El-Gomhoria St., Al-Dakahlia, Mansoura 35516, Egypt.
| | - Rehab H Ashour
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, 60 El-Gomhoria St., Al-Dakahlia, Mansoura 35516, Egypt.
| | - Amany A Shalaby
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, 60 El-Gomhoria St., Al-Dakahlia, Mansoura 35516, Egypt.
| | - Hussien M El-Beltagi
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, 60 El-Gomhoria St., Al-Dakahlia, Mansoura 35516, Egypt.
| |
Collapse
|
107
|
Eslami SM, Ghasemi M, Bahremand T, Momeny M, Gholami M, Sharifzadeh M, Dehpour AR. Involvement of nitrergic system in anticonvulsant effect of zolpidem in lithium-pilocarpine induced status epilepticus: Evaluation of iNOS and COX-2 genes expression. Eur J Pharmacol 2017; 815:454-461. [DOI: 10.1016/j.ejphar.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023]
|
108
|
Postnikova TY, Trofimova AM, Zaitsev AV, Magazanik LG. Status epilepticus induced by pentylenetetrazole increases short-term synaptic facilitation in the hippocampus of juvenile rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 477:207-209. [PMID: 29299809 DOI: 10.1134/s0012496617060102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 06/07/2023]
Abstract
We studied the effect of status epilepticus (SE) on short-term synaptic plasticity. The amplitudes of field potentials in response to extracellular stimulation of the Schaffer collaterals were recorded in hippocampal slices. Subtle modifications were revealed on day 1 after SE, whereas on days 3 and 7 we did not find any differences from the control. These data show that, one day after SE, the probability of a transmitter release in hippocampal synapses decreases that serves as a compensatory mechanism, which prevents seizure activity.
Collapse
Affiliation(s)
- T Yu Postnikova
- Sechenov Institute of Evolutionary Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Peter the Great St. Petersburg Polytechnical University, St. Petersburg, Russia
| | - A M Trofimova
- Sechenov Institute of Evolutionary Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Peter the Great St. Petersburg Polytechnical University, St. Petersburg, Russia
| | - A V Zaitsev
- Sechenov Institute of Evolutionary Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - L G Magazanik
- Sechenov Institute of Evolutionary Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
- St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
109
|
Lucchi C, Costa AM, Giordano C, Curia G, Piat M, Leo G, Vinet J, Brunel L, Fehrentz JA, Martinez J, Torsello A, Biagini G. Involvement of PPARγ in the Anticonvulsant Activity of EP-80317, a Ghrelin Receptor Antagonist. Front Pharmacol 2017; 8:676. [PMID: 29018345 PMCID: PMC5614981 DOI: 10.3389/fphar.2017.00676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 02/03/2023] Open
Abstract
Ghrelin, des-acyl ghrelin and other related peptides possess anticonvulsant activities. Although ghrelin and cognate peptides were shown to physiologically regulate only the ghrelin receptor, some of them were pharmacologically proved to activate the peroxisome proliferator-activated receptor gamma (PPARγ) through stimulation of the scavenger receptor CD36 in macrophages. In our study, we challenged the hypothesis that PPARγ could be involved in the anticonvulsant effects of EP-80317, a ghrelin receptor antagonist. For this purpose, we used the PPARγ antagonist GW9662 to evaluate the modulation of EP-80317 anticonvulsant properties in two different models. Firstly, the anticonvulsant effects of EP-80317 were studied in rats treated with pilocarpine to induce status epilepticus (SE). Secondly, the anticonvulsant activity of EP-80317 was ascertained in the repeated 6-Hz corneal stimulation model in mice. Behavioral and video electrocorticographic (ECoG) analyses were performed in both models. We also characterized levels of immunoreactivity for PPARγ in the hippocampus of 6-Hz corneally stimulated mice. EP-80317 predictably antagonized seizures in both models. Pretreatment with GW9662 counteracted almost all EP-80317 effects both in mice and rats. Only the effects of EP-80317 on power spectra of ECoGs recorded during repeated 6-Hz corneal stimulation were practically unaffected by GW9662 administration. Moreover, GW9662 alone produced a decrease in the latency of tonic-clonic seizures and accelerated the onset of SE in rats. Finally, in the hippocampus of mice treated with EP-80317 we found increased levels of PPARγ immunoreactivity. Overall, these results support the hypothesis that PPARγ is able to modulate seizures and mediates the anticonvulsant effects of EP-80317.
Collapse
Affiliation(s)
- Chiara Lucchi
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Anna M Costa
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Giulia Curia
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Marika Piat
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Giuseppina Leo
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Jonathan Vinet
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Luc Brunel
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Jean-Alain Fehrentz
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Jean Martinez
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-BicoccaMilan, Italy
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| |
Collapse
|
110
|
Amakhin DV, Malkin SL, Ergina JL, Kryukov KA, Veniaminova EA, Zubareva OE, Zaitsev AV. Alterations in Properties of Glutamatergic Transmission in the Temporal Cortex and Hippocampus Following Pilocarpine-Induced Acute Seizures in Wistar Rats. Front Cell Neurosci 2017; 11:264. [PMID: 28912687 PMCID: PMC5584016 DOI: 10.3389/fncel.2017.00264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in humans, and is often developed after an initial precipitating brain injury. This form of epilepsy is frequently resistant to pharmacological treatment; therefore, the prevention of TLE is the prospective approach to TLE therapy. The lithium-pilocarpine model in rats replicates some of the main features of TLE in human, including the pathogenic mechanisms of cell damage and epileptogenesis after a primary brain injury. In the present study, we investigated changes in the properties of glutamatergic transmission during the first 3 days after pilocarpine-induced acute seizures in Wistar rats (PILO-rats). Using RT-PCR and electrophysiological techniques, we compared the changes in the temporal cortex (TC) and hippocampus, brain areas differentially affected by seizures. On the first day, we found a transient increase in a ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl d-aspartate (NMDA) receptors in the excitatory synaptic response in pyramidal neurons of the CA1 area of the dorsal hippocampus, but not in the TC. This was accompanied by an increase in the slope of input-output (I/O) curves for fEPSPs recorded in CA1, suggesting an enhanced excitability in AMPARs in this brain area. There was no difference in the AMPA/NMDA ratio in control rats on the third day. We also revealed the alterations in NMDA receptor subunit composition in PILO-rats. The GluN2B/GluN2A mRNA expression ratio increased in the dorsal hippocampus but did not change in the ventral hippocampus or the TC. The kinetics of NMDA-mediated evoked EPSCs in hippocampal neurons was slower in PILO-rats compared with control animals. Ifenprodil, a selective antagonist of GluN2B-containing NMDARs, diminished the area and amplitude of evoked EPSCs in CA1 pyramidal cells more efficiently in PILO-rats compared with control animals. These results demonstrate that PILO-induced seizures lead to more severe alterations in excitatory synaptic transmission in the dorsal hippocampus than in the TC. Seizures affect the relative contribution of AMPA and NMDA receptor conductances in the synaptic response and increase the proportion of GluN2B-containing NMDARs in CA1 pyramidal neurons. These alterations disturb normal circuitry functions in the hippocampus, may cause neuron damage, and may be one of the important pathogenic mechanisms of TLE.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Sergey L Malkin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Kirill A Kryukov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Ekaterina A Veniaminova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia.,Federal Almazov North-West Medical Research Centre, Institute of Experimental MedicineSaint Petersburg, Russia
| |
Collapse
|
111
|
Born JPL, Matos HDC, de Araujo MA, Castro OW, Duzzioni M, Peixoto-Santos JE, Leite JP, Garcia-Cairasco N, Paçó-Larson ML, Gitaí DLG. Using Postmortem hippocampi tissue can interfere with differential gene expression analysis of the epileptogenic process. PLoS One 2017; 12:e0182765. [PMID: 28783762 PMCID: PMC5544225 DOI: 10.1371/journal.pone.0182765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Neuropathological studies often use autopsy brain tissue as controls to evaluate changes in protein or RNA levels in several diseases. In mesial temporal lobe epilepsy (MTLE), several genes are up or down regulated throughout the epileptogenic and chronic stages of the disease. Given that postmortem changes in several gene transcripts could impact the detection of changes in case-control studies, we evaluated the effect of using autopsy specimens with different postmortem intervals (PMI) on differential gene expression of the Pilocarpine (PILO)induced Status Epilepticus (SE) of MTLE. For this, we selected six genes (Gfap, Ppia, Gad65, Gad67, Npy, and Tnf-α) whose expression patterns in the hippocampus of PILO-injected rats are well known. Initially, we compared hippocampal expression of naïve rats whose hippocampi were harvested immediately after death (0h-PMI) with those harvested at 6h postmortem interval (6h-PMI): Npy and Ppia transcripts increased and Tnf-α transcripts decreased in the 6h-PMI group (p<0.05). We then investigated if these PMI-related changes in gene expression have the potential to adulterate or mask RT-qPCR results obtained with PILO-injected rats euthanized at acute or chronic phases. In the acute group, Npy transcript was significantly higher when compared with 0h-PMI rats, whereas Ppia transcript was lower than 6h-PMI group. When we used epileptic rats (chronic group), the RT-qPCR results showed higher Tnf-α only when compared to 6h-PMI group. In conclusion, our study demonstrates that PMI influences gene transcription and can mask changes in gene transcription seen during epileptogenesis in the PILO-SE model. Thus, to avoid erroneous conclusions, we strongly recommend that researchers account for changes in postmortem gene expression in their experimental design.
Collapse
Affiliation(s)
- João Paulo Lopes Born
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Heloisa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Mykaella Andrade de Araujo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Olagide Wagner Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - José Eduardo Peixoto-Santos
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
112
|
Zhang H, Gao G, Zhang Y, Sun Y, Li H, Dong S, Ma W, Liu B, Wang W, Wu H, Zhang H. Glucose Deficiency Elevates Acid-Sensing Ion Channel 2a Expression and Increases Seizure Susceptibility in Temporal Lobe Epilepsy. Sci Rep 2017; 7:5870. [PMID: 28725010 PMCID: PMC5517604 DOI: 10.1038/s41598-017-05038-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
Brain hypometabolism is a common epilepsy-related finding in both patients and animal models. Fluorodeoxyglucose positron emission tomography studies have shown that recurrent seizures lead to reduced glucose metabolism in certain brain regions, but no studies have definitively determined whether this induces epileptogenesis. There is evidence that acid-sensing ion channel 2a (ASIC2a) affects epilepsy susceptibility. Transcription factor CP2 (TFCP2) regulates ASIC2a expression. We report that suppressed TFCP2 expression and elevated ASIC2a expression were associated with glucose hypometabolism in the hippocampi of humans with epilepsy and of rat epilepsy model brains. In cultured PC12 cells, we determined that glucose deficiency led to TFCP2 downregulating ASIC2a. Moreover, electrophysiological recordings from cultured rat hippocampal slices showed that ASIC2a overexpression resulted in more action potentials in CA1 pyramidal neurons and increased seizure susceptibility. Our findings suggest that hippocampal glucose hypometabolism elevates ASIC2a expression by suppressing TFCP2 expression, which further enhances the intrinsic excitability of CA1 pyramidal neurons and increases seizure susceptibility in patients with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yang Sun
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Huanfa Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Shan Dong
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Wei Ma
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Weiwen Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Hao Wu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Hua Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China.
| |
Collapse
|
113
|
Zhang L, Fan D, Wang Q. Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy. Front Comput Neurosci 2017; 11:61. [PMID: 28744210 PMCID: PMC5504536 DOI: 10.3389/fncom.2017.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
In temporal lobe epilepsy (TLE), the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal diversity and the indeterminacy of network connection. Hence, based on Hodgkin–Huxley (HH) type neurons and Pinsky–Rinzel (PR) type neurons coupling with glutamatergic and GABAergic synaptic connections respectively, we propose a computational framework which contains dentate gyrus (DG) region and CA3 region. By regulating the concentration range of N-methyl-D-aspartate-type glutamate receptor (NMDAR), we demonstrate the pyramidal neuron can generate transitions from interictal to seizure discharges. This suggests that enhanced endogenous activity of NMDAR contributes to excitability in pyramidal neuron. Moreover, we conclude that excitatory discharges in CA3 region vary considerably on account of the excitatory currents produced by the excitatory pyramidal neuron. Interestingly, by changing the backprojection connection, we find that glutamatergic type backprojection can promote the dominant frequency of firings and further motivate excitatory counterpropagation from CA3 region to DG region. However, GABAergic type backprojection can reduce firing rate and block morbid counterpropagation, which may be factored into the terminations of TLE. In addition, neuronal diversity dominated network shows weak correlation with different backprojections. Our modeling and simulation studies provide new insights into the mechanisms of seizures generation and connectionism in local hippocampus, along with the synaptic mechanisms of this disease.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Dynamics and Control, Beihang UniversityBeijing, China
| | - Denggui Fan
- Department of Information and Computing Science, School of Mathematics and Physics, University of Science and Technology BeijingBeijing, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang UniversityBeijing, China
| |
Collapse
|
114
|
Wu T, Ido K, Osada Y, Kotani S, Tamaoka A, Hanada T. The neuroprotective effect of perampanel in lithium-pilocarpine rat seizure model. Epilepsy Res 2017. [PMID: 28624183 DOI: 10.1016/j.eplepsyres.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Status epilepticus (SE) causes irreversible neurodegeneration if not terminated quickly. Perampanel (PER), a potent AMPA receptor antagonist, has previously been shown to terminate seizures in the lithium-pilocarpine SE model. In the present study, we assessed whether PER would also prevent neuronal damage in this model. METHODS SE was induced in rats using lithium chloride and pilocarpine. Initiation of SE was defined as continuous seizures that exhibited as rearing accompanied by bilateral forelimb clonus (Racine score 4). Either PER (0.6, 2, or 6mg/kg) or diazepam (DZP, 10mg/kg) was administered intravenously 30min after SE initiation. Histopathological samples from treated and seizure-naive rats were taken one week after treatment and then stained with an anti-neuronal nuclei (NeuN) antibody. The sections were analyzed by using a pixel-counting algorithm to quantify the amount of staining in the CA1 subregion of the hippocampus, piriform cortex (Pir), and mediodorsal thalamic nucleus (MD). RESULTS DZP administration did not suppress seizures or the degeneration of neurons in the examined areas. Seizures were terminated in 100% of rats treated with 6mg/kg PER (n=8) and in 47% (7/15) of rats treated with 2mg/kg PER, and neurons in the analyzed areas of these animals were preserved to the level seen in naive rats. In the eight animals in which 2mg/kg PER did not terminate the seizures, neuronal loss was partially attenuated in CA1 and Pir, and neurons were fully preserved in MD. Treatment with 0.6mg/kg PER did not terminate the seizures or significantly preserve neurons. The anti-seizure effect of PER correlated well with the degree of neuroprotection in each analyzed area. CONCLUSIONS PER exhibited a strong neuroprotective effect in a drug-refractory SE model, and this effect was correlated with its attenuation of seizure.
Collapse
Affiliation(s)
- Ting Wu
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan; Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan.
| | - Katsutoshi Ido
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan
| | - Yoshihide Osada
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan
| | - Sadaharu Kotani
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan
| | - Akira Tamaoka
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Japan
| | - Takahisa Hanada
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan
| |
Collapse
|
115
|
Ge T, Yang W, Fan J, Li B. Preclinical evidence of ghrelin as a therapeutic target in epilepsy. Oncotarget 2017; 8:59929-59939. [PMID: 28938694 PMCID: PMC5601790 DOI: 10.18632/oncotarget.18349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, plays a major role in inhibiting seizures. However, the underlying mechanism of ghrelin's anticonvulsant action is still unclear. Nowadays, there are considerable evidences showing that ghrelin is implicated in various neurophysiological processes, including learning and memory, neuroprotection, neurogenesis, and inflammatory effects. In this review, we will summarize the effects of ghrelin on epilepsy. It may provide a comprehensive picture of the role of ghrelin in epilepsy.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
116
|
Soares JI, Valente MC, Andrade PA, Maia GH, Lukoyanov NV. Reorganization of the septohippocampal cholinergic fiber system in experimental epilepsy. J Comp Neurol 2017; 525:2690-2705. [PMID: 28472854 DOI: 10.1002/cne.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
The septohippocampal cholinergic neurotransmission has long been implicated in seizures, but little is known about the structural features of this projection system in epileptic brain. We evaluated the effects of experimental epilepsy on the areal density of cholinergic terminals (fiber varicosities) in the dentate gyrus. For this purpose, we used two distinct post-status epilepticus rat models, in which epilepsy was induced with injections of either kainic acid or pilocarpine. To visualize the cholinergic fibers, we used brain sections immunostained for the vesicular acetylcholine transporter. It was found that the density of cholinergic fiber varicosities was higher in epileptic rats versus control rats in the inner and outer zones of the dentate molecular layer, but it was reduced in the dentate hilus. We further evaluated the effects of kainate treatment on the total number, density, and soma volume of septal cholinergic cells, which were visualized in brain sections stained for either vesicular acetylcholine transporter or choline acetyltransferase (ChAT). Both the number of septal cells with cholinergic phenotype and their density were increased in epileptic rats when compared to control rats. The septal cells stained for vesicular acetylcholine transporter, but not for ChAT, have enlarged perikarya in epileptic rats. These results revealed previously unknown details of structural reorganization of the septohippocampal cholinergic system in experimental epilepsy, involving fiber sprouting into the dentate molecular layer and a parallel fiber retraction from the dentate hilus. We hypothesize that epilepsy-related neuroplasticity of septohippocampal cholinergic neurons is capable of increasing neuronal excitability of the dentate gyrus.
Collapse
Affiliation(s)
- Joana I Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Maria C Valente
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Pedro A Andrade
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal.,Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Gisela H Maia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Nikolai V Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
117
|
Vrinda M, Sasidharan A, Aparna S, Srikumar BN, Kutty BM, Shankaranarayana Rao BS. Enriched environment attenuates behavioral seizures and depression in chronic temporal lobe epilepsy. Epilepsia 2017; 58:1148-1158. [PMID: 28480502 DOI: 10.1111/epi.13767] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is commonly associated with depression, anxiety, and cognitive impairment. Despite significant progress in our understanding of the pathophysiology of TLE, it remains the most common form of refractory epilepsy. Enriched environment (EE) has a beneficial effect in many neuropsychiatric disorders. However, the effect of EE on cognitive changes in chronic TLE has not been evaluated. Accordingly, the present study evaluated the effects of EE on chronic epilepsy-induced alterations in cognitive functions, electrophysiology, and cellular changes in the hippocampus. METHODS Status epilepticus (SE) was induced in 2-month-old male Wistar rats with lithium and pilocarpine. Six weeks' post SE, epileptic rats were either housed in their respective home cages or in an enrichment cage (6 h/day) for 14 days. Seizure behavior was video-monitored 2 weeks before and during exposure to EE. Depression-like behavior, anxiety-like behavior, and spatial learning and memory were assessed using the sucrose preference test (SPT), elevated plus maze (EPM), and Morris water maze (MWM), respectively. Delta and theta power in the CA1 region of hippocampus was assessed from recordings of local field potentials (LFPs). Cellular changes in hippocampus were assessed by histochemistry followed by unbiased stereologic analysis. RESULTS EE significantly reduced seizure episodes and seizure duration in epileptic rats. In addition, EE alleviated depression and hyperactivity, and restored delta and theta power of LFP in the hippocampal CA1 region. However, EE neither ameliorated epilepsy-induced spatial learning and memory deficits nor restored cell density in hippocampus. SIGNIFICANCE This is the first study that evaluates the role of EE in a chronic TLE model, where rats were exposed to EE after occurrence of spontaneous recurrent seizures (SRS). Given that 30% of TLE patients are refractory to drug treatment, therapeutic strategies that utilize components of EE could be designed to alleviate seizures and psychiatric comorbidities associated with TLE.
Collapse
Affiliation(s)
- Marigowda Vrinda
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India.,Axxonet Brain Research Laboratory, Axxonet System Technologies Pvt. Ltd., Bengaluru, 560 029, India
| | - Arun Sasidharan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India.,Axxonet Brain Research Laboratory, Axxonet System Technologies Pvt. Ltd., Bengaluru, 560 029, India
| | - Sahajan Aparna
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | |
Collapse
|
118
|
Zhu K, Hu M, Yuan B, Liu JX, Liu Y. Aspirin attenuates spontaneous recurrent seizures in the chronically epileptic mice. Neurol Res 2017; 39:744-757. [PMID: 28481152 DOI: 10.1080/01616412.2017.1326657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Neuroinflammatory processes are pathologic hallmarks of both experimental and human epilepsy, and could be implicated in the neuronal hyperexcitability. Aspirin represents one of the non-selective nonsteroidal anti-inflammatory drugs with fewer side effects in long-term application. This study was carried out to assess the anti-epileptic effects of aspirin when administered during the chronic stage of temporal lobe epilepsy [TLE] in mice. The alteration of hippocampal neurogenesis was also examined for raising a possible mechanism underlying the protective effect of anti-inflammatory treatment in the TLE. METHODS Two months after pilocarpine-induced status epilepticus, the chronically epileptic mice were treated with aspirin (20 mg, 60 mg or 80 mg/kg) once a day for 10 weeks. Spontaneous recurrent seizures were monitored by video camera for 2 weeks. To evaluate the profile of hippocampal neurogenesis, the newly generated cells in the dentate gyrus were labeled by the proliferation marker BrdU. The newborn neurons that extended axons to CA3 area were visualized by cholera toxin B subunit retrograde tracing. RESULTS Administration of aspirin with a dosage of 60 mg or 80 mg/kg initiated at 2 months after pilocarpine-induced status epilepticus significantly reduced the frequency and duration of spontaneous recurrent seizures. Aspirin treatment also increased the number of newborn neurons with anatomic integration through improving the survival of the newly generated cells. CONCLUSION Aspirin treatment during the chronic stage of TLE could attenuate the spontaneous recurrent seizures in mice. Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to this anti-epileptic effect. Highlights • Aspirin attenuates spontaneous recurrent seizures of chronically epileptic mice • Aspirin increases neurogenesis of chronically epileptic hippocampus by improving the survival of newly generated cells • Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to anti-epileptic effects of aspirin.
Collapse
Affiliation(s)
- Kun Zhu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Ming Hu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China.,b Department of Human Anatomy, Histology and Embryology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Bo Yuan
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Jian-Xin Liu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Yong Liu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| |
Collapse
|
119
|
Up-regulated BAFF and BAFF receptor expression in patients with intractable temporal lobe epilepsy and a pilocarpine-induced epilepsy rat model. Seizure 2017; 48:79-88. [DOI: 10.1016/j.seizure.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 11/20/2022] Open
|
120
|
A Long-Term Treatment with Arachidonyl-2'-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of Epilepsy. Int J Mol Sci 2017; 18:ijms18050900. [PMID: 28441341 PMCID: PMC5454813 DOI: 10.3390/ijms18050900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Rational polytherapy in the treatment of refractory epilepsy has been the main therapeutic modality for several years. In treatment with two or more antiepileptic drugs (AEDs), it is of particular importance that AEDs be selected based on their high anticonvulsant properties, minimal side effects, and impact on the formation of new neurons. The aim of the study was to conduct an in vivo evaluation of the relationship between treatments with synthetic cannabinoid arachidonyl-2′-chloroethylamide (ACEA) alone or in combination with valproic acid (VPA) and hippocampal neurogenesis in a mouse pilocarpine model of epilepsy. All studies were performed on adolescent male CB57/BL mice with using the following drugs: VPA (10 mg/kg), ACEA (10 mg/kg), phenylmethylsulfonyl fluoride (PMSF—a substance protecting ACEA against degradation by fatty acid hydrolase, 30 mg/kg), pilocarpine (PILO, a single dose of 290 mg/kg) and methylscopolamine (30 min before PILO to stop peripheral cholinergic effects of pilocarpine, 1 mg/kg). We evaluated the process of neurogenesis after a 10-day treatment with ACEA and VPA, alone and in combination. We observed a decrease of neurogenesis in the PILO control group as compared to the healthy control mice. Furthermore, ACEA + PMSF alone and in combination with VPA significantly increased neurogenesis compared to the PILO control group. In contrast, VPA 10-day treatment had no impact on the level of neurons in comparison to the PILO control group. The combination of ACEA, PMSF and VPA considerably stimulated the process of creating new cells, particularly neurons, while chronic administration of VPA itself had no influence on neurogenesis in the mouse pilocarpine model of epilepsy. The obtained results enabled an in vivo evaluation of neurogenesis after treatment with antiepileptic drugs in an experimental model of epilepsy.
Collapse
|
121
|
Context-dependent spatially periodic activity in the human entorhinal cortex. Proc Natl Acad Sci U S A 2017; 114:E3516-E3525. [PMID: 28396399 DOI: 10.1073/pnas.1701352114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency.
Collapse
|
122
|
Bleichner MG, Debener S. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG. Front Hum Neurosci 2017; 11:163. [PMID: 28439233 PMCID: PMC5383730 DOI: 10.3389/fnhum.2017.00163] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG.
Collapse
Affiliation(s)
- Martin G Bleichner
- Neuropsychology Lab, Department of Psychology, European Medical School, University of OldenburgOldenburg, Germany.,Cluster of Excellence Hearing4all, University of OldenburgOldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, European Medical School, University of OldenburgOldenburg, Germany.,Cluster of Excellence Hearing4all, University of OldenburgOldenburg, Germany.,Center for Neurosensory Science and Systems, University of OldenburgOldenburg, Germany
| |
Collapse
|
123
|
Ali I, Aertgeerts S, Le Blon D, Bertoglio D, Hoornaert C, Ponsaerts P, Dedeurwaerdere S. Intracerebral delivery of the M2 polarizing cytokine interleukin 13 using mesenchymal stem cell implants in a model of temporal lobe epilepsy in mice. Epilepsia 2017; 58:1063-1072. [PMID: 28374921 DOI: 10.1111/epi.13743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Neuroinflammation plays a critical role in the pathophysiology of mesial temporal lobe epilepsy. We aimed to evaluate whether intracerebral transplantation of interleukin 13-producing mesenchymal stem cells (IL-13 MSCs) induces an M2 microglia/macrophage activation phenotype in the hippocampus with an epileptogenic insult, thereby providing a neuroprotective environment with reduced epileptogenesis. METHODS Genetically engineered syngeneic IL-13 MSCs or vehicle was injected within the hippocampus 1 week before the intrahippocampal kainic acid-induced status epilepticus (SE) in C57BL/6J mice. Neuroinflammation was evaluated at disease onset as well as during the chronic epilepsy period (9 weeks). In addition, continuous video-electroencephalography (EEG) (vEEG) monitoring was obtained during the chronic epilepsy period (between 6 and 9 weeks after SE). RESULTS Evaluation of vEEG recordings suggested that IL-13 MSC grafts did not affect the severity and duration of SE or the seizure burden during the chronic epilepsy period, when compared to the vehicle treated SE mice. An M2-activation phenotype was induced in microglia/macrophages that infiltrated the -13 MSC graft site, as evidenced by the arginase1 expression at the graft site at both the 2-week and 9-week time-points. However, M2-activated immune cells were rarely observed outside the graft site and, accordingly, the neuroinflammatory response or cell loss related to SE induction was not altered by IL-13 MSC grafting. Moreover, an increase in the proportion of F4/80+ cells was observed in the IL-13 MSC group compared to the controls. SIGNIFICANCE Our data suggest that MSC-based IL-13 delivery to induce M2 glial activation does not provide any neuroprotective or disease-modifying effects in a mouse model of epilepsy. Moreover, use of cell grafting to deliver bioactive compounds for modulating neuroinflammation may have confounding effects in disease pathology of epilepsy due to the additional immune response generated by the grafted cells.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Stephanie Aertgeerts
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, Vaxinfectio, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Chloe Hoornaert
- Laboratory of Experimental Hematology, Vaxinfectio, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaxinfectio, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
124
|
Gross A, Benninger F, Madar R, Illouz T, Griffioen K, Steiner I, Offen D, Okun E. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice. Epilepsia 2017; 58:586-596. [DOI: 10.1111/epi.13688] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Adi Gross
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center; Bar-Ilan University; Ramat-Gan Israel
- The Paul Feder Laboratory on Alzheimer's disease research; Tel-Aviv University; Tel Aviv Israel
| | - Felix Benninger
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
- The Neuroscience Laboratory; Felsenstein Medical Research Center; Tel-Aviv University; Tel Aviv Israel
- Department of Neurology; Rabin Medical Center; Petach Tikva Israel
| | - Ravit Madar
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center; Bar-Ilan University; Ramat-Gan Israel
- The Paul Feder Laboratory on Alzheimer's disease research; Tel-Aviv University; Tel Aviv Israel
| | - Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center; Bar-Ilan University; Ramat-Gan Israel
- The Paul Feder Laboratory on Alzheimer's disease research; Tel-Aviv University; Tel Aviv Israel
| | - Kathleen Griffioen
- Department of Biology and Chemistry; Liberty University; Lynchburg Virginia U.S.A
| | - Israel Steiner
- Department of Neurology; Rabin Medical Center; Petach Tikva Israel
| | - Daniel Offen
- The Neuroscience Laboratory; Felsenstein Medical Research Center; Tel-Aviv University; Tel Aviv Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center; Bar-Ilan University; Ramat-Gan Israel
- The Paul Feder Laboratory on Alzheimer's disease research; Tel-Aviv University; Tel Aviv Israel
| |
Collapse
|
125
|
Liu C, Russin J, Heck C, Kawata K, Adiga R, Yen W, Lambert J, Stear B, Law M, Marquez Y, Crino P, Millett D, Langford D. Dysregulation of PINCH signaling in mesial temporal epilepsy. J Clin Neurosci 2017; 36:43-52. [PMID: 27838154 PMCID: PMC6492941 DOI: 10.1016/j.jocn.2016.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 01/15/2023]
Abstract
Mounting evidence suggests that inflammation is important in epileptogenesis. Particularly Interesting New Cysteine Histidine-rich (PINCH) protein is a highly conserved, LIM-domain protein known to interact with hyperphosphorylated Tau. We assessed PINCH expression in resected epileptogenic human hippocampi and further explored the relationships among PINCH, hpTau and associated kinases. Resected hippocampal tissue from 7 patients with mesial temporal lobe epilepsy (MTLE) was assessed by Western analyses to measure levels of PINCH and hyperphosphorylated Tau, as well as changes in phosphorylation levels of associated kinases AKT and GSK3β in comparison to normal control tissue. Immunolabeling was also conducted to evaluate PINCH and hpTau patterns of expression, co-localization and cell-type specific expression. Hippocampal PINCH was increased by 2.6 fold in the epilepsy cases over controls and hpTau was increased 10 fold over control. Decreased phospho-AKT and phospho-GSK3β in epilepsy tissue suggested involvement of this pathway in MTLE. PINCH and hpTau co-localized in some neurons in MTLE tissue. While PINCH was expressed by both neurons and astrocytes in MTLE tissue, hpTau was extracellular or associated with neurons. PINCH was absent from the serum of control subjects but readily detectable from the serum of patients with chronic epilepsy. Our study describes the expression of PINCH and points to AKT/GSK3β signaling dysregulation as a possible pathway in hpTau formation in MTLE. In view of the interactions between hpTau and PINCH, understanding the role of PINCH in MTLE may provide increased understanding of mechanisms leading to inflammation and MTLE epileptogenesis and a potential biomarker for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jon Russin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christianne Heck
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keisuke Kawata
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Kinesiology, College of Public Health, Philadelphia, PA, USA; Department of Kinesiology, University of Indiana, Philadelphia, PA, USA
| | - Radhika Adiga
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - William Yen
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jonathan Lambert
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Benjamin Stear
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Meng Law
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yvette Marquez
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter Crino
- Department of Neurology, Temple University School of Medicine, and Shriners Hospitals Pediatric Research Center, Philadelphia, PA, USA
| | - David Millett
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
126
|
Winkler JL, Skovira JW, Kan RK. Anticonvulsant efficacy of antihistamine cyproheptadine in rats exposed to the chemical warfare nerve agent soman. Neurotoxicology 2017; 58:153-160. [DOI: 10.1016/j.neuro.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/15/2022]
|
127
|
Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development. Mediators Inflamm 2016; 2016:7369020. [PMID: 28104930 PMCID: PMC5220508 DOI: 10.1155/2016/7369020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase 9 is a proteolytic enzyme which is recently one of the more often studied biomarkers. Its possible use as a biomarker of neuronal damage in stroke, heart diseases, tumors, multiple sclerosis, and epilepsy is being widely indicated. In epilepsy, MMP-9 is suggested to play a role in epileptic focus formation and in the stimulation of seizures. The increase of MMP-9 activity in the epileptic focus was observed both in animal models and in clinical studies. MMP-9 contributes to formation of epileptic focus, for example, by remodeling of synapses. Its proteolytic action on the elements of blood-brain barrier and activation of chemotactic processes facilitates accumulation of inflammatory cells and induces seizures. Also modification of glutamatergic transmission by MMP-9 is associated with seizures. In this review we will try to recapitulate the results of previous studies about MMP-9 in terms of its association with epilepsy. We will discuss the mechanisms of its actions and present the results revealed in animal models and clinical studies. We will also provide a comparison of the results of various studies on MMP-9 levels in the context of its possible use as a biomarker of the activity of epilepsy.
Collapse
|
128
|
Taşkıran M, Taşdemir A, Ayyıldız N. Acute effects of aceclofenac, COX-2 inhibitor, on penicillin-induced epileptiform activity. Brain Res Bull 2016; 130:42-46. [PMID: 28017780 DOI: 10.1016/j.brainresbull.2016.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE The effects of COX-2 inhibitors on seizure activity are controversial. The aim of the current study was to determine the post-treatment effect of aceclofenac on penicillin-induced experimental epilepsy. METHODS Male Wistar rats were used in all experiments (n=18). The seizure activity was triggered by penicillin (i.c.). Aceclofenac was injected intraperitoneally at doses of 10mg/kg and 20mg/kg. RESULTS Intraperitoneal administration of 10 and 20mg/kg aceclofenac doses, exhibited proconvulsant properties on seizure activity on rats. The mean spike frequency and amplitude of aceclofenac 10mg/kg were 41.89±2.12 spike/min and 0.619±0.094mV, respectively. The mean spike frequency and amplitude of aceclofenac 20mg/kg were 35.26±2.72 spike/min and 0.843±0.089mV, respectively. CONCLUSION The results indicated that not all of the COX-2 inhibitors may have anticonvulsant or proconvulsant features on patients with epilepsy susceptibility and must be used with great care. It was also suggested that not only cyclooxygenase metabolic pathway but also lipoxygenase pathway should be considered together in further detailed studies.
Collapse
Affiliation(s)
- Mehmet Taşkıran
- Department of Biology, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey.
| | - Abdulkadir Taşdemir
- Graduate School of Natural and Applied Sciences, Erciyes University, 38039 Kayseri, Turkey.
| | - Nusret Ayyıldız
- Department of Biology, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
129
|
Giordano C, Costa AM, Lucchi C, Leo G, Brunel L, Fehrentz JA, Martinez J, Torsello A, Biagini G. Progressive Seizure Aggravation in the Repeated 6-Hz Corneal Stimulation Model Is Accompanied by Marked Increase in Hippocampal p-ERK1/2 Immunoreactivity in Neurons. Front Cell Neurosci 2016; 10:281. [PMID: 28018175 PMCID: PMC5159434 DOI: 10.3389/fncel.2016.00281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
The 6-Hz corneal stimulation test is used to screen novel antiepileptic molecules to overcome the problem of drug refractoriness. Although recognized as a standard test, it has been evaluated only recently in the attempt to characterize the putative neuronal networks involved in seizures caused by corneal stimulation. In particular, by recording from the CA1 region we previously established that the hippocampus participates to propagation of seizure activity. However, these findings were not corroborated by using markers of neuronal activation such as FosB/ΔFosB antigens. In view of this discrepancy, we performed new experiments to characterize the changes in levels of phosphorylated extracellular signal-regulated kinases1/2 (p-ERK1/2), which are also used as markers of neuronal activation. To this aim, mice underwent corneal stimulation up to three different times, in three sessions separated by an interval of 3 days. To characterize a group in which seizures could be prevented by pharmacological treatment, we also considered pretreatment with the ghrelin receptor antagonist EP-80317 (330 μg/kg). Control mice were sham-treated. Video electrocorticographic (ECoG) recordings were obtained from mice belonging to each group of treatment. Animals were finally used to characterize the immunoreactivity for FosB/ΔFosB and p-ERK1/2 in the hippocampus. As previously shown, FosB/ΔFosB levels were highly increased throughout the hippocampus by the first induced seizure but, in spite of the progressively increased seizure severity, they were restored to control levels after the third stimulation. At variance, corneal stimulation caused a progressive increase in p-ERK1/2 immunoreactivity all over the hippocampus, especially in CA1, peaking in the third session. Predictably, EP-80317 administration reduced both duration and severity of seizures, prevented the increase in FosB/ΔFosB levels in the first session, and partially counteracted the increase in p-ERK1/2 levels in the third session. The vast majority of p-ERK1/2 immunopositive cells were co-labeled with FosB/ΔFosB antibodies, suggesting the existence of a relationship between the investigated markers in a subpopulation of neurons activated by seizures. These findings suggest that p-ERK1/2 are useful markers to define the aggravation of seizures and the response to anticonvulsant treatments. In particular, p-ERK1/2 expression clearly identified the involvement of hippocampal regions during seizure aggravation in the 6-Hz model.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy; Department of Neurosciences, NOCSAE Hospital, AUSLModena, Italy
| | - Anna M Costa
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy; Department of Neurosciences, NOCSAE Hospital, AUSLModena, Italy
| | - Chiara Lucchi
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy; Department of Neurosciences, NOCSAE Hospital, AUSLModena, Italy
| | - Giuseppina Leo
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy; Department of Neurosciences, NOCSAE Hospital, AUSLModena, Italy
| | - Luc Brunel
- Max Mousseron Institute of Biomolecules, Centre National de la Recherche Scientifique (CNRS), University of Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM) Montpellier, France
| | - Jean-Alain Fehrentz
- Max Mousseron Institute of Biomolecules, Centre National de la Recherche Scientifique (CNRS), University of Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM) Montpellier, France
| | - Jean Martinez
- Max Mousseron Institute of Biomolecules, Centre National de la Recherche Scientifique (CNRS), University of Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM) Montpellier, France
| | - Antonio Torsello
- Department of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy; Department of Neurosciences, NOCSAE Hospital, AUSLModena, Italy
| |
Collapse
|
130
|
Synthesis and Pharmacological Evaluation of New 3,4-Dihydroisoquinolin Derivatives Containing Heterocycle as Potential Anticonvulsant Agents. Molecules 2016; 21:molecules21121635. [PMID: 27916842 PMCID: PMC6273582 DOI: 10.3390/molecules21121635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 12/02/2022] Open
Abstract
Two novel series of 3,4-dihydroisoquinolin with heterocycle derivatives (4a–t and 9a–e) were synthesized and evaluated for their anticonvulsant activity using maximal electroshock (MES) test and pentylenetetrazole (PTZ)-induced seizure test. All compounds were characterized by IR, 1H-NMR, 13C-NMR, and mass spectral data. Among them, 9-(exyloxy)-5,6-dihydro-[1,2,4]triazolo[3,4-a]isoquinolin-3(2H)-one (9a) showed significant anticonvulsant activity in MES tests with an ED50 value of 63.31 mg/kg and it showed wide margins of safety with protective index (PI > 7.9). It showed much higher anticonvulsant activity than that of valproate. It also demonstrated potent activity against PTZ-induced seizures. A docking study of compound 9a in the benzodiazepine (BZD)-binding site of γ-aminobutyric acidA (GABAA) receptor confirmed possible binding of compound 9a with the BZD receptors.
Collapse
|
131
|
Jin SH, Chung CK. Electrophysiological resting-state biomarker for diagnosing mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 2016; 129:138-145. [PMID: 28043064 DOI: 10.1016/j.eplepsyres.2016.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
The main aim of the present study was to evaluate whether resting-state functional connectivity of magnetoencephalography (MEG) signals can differentiate patients with mesial temporal lobe epilepsy (MTLE) from healthy controls (HC) and can differentiate between right and left MTLE as a diagnostic biomarker. To this end, a support vector machine (SVM) method among various machine learning algorithms was employed. We compared resting-state functional networks between 46 MTLE (right MTLE=23; left MTLE=23) patients with histologically proven HS who were free of seizure after surgery, and 46 HC. The optimal SVM group classifier distinguished MTLE patients with a mean accuracy of 95.1% (sensitivity=95.8%; specificity=94.3%). Increased connectivity including the right posterior cingulate gyrus and decreased connectivity including at least one sensory-related resting-state network were key features reflecting the differences between MTLE patients and HC. The optimal SVM model distinguished between right and left MTLE patients with a mean accuracy of 76.2% (sensitivity=76.0%; specificity=76.5%). We showed the potential of electrophysiological resting-state functional connectivity, which reflects brain network reorganization in MTLE patients, as a possible diagnostic biomarker to differentiate MTLE patients from HC and differentiate between right and left MTLE patients.
Collapse
Affiliation(s)
- Seung-Hyun Jin
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; iMediSyn Inc., Seoul, Republic of Korea.
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.
| |
Collapse
|
132
|
Lima IVDA, Campos ACD, Bellozi PMQ, Doria JG, Ribeiro FM, Moraes MFD, de Oliveira ACP. Postictal alterations induced by intrahippocampal injection of pilocarpine in C57BL/6 mice. Epilepsy Behav 2016; 64:83-89. [PMID: 27736661 DOI: 10.1016/j.yebeh.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/30/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults. The pilocarpine (PILO) experimental model of TLE portrays behavioral and pathophysiological changes in rodents that are very similar to those found in humans with TLE. However, this model is associated with an unfortunate high mortality rate. Studies have shown that intrahippocampal injection of PILO, while having a much smaller mortality rate, induces status epilepticus (SE) that secondarily leads to TLE. To the best of our knowledge, the present study was the first to evaluate the cognitive and histological alterations 72h after intrahippocampal microinjection of PILO in C57BL/6 mice. Seventy percent of mice developed status epilepticus (SE) after PILO administration, and all animals survived after SE. Seventy-two hours after SE, mice presented memory impairment in both Novel Object Recognition (recognition index - vehicle: 67.57±4.46% vs PILO: 52.33±3.29%) and Contextual Fear Conditioning (freezing time - vehicle: 203±20.43 vs PILO: 107.80±25.17s) tasks. Moreover, using Nissl and NeuN staining, we observed in PILO-treated mice a significant decrease in cell viability and an increase in neuronal loss in all three hippocampal regions analyzed, cornus ammonis (CA) 1, CA3, and dentate gyrus (DG), in comparison with the control group. Additionally, using Iba-1 staining, we observed in PILO-treated mice a significant increase in microglial proliferation in CA1, CA3, and DG of the hippocampus. Therefore, intrahippocampal PILO microinjection is an efficient route to induce SE and acute postictal epileptogenic-like alterations in C57BL/6 mice.
Collapse
Affiliation(s)
| | | | | | - Juliana Guimaraes Doria
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Fabiola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Marcio Flavio Dutra Moraes
- Department of Biophysics and Physiology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | | |
Collapse
|
133
|
Gorantla VR, Pemminati S, Bond V, Meyers DG, Millis RM. Effects of Swimming Exercise on Learning and Memory in the Kainate-Lesion Model of Temporal Lobe Epilepsy. J Clin Diagn Res 2016; 10:CF01-CF05. [PMID: 28050361 DOI: 10.7860/jcdr/2016/22100.8835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION An aerobic exercise (Ex) augments neurogenesis and may ameliorate learning and memory deficits in the rat Kainic Acid (KA) model of temporal lobe epilepsy in the short-term but whether it reverses learning and memory deficits after a substantial period of delay remains unclear. AIM This study tests the hypothesis that aerobic Ex attenuates the learning and memory deficits associated with kainate seizures in the long-term. MATERIALS AND METHODS A total of 60 rats were subjected to chemical lesioning using KA and to an Ex intervention consisting of a 30 days period of daily swimming for 15 min, immediately after KA lesioning (immediate exposure) or after a 60 days period of normal activity (delayed exposure). We evaluated spatial learning on a T-maze test, expressed as percentage of correct responses. We evaluated memory on a passive-avoidance test, expressed as time spent in a compartment in which the rats were previously exposed to an aversive stimulus. RESULTS Ex increases the percentage of correct responses, percentage bias, and number of alternations, associated with the T-maze testing for the normal control, sham-operated control and kainate-lesioned animals after both immediate and delayed exposures to Ex. Ex decreased the time exposed to the aversive stimulus in the smaller compartment of the two-compartment passive-avoidance test, also for the normal control, sham-operated control and kainate-lesioned animals after both immediate and delayed exposures to Ex. CONCLUSION These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may attenuate the learning and memory deficits, even if the exercise treatment is delayed.
Collapse
Affiliation(s)
- Vasavi Rakesh Gorantla
- Assistant Professor, Department of Behavioural Sciences and Neuroscience, AUA College of Medicine and Manipal University, Antigua and Department of Anatomy, Melaka Manipal Medical College, Manipal University , Manipal, India
| | - Sudhakar Pemminati
- Associate Professor, Department of Medical Pharmacology, AUA College of Medicine , Antigua
| | - Vernon Bond
- Professor, Department of Recreation, Human Performance & Leisure Studies and Exercise Science & Human Nutrition Laboratory, Howard University Cancer Centre , Washington, DC 20060, United States of America
| | - Dewey G Meyers
- Professor, Department of Behavioural Science and Neuroscience, AUA College of Medicine , Antigua
| | - Richard Mark Millis
- Professor, Department of Medical Physiology, AUA College of Medicine , Antigua
| |
Collapse
|
134
|
Shao H, Yang Y, Mi Z, Zhu GX, Qi AP, Ji WG, Zhu ZR. Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience 2016; 337:355-369. [DOI: 10.1016/j.neuroscience.2016.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
|
135
|
Amakhin DV, Ergina JL, Chizhov AV, Zaitsev AV. Synaptic Conductances during Interictal Discharges in Pyramidal Neurons of Rat Entorhinal Cortex. Front Cell Neurosci 2016; 10:233. [PMID: 27790093 PMCID: PMC5061778 DOI: 10.3389/fncel.2016.00233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAA R-mediated conductances during two distinct types of interictal discharge (IID) in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAA R channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with early AMPAR and prolonged depolarized GABAA R and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| | - Anton V Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia; Computational Physics Laboratory, Division of Plasma Physics, Atomic Physics and Astrophysics, Ioffe InstituteSaint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint Petersburg, Russia
| |
Collapse
|
136
|
de Araújo MA, Marques TEBS, Octacílio-Silva S, de Arroxelas-Silva CL, Pereira MGAG, Peixoto-Santos JE, Kandratavicius L, Leite JP, Garcia-Cairasco N, Castro OW, Duzzioni M, Passos GA, Paçó-Larson ML, Góes Gitaí DL. Identification of microRNAs with Dysregulated Expression in Status Epilepticus Induced Epileptogenesis. PLoS One 2016; 11:e0163855. [PMID: 27695061 PMCID: PMC5047645 DOI: 10.1371/journal.pone.0163855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The involvement of miRNA in mesial temporal lobe epilepsy (MTLE) pathogenesis has increasingly become a focus of epigenetic studies. Despite advances, the number of known miRNAs with a consistent expression response during epileptogenesis is still small. Addressing this situation requires additional miRNA profiling studies coupled to detailed individual expression analyses. Here, we perform a miRNA microarray analysis of the hippocampus of Wistar rats 24 hours after intra-hippocampal pilocarpine-induced Status Epilepticus (H-PILO SE). We identified 73 miRNAs that undergo significant changes, of which 36 were up-regulated and 37 were down-regulated. To validate, we selected 5 of these (10a-5p, 128a-3p, 196b-5p, 352 and 324-3p) for RT-qPCR analysis. Our results confirmed that miR-352 and 196b-5p levels were significantly higher and miR-128a-3p levels were significantly lower in the hippocampus of H-PILO SE rats. We also evaluated whether the 3 miRNAs show a dysregulated hippocampal expression at three time periods (0h, 24h and chronic phase) after systemic pilocarpine-induced status epilepticus (S-PILO SE). We demonstrate that miR-128a-3p transcripts are significantly reduced at all time points compared to the naïve group. Moreover, miR-196b-5p was significantly higher only at 24h post-SE, while miR-352 transcripts were significantly up-regulated after 24h and in chronic phase (epileptic) rats. Finally, when we compared hippocampi of epileptic and non-epileptic humans, we observed that transcript levels of miRNAs show similar trends to the animal models. In summary, we successfully identified two novel dysregulated miRNAs (196b-5p and 352) and confirmed miR-128a-3p downregulation in SE-induced epileptogenesis. Further functional assays are required to understand the role of these miRNAs in MTLE pathogenesis.
Collapse
Affiliation(s)
- Mykaella Andrade de Araújo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Shirley Octacílio-Silva
- Department of Morphology, Health and Biological Sciences Center, Federal University of Sergipe, Aracajú, Sergipe, Brazil
| | - Carmem Lúcia de Arroxelas-Silva
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - José Eduardo Peixoto-Santos
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Olagide Wagner Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
137
|
Kalemenev SV, Zubareva OE, Sizov VV, Lavrent'eva VV, Lukomskaya NY, Kim KK, Zaitsev AV, Magazanik LG. Memantine attenuates cognitive impairments after status epilepticus induced in a lithium-pilocarpine model. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 470:224-227. [PMID: 27822751 DOI: 10.1134/s0012496616050148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 06/06/2023]
Abstract
The capability of memantine, a noncompetitive antagonist of the NMDA receptors, to prevent impairments of cognitive functions in rats was investigated in the lithium-pilocarpine model of epilepsy. After status epilepticus, rats exhibited impaired exploratory behavior and spatial memory, and a decline of extinction of orienting behavior. Memantine administration prevented these disturbances. Thus, the blockade of the NMDA receptors immediately after status epilepticus allowed prevention of the development of the possible cognitive impairments.
Collapse
Affiliation(s)
- S V Kalemenev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - O E Zubareva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - V V Sizov
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - V V Lavrent'eva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N Ya Lukomskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - K Kh Kim
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - L G Magazanik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
- St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
138
|
Decreased neuron loss and memory dysfunction in pilocarpine-treated rats pre-exposed to hypoxia. Neuroscience 2016; 332:88-100. [DOI: 10.1016/j.neuroscience.2016.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/04/2016] [Accepted: 06/24/2016] [Indexed: 01/03/2023]
|
139
|
Abdolmaleki A, Moghimi A, Ghayour MB, Rassouli MB. Evaluation of neuroprotective, anticonvulsant, sedative and anxiolytic activity of citicoline in rats. Eur J Pharmacol 2016; 789:275-279. [PMID: 27475676 DOI: 10.1016/j.ejphar.2016.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Citicoline (cytidine-5'-diphosphocholine) is a neuroprotective agent that is administered following ischemic and traumatic brain injuries. There is little information about the antiseizure and anxiolytic effects of citicoline, which are therefore addressed in the present study. For evaluating the anticonvulsant effect of citicoline in the pentylentetrazole seizure model, a single intraperitoneal dose of citicoline was administered at 50, 100 or 150mg/kg. Sedative and anxiolytic effects of citicoline were examined via elevated plus maze and pentobarbital induced sleep tests. Results show that citicoline at the doses of 100 and 150mg/kg significantly delayed the latent period compared with the control (P<0.05). Citicoline at the doses of 100 and 150mg/kg significantly decreased total locomotion compared with the control (P<0.05). Additionally, citicoline at the doses of 100 and 150mg/kg significantly increased both percentage of entry and time spent in the open arms in the elevated plus maze test (P<0.05). The pentobarbital induced sleep test showed that citicoline significantly reduced the latency to sleep (P<0.05). Our results suggest that acute administration of citicoline has anticonvulsant activity and sedative effect.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Morteza B Rassouli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
140
|
Botterill JJ, Nogovitsyn N, Caruncho HJ, Kalynchuk LE. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions. J Comp Neurol 2016; 525:389-406. [PMID: 27362579 DOI: 10.1002/cne.24071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
The vulnerability and plasticity of hippocampal GABAergic interneurons is a topic of broad interest and debate in the field of epilepsy. In this experiment, we used the electrical kindling model of epilepsy to determine whether seizures that originate in different brain regions have differential effects on hippocampal interneuron subpopulations. Long-Evans rats received 99 electrical stimulations of the hippocampus, amygdala, or caudate nucleus, followed by sacrifice and immunohistochemical or western blot analyses. We analyzed markers of dendritic (somatostatin), perisomatic (parvalbumin), and interneuron-selective (calretinin) inhibition, as well as an overall indicator (GAD67) of interneuron distribution across all major hippocampal subfields. Our results indicate that kindling produces selective effects on the number and morphology of different functional classes of GABAergic interneurons. In particular, limbic kindling appears to enhance dendritic inhibition, indicated by a greater number of somatostatin-immunoreactive (-ir) cells in the CA1 pyramidal layer and robust morphological sprouting in the dentate gyrus. We also found a reduction in the number of interneuron-selective calretinin-ir cells in the dentate gyrus of hippocampal-kindled rats, which suggests a possible reduction of synchronized dendritic inhibition. In contrast, perisomatic inhibition indicated by parvalbumin immunoreactivity appears to be largely resilient to the effects of kindling. Finally, we found a significant induction in the number of GAD67-cells in caudate-kindled rats in the dentate gyrus and CA3 hippocampal subfields. Taken together, our results demonstrate that kindling has subfield-selective effects on the different functional classes of hippocampal GABAergic interneurons. J. Comp. Neurol. 525:389-406, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J J Botterill
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - N Nogovitsyn
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - H J Caruncho
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - L E Kalynchuk
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
141
|
Mosińska P, Socała K, Nieoczym D, Laudon M, Storr M, Fichna J, Wlaź P. Anticonvulsant activity of melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, in mice. Behav Brain Res 2016; 307:199-207. [DOI: 10.1016/j.bbr.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 11/26/2022]
|
142
|
Li F, Liu L. SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2. Front Cell Neurosci 2016; 10:171. [PMID: 27445698 PMCID: PMC4922023 DOI: 10.3389/fncel.2016.00171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a common and serious neurological disorder characterized by occurrence of recurrent spontaneous seizures, and emerging evidences support the association of mitochondrial dysfunction with epilepsy. Sirtuin 5 (SIRT5), localized in mitochondrial matrix, has been considered as an important functional modulator of mitochondria that contributes to ageing and neurological diseases. Our data shows that SIRT5 deficiency strikingly increased mortality rate and severity of response to epileptic seizures, dramatically exacerbated hippocampal neuronal loss and degeneration in mice exposed to Kainate (KA), and triggered more severe reactive astrogliosis. We found that the expression of mitochondrial SIRT5 of injured hippocampus was relatively up-regulated, indicating its potential contribution to the comparably increased survival of these cells and its possible neuroprotective role. Unexpectedly, SIRT5 seems not to apparently alter the decline of antioxidant enzymes superoxide dismutase 2 (SOD2) and glutathione peroxidase (GPx) in hippocampus caused by KA exposure in our paradigm, which indicates the protective role of SIRT5 on seizures and cellular degeneration might through different regulatory mechanism that would be explored in the future. In the present study, we provided strong evidences for the first time to demonstrate the association between SIRT5 and epilepsy, which offers a new understanding of the roles of SIRT5 in mitochondrial functional regulation. The neuroprotection of SIRT5 in KA-induced epileptic seizure and neurodegeneration will improve our current knowledge of the nature of SIRT5 in central nervous system (CNS) and neurological diseases.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pharmacy, Linyi Tumor Hospital Linyi, Shandong, China
| | - Lei Liu
- Department of Anesthesiology, University of FloridaGainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of FloridaGainesville, FL, USA
| |
Collapse
|
143
|
Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA. Pharmaceuticals (Basel) 2016; 9:ph9020032. [PMID: 27304960 PMCID: PMC4932550 DOI: 10.3390/ph9020032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022] Open
Abstract
Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg) was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg) and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects.
Collapse
|
144
|
Wulsin AC, Solomon MB, Privitera MD, Danzer SC, Herman JP. Hypothalamic-pituitary-adrenocortical axis dysfunction in epilepsy. Physiol Behav 2016; 166:22-31. [PMID: 27195458 DOI: 10.1016/j.physbeh.2016.05.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/04/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
Abstract
Epilepsy is a common neurological disease, affecting 2.4million people in the US. Among the many different forms of the disease, temporal lobe epilepsy (TLE) is one of the most frequent in adults. Recent studies indicate the presence of a hyperactive hypothalamopituitary- adrenocortical (HPA) axis and elevated levels of glucocorticoids in TLE patients. Moreover, in these patients, stress is a commonly reported trigger of seizures, and stress-related psychopathologies, including depression and anxiety, are highly prevalent. Elevated glucocorticoids have been implicated in the development of stress-related psychopathologies. Similarly, excess glucocorticoids have been found to increase neuronal excitability, epileptiform activity and seizure susceptibility. Thus, patients with TLE may generate abnormal stress responses that both facilitate ictal discharges and increase vulnerability for the development of comorbid psychopathologies. Here, we will examine the evidence that the HPA axis is disrupted in TLE, consider potential mechanisms by which this might occur, and discuss the implications of HPA dysfunction for seizuretriggering and psychiatric comorbidities.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States.
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael D Privitera
- Department of Neurology, Neuroscience Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
145
|
Abstract
This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| |
Collapse
|
146
|
Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats. Neuroscience 2016; 327:146-55. [PMID: 27109923 DOI: 10.1016/j.neuroscience.2016.04.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 11/22/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in humans. The lithium-pilocarpine model in rodents reproduces some of the main features of human TLE. Three-week-old Wistar rats were used in this study. The changes in AMPA receptor subunit composition were investigated in several brain areas, including the medial prefrontal cortex (mPFC), the temporal cortex (TC), and the dorsal (DH) and ventral hippocampus (VH) during the first week following pilocarpine-induced status epilepticus (PILO-induced SE). In the hippocampus, GluA1 and GluA2 mRNA expression slightly decreased after PILO-induced SE and returned to the initial level on the seventh day. We did not detect any significant changes in mRNA expression of the GluA1 and GluA2 subunits in the TC, whereas in the mPFC we observed a significant increase of GluA1 mRNA expression on the third day and a decrease in GluA2 mRNA expression during the entire first week. Accordingly, the GluA1/GluA2 expression ratio increased in the mPFC, and the functional properties of the pyramidal cell excitatory synapses were disturbed. Using whole-cell voltage-clamp recordings, we found that on the third day following PILO-induced SE, isolated mPFC pyramidal neurons showed an inwardly rectifying current-voltage relation of kainate-evoked currents, suggesting the presence of GluA2-lacking calcium-permeable AMPARs (CP-AMPARs). IEM-1460, a selective antagonist of CP-AMPARs, significantly reduced the amplitude of evoked EPSC in pyramidal neurons from mPFC slices on the first and third days, but not on the seventh day. The antagonist had no effects on EPSC amplitude in slices from control animals. Thus, our data demonstrate that PILO-induced SE affects subunit composition of AMPARs in different brain areas, including the mPFC. SE induces transient (up to few days) incorporation of CP-AMPARs in the excitatory synapses of mPFC pyramidal neurons, which may disrupt normal circuitry functions.
Collapse
|
147
|
Pansani AP, Colugnati DB, Scorza CA, de Almeida ACG, Cavalheiro EA, Scorza FA. Furthering our understanding of SUDEP: the role of animal models. Expert Rev Neurother 2016; 16:561-72. [PMID: 27029803 DOI: 10.1586/14737175.2016.1169925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sudden and unexpected death in epilepsy (SUDEP) is the most common type of death among patients with epilepsy. Here, we address the importance of the experimental models in search of the mechanisms underlying SUDEP. Most studies have investigated the cardiovascular responses in animal models of epilepsy. However, there are few proposed SUDEP models in literature. Hypoventilation, apnea, respiratory distress, pulmonary hypertension, autonomic dysregulation and arrhythmia are common findings in epilepsy models. Impairments on adenosinergic and serotonergic systems, brainstem spreading depolarization, seizure-activation of neural substrates related to cardiorespiratory control, altered autonomic control, and mutations on sodium and potassium channels are hypothesis suggested. Overall, current research highlights the evident multifactorial nature of SUDEP, which involves acute and chronic aspects ranging from systemic to molecular alterations. Thus, we are convinced that elucidation and prevention of SUDEP can be achieved only through the interaction between basic and clinical science.
Collapse
Affiliation(s)
- Aline P Pansani
- a Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica. Departamento de Ciências Fisiológicas , Universidade Federal de Goiás , Goiânia , Brasil
| | - Diego B Colugnati
- a Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica. Departamento de Ciências Fisiológicas , Universidade Federal de Goiás , Goiânia , Brasil
| | - Carla A Scorza
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| | - Antonio-Carlos G de Almeida
- c Laboratório de Neurociência Experimental e Computacional. Departamento de Engenharia de Biossistemas , Universidade Federal de São João del-Rei , São João del-Rei , Brasil
| | - Esper A Cavalheiro
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| | - Fulvio A Scorza
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| |
Collapse
|
148
|
Russmann V, Goc J, Boes K, Ongerth T, Salvamoser JD, Siegl C, Potschka H. Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model. Eur J Pharmacol 2016; 771:29-39. [DOI: 10.1016/j.ejphar.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
|
149
|
Wei CX, Bian M, Gong GH. Current Research on Antiepileptic Compounds. Molecules 2015; 20:20741-76. [PMID: 26610448 PMCID: PMC6332177 DOI: 10.3390/molecules201119714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 02/02/2023] Open
Abstract
Epilepsy affects about 1% of the world’s population. Due to the fact all antiepileptic drugs (AEDs) have some undesirable side effects and about 30% of epileptic patients are not seizure-free with the existing AEDs, there is still an urgent need for the development of more effective and safer AEDs. Based on our research work on antiepileptic compounds and other references in recent years, this review covers the reported work on antiepileptic compounds which are classified according to their structures. This review summarized 244 significant anticonvulsant compounds which are classified by functional groups according to the animal model data, although there are some limitations in the data. This review highlights the properties of new compounds endowed with promising antiepileptic properties, which may be proven to be more effective and selective, and possibly free of unwanted side effects. The reviewed compounds represent an interesting possibility to overcome refractory seizures and to reduce the percentage of patients with a poor response to drug therapy.
Collapse
Affiliation(s)
- Cheng-Xi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
| | - Guo-Hua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
- Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China.
| |
Collapse
|
150
|
Kalinina DS, Frolova EV, Lavrentyeva VV, Dubrovskaya NM, Lukomskaya NY, Kim KK, Zaitsev AV, Zhuravin IA, Magazanik LG. Delayed effect of prenatal exposure to hypoxia on the susceptibility of rats to electric seizures. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2015; 465:271-273. [PMID: 26725232 DOI: 10.1134/s0012496615060071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 06/05/2023]
Abstract
We studied the delayed effects of prenatal exposure to hypoxia on the susceptibility of rats to seizures. The later was estimated using graded electroshock. The experiments were performed in two groups of 1.5-year-old male Wistar rats. The experimental group consisted of the animals that were exposed to hypoxia on day 14 of prenatal development, and the control group consisted of the animals that developed under the normal conditions. In the rats subjected to prenatal hypoxia, seizure episodes induced by weak currents in the range of 10-40 mA and their average duration were more pronounced as compared to the control animals.
Collapse
Affiliation(s)
- D S Kalinina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - E V Frolova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - V V Lavrentyeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N M Dubrovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - N Ya Lukomskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - K Kh Kim
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - I A Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - L G Magazanik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
- St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|