101
|
Chandrasekaran K, Choi J, Arvas MI, Salimian M, Singh S, Xu S, Gullapalli RP, Kristian T, Russell JW. Nicotinamide Mononucleotide Administration Prevents Experimental Diabetes-Induced Cognitive Impairment and Loss of Hippocampal Neurons. Int J Mol Sci 2020; 21:ijms21113756. [PMID: 32466541 PMCID: PMC7313029 DOI: 10.3390/ijms21113756] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes predisposes to cognitive decline leading to dementia and is associated with decreased brain NAD+ levels. This has triggered an intense interest in boosting nicotinamide adenine dinucleotide (NAD+) levels to prevent dementia. We tested if the administration of the precursor of NAD+, nicotinamide mononucleotide (NMN), can prevent diabetes-induced memory deficits. Diabetes was induced in Sprague-Dawley rats by the administration of streptozotocin (STZ). After 3 months of diabetes, hippocampal NAD+ levels were decreased (p = 0.011). In vivo localized high-resolution proton magnetic resonance spectroscopy (MRS) of the hippocampus showed an increase in the levels of glucose (p < 0.001), glutamate (p < 0.001), gamma aminobutyric acid (p = 0.018), myo-inositol (p = 0.018), and taurine (p < 0.001) and decreased levels of N-acetyl aspartate (p = 0.002) and glutathione (p < 0.001). There was a significant decrease in hippocampal CA1 neuronal volume (p < 0.001) and neuronal number (p < 0.001) in the Diabetic rats. Diabetic rats showed hippocampal related memory deficits. Intraperitoneal NMN (100 mg/kg) was given after induction and confirmation of diabetes and was provided on alternate days for 3 months. NMN increased brain NAD+ levels, normalized the levels of glutamate, taurine, N-acetyl aspartate (NAA), and glutathione. NMN-treatment prevented the loss of CA1 neurons and rescued the memory deficits despite having no significant effect on hyperglycemic or lipidemic control. In hippocampal protein extracts from Diabetic rats, SIRT1 and PGC-1α protein levels were decreased, and acetylation of proteins increased. NMN treatment prevented the diabetes-induced decrease in both SIRT1 and PGC-1α and promoted deacetylation of proteins. Our results indicate that NMN increased brain NAD+, activated the SIRT1 pathway, preserved mitochondrial oxidative phosphorylation (OXPHOS) function, prevented neuronal loss, and preserved cognition in Diabetic rats.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA;
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
| | - Sujal Singh
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.X.); (R.P.G.)
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.X.); (R.P.G.)
| | - Tibor Kristian
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA;
- Department of Anesthesiology; University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James William Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (J.C.); (M.I.A.); (M.S.); (S.S.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA;
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
102
|
Arbo BD, André-Miral C, Nasre-Nasser RG, Schimith LE, Santos MG, Costa-Silva D, Muccillo-Baisch AL, Hort MA. Resveratrol Derivatives as Potential Treatments for Alzheimer's and Parkinson's Disease. Front Aging Neurosci 2020; 12:103. [PMID: 32362821 PMCID: PMC7180342 DOI: 10.3389/fnagi.2020.00103] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons in different regions of the nervous system. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most prevalent neurodegenerative diseases, and the symptoms associated with these pathologies are closely related to the regions that are most affected by the process of neurodegeneration. Despite their high prevalence, currently, there is no cure or disease-modifying drugs for the treatment of these conditions. In the last decades, due to the need for the development of new treatments for neurodegenerative diseases, several authors have investigated the neuroprotective actions of naturally occurring molecules, such as resveratrol. Resveratrol is a stilbene found in several plants, including grapes, blueberries, raspberries, and peanuts. Studies have shown that resveratrol presents neuroprotective actions in experimental models of AD and PD, however, its clinical application is limited due to its rapid metabolism and low bioavailability. In this context, studies have proposed that structural changes in the resveratrol molecule, including glycosylation, alkylation, halogenation, hydroxylation, methylation, and prenylation could lead to the development of derivatives with enhanced bioavailability and pharmacological activity. Therefore, this review article aims to discuss how resveratrol derivatives could represent viable molecules in the search for new drugs for the treatment of AD and PD.
Collapse
Affiliation(s)
- Bruno Dutra Arbo
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Corinne André-Miral
- Université de Nantes, CNRS, Unité de Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
| | | | - Lúcia Emanueli Schimith
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - Michele Goulart Santos
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - Dennis Costa-Silva
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | | | - Mariana Appel Hort
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| |
Collapse
|
103
|
Williams AC, Hill LJ. The 4 D's of Pellagra and Progress. Int J Tryptophan Res 2020; 13:1178646920910159. [PMID: 32327922 PMCID: PMC7163231 DOI: 10.1177/1178646920910159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide homeostasis is a candidate common denominator to explain smooth transitions, whether demographic, epidemiological or economic. This 'NAD world', dependent on hydrogen-based energy, is not widely recognised as it is neither measured nor viewed from a sufficiently multi-genomic or historical perspective. Reviewing the importance of meat and nicotinamide balances during our co-evolution, recent history suggests that populations only modernise and age well with low fertility on a suitably balanced diet. Imbalances on the low meat side lead to an excess of infectious disease, short lives and boom-bust demographics. On the high side, meat has led to an excess of degenerative, allergic and metabolic disease and low fertility. A 'Goldilocks' diet derived from mixed and sustainable farming (preserving the topsoil) allows for high intellectual capital, height and good health with controlled population growth resulting in economic growth and prosperity. Implementing meat equity worldwide could lead to progress for future generations on 'spaceship' earth by establishing control over population quality, thermostat and biodiversity, if it is not already too late.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
104
|
Zhang X, Jin J, Xie A. Laquinimod inhibits MMP+ induced NLRP3 inflammasome activation in human neuronal cells. Immunopharmacol Immunotoxicol 2020; 42:264-271. [PMID: 32249647 DOI: 10.1080/08923973.2020.1746967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: Nod-like receptor protein 3 (NLRP3) inflammasome plays anessentialrole in neuroinflammation in the Parkinson's disease (PD) progression. Laquinimodis an immunomodulator that is clinically used for the treatment of multiple sclerosis. This study aims to investigate whether laquinimod possessesa protective effect against MPP+-induced NLRP3 activation.Materials and methods: In a variety of tests on human SH-SY5Y neuronal cells, 1-methyl-4-phenyl Pyridine (MPP+) was used to mimic the microenvironment of PD. Activation of NLRP3 inflammasome was measured by western blot analysis and enzyme linked immunosorbent assay (ELISA).Results: Laquinimod had a significant protective impact against MPP+-induced neurotoxicity. Our results demonstrate that laquinimod prevented MPP+-induced reduction of cell proliferation, the release of lactate dehydrogenase (LDH), and apoptosis. Importantly, treatment with laquinimod significantly inhibited the activation of the NLRP3 inflammasome by reducing the levels of its components, including NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase 1 (P10). Consistently, laquinimod prevented MPP+-induced secretions of interleukin 1β (IL-1β) and interleukin-18 (IL-18). Additionally, laquinimod also reduced the expression of other related factors, such as intracellular reactive oxygen species (ROS), NADPH oxidase 4 (NOX-4), thioredoxin-interacting protein (TxNIP). Furthermore, laquinimod prevented the reduction of sirtuin 1 (SIRT1) from MPP+ stimulation. Inhibition of SIRT1 abolished the protective effects of laquinimod against the activation of the NLRP3 inflammasome, suggesting the involvement of SIRT1 in this process.Conclusion: These findings suggest that laquinimod treatment might be a possible therapeutic strategy for neuroinflammation in PD.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianing Jin
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
105
|
Chronic Polyphenon-60 or Catechin Treatments Increase Brain Monoamines Syntheses and Hippocampal SIRT1 Levels Improving Cognition in Aged Rats. Nutrients 2020; 12:nu12020326. [PMID: 31991916 PMCID: PMC7071257 DOI: 10.3390/nu12020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds from green tea have great interest due to its large CONSUMPTION and therapeutic potential on the age-associated brain decline. The current work compares a similar dose regimen of a whole-green-tea extract and catechin in old rats over the course of 36 days. Results showed a significant improvement in visuo-spatial working memory and episodic memory of old rats after polyphenolic compounds administration assessed by behavioral tests. No effects were observed on the age-associated motor coordination decline. Statistically, results were correlated with significant improvements, mainly in hippocampal and striatal noradrenergic and serotonergic systems, but also with the striatal dopaminergic system. Both polyphenolic treatments also reverted the age-associated reduction of the neuroinflammation by modulating protein sirtuin 1 (SIRT1) expression in hippocampus, but no effects were observed in the usual reduction of the histone-binding protein RBAP46/48 protein linked to aging. These results are in line with previous ones obtained with other polyphenolic compounds, suggesting a general protective effect of all these compounds on the age-associated brain decline, pointing to a reduction of the oxidative stress and neuroinflammatory status reduction as the leading mechanisms. Results also reinforce the relevance of SIRT1-mediated mechanism on the neuroprotective effect and rule out the participation of RBAP46/48 protein.
Collapse
|
106
|
Fang X, Chen Y, Wang Y, Ren J, Zhang C. Depressive symptoms in schizophrenia patients: A possible relationship between SIRT1 and BDNF. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109673. [PMID: 31247244 DOI: 10.1016/j.pnpbp.2019.109673] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Depressive symptoms are commonly seen in schizophrenia. Increasing evidence implicates that both SIRT1 and BDNF closely related to the development of depression. So we here aimed to explore the effect of BDNF and SIRT1 on the depressive symptoms, and also explore the risk factors for the depressive symptoms in schizophrenia patients. METHODS A group of 203 participants (case/controls, 174/29) was recruited in the present work. Significant depression was classified by the CDSS score 7 or above. The psychotic symptoms and cognitive functions in schizophrenia patients were evaluated by PANSS and RBANS respectively. And the plasma concentration of SIRT1 and BDNF were measured in 167 participants (case/controls, 138/29). RESULTS Compared to healthy subjects, schizophrenia patients exhibited notably lower levels of BDNF (P < 0.05). And we observed that patients with depression displayed a worse psychotic symptom (P < 0.01), a poorer cognitive function(P < 0.05), as well as lower plasma BDNF and SIRT1 levels (Bonferroni corrected P < 0.05) compared to those no depressive patients. And the SIRT1 levels were positively correlated with BDNF levels in the case group (P < 0.001). And the regression analysis showed that negative symptoms and general psychopathology in PANSS, attention and delayed memory in RBANS, BDNF and SIRT1 were independent risk factors for depressive symptoms in schizophrenia. CONCLUSION Aside from the association with psychotic symptoms, we provided evidence suggesting that low BDNF and SIRT1 concentration value may be responsible for the occurrence of depression in schizophrenic patients.
Collapse
Affiliation(s)
- Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yewei Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Juanjuan Ren
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
107
|
Moretti R, Peinkhofer C. B Vitamins and Fatty Acids: What Do They Share with Small Vessel Disease-Related Dementia? Int J Mol Sci 2019; 20:5797. [PMID: 31752183 PMCID: PMC6888477 DOI: 10.3390/ijms20225797] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Many studies have been written on vitamin supplementation, fatty acid, and dementia, but results are still under debate, and no definite conclusion has yet been drawn. Nevertheless, a significant amount of lab evidence confirms that vitamins of the B group are tightly related to gene control for endothelium protection, act as antioxidants, play a co-enzymatic role in the most critical biochemical reactions inside the brain, and cooperate with many other elements, such as choline, for the synthesis of polyunsaturated phosphatidylcholine, through S-adenosyl-methionine (SAM) methyl donation. B-vitamins have anti-inflammatory properties and act in protective roles against neurodegenerative mechanisms, for example, through modulation of the glutamate currents and a reduction of the calcium currents. In addition, they also have extraordinary antioxidant properties. However, laboratory data are far from clinical practice. Many studies have tried to apply these results in everyday clinical activity, but results have been discouraging and far from a possible resolution of the associated mysteries, like those represented by Alzheimer's disease (AD) or small vessel disease dementia. Above all, two significant problems emerge from the research: No consensus exists on general diagnostic criteria-MCI or AD? Which diagnostic criteria should be applied for small vessel disease-related dementia? In addition, no general schema exists for determining a possible correct time of implementation to have effective results. Here we present an up-to-date review of the literature on such topics, shedding some light on the possible interaction of vitamins and phosphatidylcholine, and their role in brain metabolism and catabolism. Further studies should take into account all of these questions, with well-designed and world-homogeneous trials.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
108
|
N-Palmitoylethanolamide-Oxazoline Protects against Middle Cerebral Artery Occlusion Injury in Diabetic Rats by Regulating the SIRT1 Pathway. Int J Mol Sci 2019; 20:ijms20194845. [PMID: 31569558 PMCID: PMC6801841 DOI: 10.3390/ijms20194845] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetes causes various macrovascular and microvascular alterations, often culminating in major clinical complications (first of all, stroke) that lack an effective therapeutic intervention. N-palmitoylethanolamide-oxazoline (PEA-OXA) possesses anti-inflammatory and potent neuroprotective effects. Although recent studies have explained the neuroprotective properties of PEA-OXA, nothing is known about its effects in treating cerebral ischemia. Methods: Focal cerebral ischemia was induced by transient middle cerebral artery occlusion (MCAo) in the right hemisphere. Middle cerebral artery (MCA) occlusion was provided by introducing a 4–0 nylon monofilament (Ethilon; Johnson & Johnson, Somerville, NJ, USA) precoated with silicone via the external carotid artery into the internal carotid artery to occlude the MCA. Results: A neurological severity score and infarct volumes were carried out to assess the neuroprotective effects of PEA-OXA. Moreover, we observed PEA-OXA-mediated improvements in tissue histology shown by a reduction in lesion size and an improvement in apoptosis level (assessed by caspases, Bax, and Bcl-2 modulation and a TUNEL assay), which further supported the efficacy of PEA-OXA therapy. We also found that PEA-OXA treatment was able to reduce mast cell degranulation and reduce the MCAo-induced expression of NF-κB pathways, cytokines, and neurotrophic factors. Conclusions: based on these findings, we propose that PEA-OXA could be useful in decreasing the risk of impairment or improving function in ischemia/reperfusion brain injury-related disorders.
Collapse
|
109
|
Sirtuin 1 Regulates Mitochondrial Biogenesis and Provides an Endogenous Neuroprotective Mechanism Against Seizure-Induced Neuronal Cell Death in the Hippocampus Following Status Epilepticus. Int J Mol Sci 2019; 20:ijms20143588. [PMID: 31340436 PMCID: PMC6678762 DOI: 10.3390/ijms20143588] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Status epilepticus may decrease mitochondrial biogenesis, resulting in neuronal cell death occurring in the hippocampus. Sirtuin 1 (SIRT1) functionally interacts with peroxisome proliferator-activated receptors and γ coactivator 1α (PGC-1α), which play a crucial role in the regulation of mitochondrial biogenesis. In Sprague-Dawley rats, kainic acid was microinjected unilaterally into the hippocampal CA3 subfield to induce bilateral seizure activity. SIRT1, PGC-1α, and other key proteins involving mitochondrial biogenesis and the amount of mitochondrial DNA were investigated. SIRT1 antisense oligodeoxynucleotide was used to evaluate the relationship between SIRT1 and mitochondrial biogenesis, as well as the mitochondrial function, oxidative stress, and neuronal cell survival. Increased SIRT1, PGC-1α, and mitochondrial biogenesis machinery were found in the hippocampus following experimental status epilepticus. Downregulation of SIRT1 decreased PGC-1α expression and mitochondrial biogenesis machinery, increased Complex I dysfunction, augmented the level of oxidized proteins, raised activated caspase-3 expression, and promoted neuronal cell damage in the hippocampus. The results suggest that the SIRT1 signaling pathway may play a pivotal role in mitochondrial biogenesis, and could be considered an endogenous neuroprotective mechanism counteracting seizure-induced neuronal cell damage following status epilepticus.
Collapse
|
110
|
Tang BL. Why is NMNAT Protective against Neuronal Cell Death and Axon Degeneration, but Inhibitory of Axon Regeneration? Cells 2019; 8:267. [PMID: 30901919 PMCID: PMC6468476 DOI: 10.3390/cells8030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase (NMNAT), a key enzyme for NAD⁺ synthesis, is well known for its activity in neuronal survival and attenuation of Wallerian degeneration. Recent investigations in invertebrate models have, however, revealed that NMNAT activity negatively impacts upon axon regeneration. Overexpression of Nmnat in laser-severed Drosophila sensory neurons reduced axon regeneration, while axon regeneration was enhanced in injured mechanosensory axons in C. elegansnmat-2 null mutants. These diametrically opposite effects of NMNAT orthologues on neuroprotection and axon regeneration appear counterintuitive as there are many examples of neuroprotective factors that also promote neurite outgrowth, and enhanced neuronal survival would logically facilitate regeneration. We suggest here that while NMNAT activity and NAD⁺ production activate neuroprotective mechanisms such as SIRT1-mediated deacetylation, the same mechanisms may also activate a key axonal regeneration inhibitor, namely phosphatase and tensin homolog (PTEN). SIRT1 is known to deacetylate and activate PTEN which could, in turn, suppress PI3 kinase⁻mTORC1-mediated induction of localized axonal protein translation, an important process that determines successful regeneration. Strategic tuning of Nmnat activity and NAD⁺ production in axotomized neurons may thus be necessary to promote initial survival without inhibiting subsequent regeneration.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
111
|
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci 2019; 20:ijms20040974. [PMID: 30813414 PMCID: PMC6412771 DOI: 10.3390/ijms20040974] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Niacin (also known as "vitamin B₃" or "vitamin PP") includes two vitamers (nicotinic acid and nicotinamide) giving rise to the coenzymatic forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The two coenzymes are required for oxidative reactions crucial for energy production, but they are also substrates for enzymes involved in non-redox signaling pathways, thus regulating biological functions, including gene expression, cell cycle progression, DNA repair and cell death. In the central nervous system, vitamin B₃ has long been recognized as a key mediator of neuronal development and survival. Here, we will overview available literature data on the neuroprotective role of niacin and its derivatives, especially focusing especially on its involvement in neurodegenerative diseases (Alzheimer's, Parkinson's, and Huntington's diseases), as well as in other neuropathological conditions (ischemic and traumatic injuries, headache and psychiatric disorders).
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Matteo Sibilano
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|