101
|
Al-Nasser A, Al-Khalaifah H, Al-Mansour H, Ahmad A, Ragheb G. Evaluating farm size and technology use in poultry production in Kuwait. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1737625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- A. Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - H. Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - H. Al-Mansour
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - A. Ahmad
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - G. Ragheb
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| |
Collapse
|
102
|
Attia Y, Al-Khalaifah H, Abd El-Hamid H, Al-Harthi M, El-Shafey A. Growth performance, digestibility, intestinal morphology, Carcass traits and meat quality of broilers fed marginal nutrients deficiency-diet supplemented with different levels of active Yeast. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
103
|
Li M, Wang Y, Cui H, Li Y, Sun Y, Qiu HJ. Characterization of Lactic Acid Bacteria Isolated From the Gastrointestinal Tract of a Wild Boar as Potential Probiotics. Front Vet Sci 2020; 7:49. [PMID: 32118070 PMCID: PMC7026679 DOI: 10.3389/fvets.2020.00049] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/20/2020] [Indexed: 01/11/2023] Open
Abstract
Lactic acid bacteria (LAB) are major microorganisms used for probiotic purposes and prime parts of the human and mammalian gut microbiota, which exert important health-promoting effects on the host. The present study aimed to evaluate and compare the probiotic potential and safety of LAB strains isolated from the gastrointestinal tract of a wild boar from the Greater Khingan Mountains, China. Amongst all of the isolated LAB strains, five isolates identified as Lactobacillus mucosae, Lactobacillus salivarius, Enterococcus hirae, Enterococcus durans, and Enterococcus faecium, were remarkably resistant to acid and bile salt. The probiotic characteristics (including adhesion capability, antimicrobial activities, autoaggregation, and coaggregation abilities), and safety properties (including hemolytic activity, antibiotic resistance, absence/presence of virulence factors, and in vivo safety) were evaluated. The results showed that all five isolates exhibited high adhesive potential, remarkable aggregation capacity, and antibacterial activities. Upon assessment of the safety, these strains were negative for hemolytic activity and all tested virulence genes. In vivo safety assessment showed no adverse effects of isolated strains supplementation on the body weight gain and organ indices of the treated mice. This study revealed that these LAB isolates, especially L. salivarius M2-71, possess desirable probiotic properties and have great potentials for the development of feed additives for animals to promote health.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yi Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
104
|
Attia YA, Al-Khalaifah H, Abd El-Hamid HS, Al-Harthi MA, El-Shafey AA. Effect of Different Levels of Multienzymes on Immune Response, Blood Hematology and Biochemistry, Antioxidants Status and Organs Histology of Broiler Chicks Fed Standard and Low-Density Diets. Front Vet Sci 2020; 6:510. [PMID: 32195272 PMCID: PMC7015166 DOI: 10.3389/fvets.2019.00510] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
This study was executed to investigate the effect of supplementing three multienzyme levels (0, 0. 1, and 0.2%) with two types of diet [standard diet (SD) vs. low-density diet (LDD)] on immune response, blood hematology and biochemistry, antioxidant status, and organ histology of broilers during 1–38 days of age. A total of 216 unsexed 1-day-old Arbor Acres broiler chicks were randomly distributed, on a factorial design (2 × 3), to six treatments each with six replicates. There were six chicks per replicate. Results showed that LDD significantly decreased body weight gain (BWG) of broilers, but did not affect the European Production Efficiency Index (EPEI). Addition of multienzymes at both levels (0.1 and 0.2%) significantly increased BWG and improved EPEI, compared to the control diet. Alanine aminotransferase (ALT), aspirate aminotransferase (AST), malondialdehyde (MDA), lymphocyte, lymphocyte transformation test (LTT), and phagocyte activity (PA) were significantly higher for LDD than the SD, but eosinophil was lower. Supplementation of multienzymes significantly decreased ALT, AST, and MDA, compared to the control group, but increased packed cell volume (PCV), hemoglobin (Hgb), lymphocytes, and monocytes. Immune organs, such as spleen, thymus, and the bursa of Fabricius were significantly increased with multienzyme supplementation. It could be concluded that multienzyme supplementation at either 0.1 or 0.2% to SD or LDD improved EPEI and immune status of broiler chicks.
Collapse
Affiliation(s)
- Y A Attia
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Animal and Poultry Production Department, Faculty of Agriculture, Damanhur University, Damanhur, Egypt
| | - H Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - H S Abd El-Hamid
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, Egypt
| | - M A Al-Harthi
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A A El-Shafey
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhur University, Damanhur, Egypt
| |
Collapse
|
105
|
Al-Khalaifah H, Al-Nasser A, Givens D, Rymer C, Yaqoob P. Comparison of different dietary sources of n-3 polyunsaturated fatty acids on immune response in broiler chickens. Heliyon 2020; 6:e03326. [PMID: 32051880 PMCID: PMC7002886 DOI: 10.1016/j.heliyon.2020.e03326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/31/2019] [Accepted: 01/24/2020] [Indexed: 11/02/2022] Open
Abstract
The study aims to research the effects of varied dietary sources of n-3 polyunsaturated fatty acids (PUFA) on the immune response in broiler chickens with stress on natural killer (NK) cell activity. Diets supplemented with one of the four sources of n-3 PUFA: linseed oil-, echium oil-, fish oil (FO) or algal biomass-enriched diets at levels of 18, 18, 50 and 15 g/kg fresh weight, were provided for one-d-old male Ross 308 broilers, totaling 340 in number, until they were slaughtered. The analyses included total lipid profile using gas chromatography (GC) for plasma, spleen, thymus, and blood. Additionally, NK cell activity and cell proliferation were investigated for thymocytes and splenocytes. The results indicated that the source of n-3 PUFA had a strong influence on fatty acid composition across all tissues. NK activity was highest in splenocytes and PBMCs from broilers fed linseed oil, followed by those fed algal biomass or echium oil, and lowest for those from broilers fed FO. The proliferative response of lymphocytes from algal biomass-fed chickens tended to be the highest, followed by those fed linseed oil in most cases. Lymphocytes from chickens fed fish oil showed the lowest proliferative response. These results could mean that a docosahexaenoic acid (DHA)-rich algal product might enrich chicken meat with n-3 PUFA without significant damaging effects on chicken immunity.
Collapse
Affiliation(s)
- H. Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - A. Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - D.I. Givens
- Institute for Food, Nutrition, and Health, University of Reading, United Kingdom
| | - C. Rymer
- Institute for Food, Nutrition, and Health, University of Reading, United Kingdom
| | - P. Yaqoob
- Department of Food and Nutritional Sciences, Whiteknights House 3-07, University of Reading, United Kingdom
| |
Collapse
|
106
|
Massacci FR, Lovito C, Tofani S, Tentellini M, Genovese DA, De Leo AAP, Papa P, Magistrali CF, Manuali E, Trabalza-Marinucci M, Moscati L, Forte C. Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 Positively Affects Performance and Intestinal Ecosystem in Broilers during a Campylobacter jejuni Infection. Microorganisms 2019; 7:E596. [PMID: 31766507 PMCID: PMC6956328 DOI: 10.3390/microorganisms7120596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023] Open
Abstract
In poultry production, probiotics have shown promise to limit campylobacteriosis at the farm level, the most commonly reported zoonosis in Europe. The aim of this trial was to evaluate the effects of Saccharomyces supplementation in Campylobacter jejuni challenged chickens on performance and intestinal ecosystem. A total of 156 day old male Ross 308 chicks were assigned to a basal control diet (C) or to a Saccharomyces cerevisiae boulardii CNCM I-1079 supplemented diet (S). All the birds were orally challenged with C. jejuni on day (d) 21. Live weight and growth performance were evaluated on days 1, 21, 28 and 40. The histology of intestinal mucosa was analyzed and the gut microbiota composition was assessed by 16S rRNA. Performance throughout the trial as well as villi length and crypt depth were positively influenced by yeast supplementation. A higher abundance of operational taxonomic units (OTUs) annotated as Lactobacillus reuteri and Faecalibacterium prausnitzii and a lower abundance of Campylobacter in fecal samples from S compared to the C group were reported. Supplementation with Saccharomyces cerevisiae boulardii can effectively modulate the intestinal ecosystem, leading to a higher abundance of beneficial microorganisms and modifying the intestinal mucosa architecture, with a subsequent improvement of the broilers' growth performance.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Carmela Lovito
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana ‘M. Aleandri’, 00178 Roma, Italy
| | - Michele Tentellini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Domenica Anna Genovese
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Alessia Arcangela Pia De Leo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Paola Papa
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Elisabetta Manuali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | | | - Livia Moscati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| | - Claudio Forte
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06126 Perugia, Italy; (F.R.M.); (C.L.); (S.T.); (M.T.); (D.A.G.); (A.A.P.D.L.); (P.P.); (C.F.M.); (E.M.); (L.M.)
| |
Collapse
|
107
|
Zhang JM, Sun YS, Zhao LQ, Chen TT, Fan MN, Jiao HC, Zhao JP, Wang XJ, Li FC, Li HF, Lin H. SCFAs-Induced GLP-1 Secretion Links the Regulation of Gut Microbiome on Hepatic Lipogenesis in Chickens. Front Microbiol 2019; 10:2176. [PMID: 31616396 PMCID: PMC6775471 DOI: 10.3389/fmicb.2019.02176] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
The impact of gut microbiota and its metabolites on fat metabolism have been widely reported in human and animals. However, the critical mediators and the signal transductions are not well demonstrated. As ovipara, chicken represents a specific case in lipid metabolism that liver is the main site of lipid synthesis. The aim of this study is to elucidate the linkage of gut microbiota and fat synthesis in broiler chickens. The broilers were subjected to dietary treatments of combined probiotics (Animal bifidobacterium: 4 × 108 cfu/kg; Lactobacillus plantarum: 2 × 108 cfu/kg; Enterococcus faecalis: 2 × 108 cfu/kg; Clostridium butyrate: 2 × 108 cfu/kg, PB) and guar gum (1 g/kg, GG), respectively. Results showed that dietary supplementation of PB and GG changed the cecal microbiota diversity, altered short chain fatty acids (SCFAs) contents, and suppressed lipogenesis. In intestinal epithelial cells (IECs), SCFAs (acetate, propionate, and butyrate) up-regulated the expression of glucagon-like peptide-1 (GLP-1) via mitogen-activated protein kinase (MAPK) pathways, mainly via the phospho - extracellular regulated protein kinase (ERK) and phospho-p38 mitogen activated protein kinase (p38 MAPK) pathways. GLP-1 suppressed lipid accumulation in primary hepatocytes with the involvement of (AMP)-activated protein kinase/Acetyl CoA carboxylase (AMPK/ACC) signaling. In conclusion, the result suggests that SCFAs-induced GLP-1 secretion via MAPK pathway, which links the regulation of gut microbiota on hepatic lipogenesis in chickens.
Collapse
Affiliation(s)
- Jian-Mei Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Key Laboratory of Animal Microecological Agents, Biological Research Institute, Shandong Baolai-Leelai Bioengineering Co., Ltd., Tai'an, China
| | - Yin-Shuang Sun
- Shandong Key Laboratory of Animal Microecological Agents, Biological Research Institute, Shandong Baolai-Leelai Bioengineering Co., Ltd., Tai'an, China
| | - Li-Qin Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Tian-Tian Chen
- Shandong Key Laboratory of Animal Microecological Agents, Biological Research Institute, Shandong Baolai-Leelai Bioengineering Co., Ltd., Tai'an, China
| | - Mei-Na Fan
- Shandong Key Laboratory of Animal Microecological Agents, Biological Research Institute, Shandong Baolai-Leelai Bioengineering Co., Ltd., Tai'an, China
| | - Hong-Chao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jing-Peng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiao-Juan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Fu-Chang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hai-Fang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|