101
|
Abstract
Alzheimer’s disease (AD) is a common chronic neurodegenerative disorders. Melatonin (MLT) has been reported to be neuroprotective agent, and its modified structures exhibit potent antioxidant and anti-inflammation activities. Therefore, the activity of MLT and its derivatives against AD was investigated. Herein, the targeted enzymes, such as β-secretase (BACE1) and acetylcholinesterase (AChE), as well as the neuroprotective and neuritogenic effects on P19-derived neurons were evaluated. All the derivatives (1–5), including MLT, displayed potent inhibitory activity for BACE1, with inhibition values of more than 75% at 5 µM. A molecular docking study predicted that MLT, 5-MT, and 5 bound with BACE1 at catalytic amino acids Asp32 and the flap region, whereas 1–4 interacted with allosteric residue Thr232 and the flap region. The additional π-π interactions between 2, 3, and 5 with Tyr71 promoted ligand-enzyme binding. In addition, MLT, 1, 3, and 5 significantly protected neuron cells from oxidative stress by increasing the cell viability to 97.95, 74.29, 70.80, and 69.50% at 1 nM, respectively. Moreover, these derivatives significantly induced neurite outgrowth by increasing the neurite length and number. The derivatives 1, 3, and 5 should be thoroughly studied as potential AD treatment and neuroprotective agents.
Collapse
|
102
|
Wajid F, Poolacherla R, Mim FK, Bangash A, Rutkofsky IH. Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus. J Diabetes Metab Disord 2020; 19:1797-1825. [PMID: 33520862 PMCID: PMC7843808 DOI: 10.1007/s40200-020-00585-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia occurring as a result of dysregulation and balance of various metabolic pathways. In recent years, circadian misalignment (due to altered sleep/wake, feeding/fasting cycles), has been intimately linked with the development of diabetes mellitus. Herein, we review our knowledge of oxidative stress, circadian rhythms control of metabolism, and the effects of its disruption on homeostasis while emphasizing the importance of melatonin, a nocturnally peaking, pineal hormone, as a potential therapeutic drug for the prevention and treatment of diabetes. METHODS PubMed database was systematically searched for related articles and data from all types of studies, including clinical trials, review articles, and case reports were considered without limiting the study to one specific category. RESULTS Experimental and epidemiological evidence indicate melatonin's multifaceted effects in intermediary metabolism via resynchronization of the circadian rhythms and its deficiency is associated with metabolic derangements. As a chronobiotic, it cures insomnia and sleep disorders caused by shift work or jet lag. The antagonistic relationship between melatonin and insulin highlights its influence in regulating insulin secretion, its action, and melatonin treatment successfully improved glucose homeostasis, energy balance, and overall health in diabetes mellitus. Melatonin's cytoprotective role as an antioxidant and free radical scavenger, proved useful in combating oxidative stress, preserving beta-cell function, and influencing the development of diabetic complications. CONCLUSION The therapeutic application of melatonin as a chronobiotic and cytoprotective agent is of promising significance in diabetes mellitus. Future investigations are encouraged to fully explore the efficacy of this ubiquitous molecule in various metabolic disorders.
Collapse
Affiliation(s)
- Fareha Wajid
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Raju Poolacherla
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Fatiha Kabir Mim
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Amna Bangash
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Ian H. Rutkofsky
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| |
Collapse
|
103
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Can Melatonin Be a Potential "Silver Bullet" in Treating COVID-19 Patients? Diseases 2020; 8:E44. [PMID: 33256258 PMCID: PMC7709121 DOI: 10.3390/diseases8040044] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
The therapeutic potential of melatonin as a chronobiotic cytoprotective agent to counteract the consequences of COVID-19 infections has been advocated. Because of its wide-ranging effects as an antioxidant, anti-inflammatory, and immunomodulatory compound, melatonin could be unique in impairing the consequences of SARS-CoV-2 infection. Moreover, indirect evidence points out to a possible antiviral action of melatonin by interfering with SARS-CoV-2/angiotensin-converting enzyme 2 association. Melatonin is also an effective chronobiotic agent to reverse the circadian disruption of social isolation and to control delirium in severely affected patients. As a cytoprotector, melatonin serves to combat several comorbidities such as diabetes, metabolic syndrome, and ischemic and non-ischemic cardiovascular diseases, which aggravate COVID-19 disease. In view of evidence on the occurrence of neurological sequels in COVID-19-infected patients, another putative application of melatonin emerges based on its neuroprotective properties. Since melatonin is an effective means to control cognitive decay in minimal cognitive impairment, its therapeutic significance for the neurological sequels of SARS-CoV-2 infection should be considered. Finally, yet importantly, exogenous melatonin can be an adjuvant capable of augmenting the efficacy of anti-SARS-CoV-2 vaccines. We discuss in this review the experimental evidence suggesting that melatonin is a potential "silver bullet" in the COVID 19 pandemic.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina;
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada;
| | | |
Collapse
|
104
|
Goswami N, Abulafia C, Vigo D, Moser M, Cornelissen G, Cardinali D. Falls Risk, Circadian Rhythms and Melatonin: Current Perspectives. Clin Interv Aging 2020; 15:2165-2174. [PMID: 33204081 PMCID: PMC7666981 DOI: 10.2147/cia.s283342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with weakening of the circadian system. The circadian amplitude of most physiological variables is reduced, while the circadian phase becomes more labile and tends to occur earlier with advancing age. As the incidence of falls in older persons could follow circadian variations, a better understanding of conditions in which falls occur can lead to the implementation of countermeasures (such as adjusting the scheduling of hospital staff, or changing the timing of anti-hypertensive medication if falls are related to undesirable circadian patterns of blood pressure and/or heart rate). This includes knowing the times of the day, days of the week, and times of the year when falls are more likely to occur at home or in the hospital. Additionally, the links between aging processes and factors associated with an increased risk of developing autonomic dysfunction are well established. A strong association between heart rate variability indexes and aging has been shown. Circadian rhythms of autonomous nervous system activity may play important role for maintenance of orthostatic tolerance. Whether one is concerned with disease prediction and prevention or maintenance of healthy aging, the study of circadian rhythms and the broader time structure underlying physiopathology is helpful in terms of screening, early diagnosis and prognosis, as well as the timely institution of prophylactic and/or palliative/curative treatment. Timing the administration of such treatment as a function of circadian (and other) rhythms also could lead to reduction of falls in older persons. Finally, a prominent circadian rhythm characterizes melatonin, which peaks during the night. The circadian amplitude of melatonin decreases as a function of age, raising the questions whether such a decrease in the circadian amplitude of melatonin relates to a higher risk of falls and, if so, whether melatonin supplementation may be an effective countermeasure. This narrative review assesses the relationships between fall risk and the potential role circadian rhythms and melatonin play in mitigating this risk. We aim to provide healthcare workers adequate information about fall risk in older persons, including the potential role of the circadian rhythms and/or melatonin, as well as to lay foundations for future fall prevention interventional studies.
Collapse
Affiliation(s)
- Nandu Goswami
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Carolina Abulafia
- Institute for Biomedical Research (BIOMED), Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Autonomous City of Buenos Aires, Argentina
| | - Daniel Vigo
- Institute for Biomedical Research (BIOMED), Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Autonomous City of Buenos Aires, Argentina
| | - Maximilian Moser
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | | | - Daniel Cardinali
- Institute for Biomedical Research (BIOMED), Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Autonomous City of Buenos Aires, Argentina
| |
Collapse
|
105
|
Wang D, He J, Huang B, Liu S, Zhu H, Xu T. Emerging role of the Hippo pathway in autophagy. Cell Death Dis 2020; 11:880. [PMID: 33082313 PMCID: PMC7576599 DOI: 10.1038/s41419-020-03069-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a dynamic circulatory system that occurs in all eukaryotic cells. Cytoplasmic material is transported to lysosomes for degradation and recovery through autophagy. This provides energy and macromolecular precursors for cell renewal and homeostasis. The Hippo-YAP pathway has significant biological properties in controlling organ size, tissue homeostasis, and regeneration. Recently, the Hippo-YAP axis has been extensively referred to as the pathophysiological processes regulating autophagy. Understanding the cellular and molecular basis of these processes is crucial for identifying disease pathogenesis and novel therapeutic targets. Here we review recent findings from Drosophila models to organisms. We particularly emphasize the regulation between Hippo core components and autophagy, which is involved in normal cellular regulation and the pathogenesis of human diseases, and its application to disease treatment.
Collapse
Affiliation(s)
- Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Bingyu Huang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Shanshan Liu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China.
| |
Collapse
|
106
|
Tan DX, Hardeland R. Targeting Host Defense System and Rescuing Compromised Mitochondria to Increase Tolerance against Pathogens by Melatonin May Impact Outcome of Deadly Virus Infection Pertinent to COVID-19. Molecules 2020; 25:molecules25194410. [PMID: 32992875 PMCID: PMC7582936 DOI: 10.3390/molecules25194410] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Fighting infectious diseases, particularly viral infections, is a demanding task for human health. Targeting the pathogens or targeting the host are different strategies, but with an identical purpose, i.e., to curb the pathogen's spreading and cure the illness. It appears that targeting a host to increase tolerance against pathogens can be of substantial advantage and is a strategy used in evolution. Practically, it has a broader protective spectrum than that of only targeting the specific pathogens, which differ in terms of susceptibility. Methods for host targeting applied in one pandemic can even be effective for upcoming pandemics with different pathogens. This is even more urgent if we consider the possible concomitance of two respiratory diseases with potential multi-organ afflictions such as Coronavirus disease 2019 (COVID-19) and seasonal flu. Melatonin is a molecule that can enhance the host's tolerance against pathogen invasions. Due to its antioxidant, anti-inflammatory, and immunoregulatory activities, melatonin has the capacity to reduce the severity and mortality of deadly virus infections including COVID-19. Melatonin is synthesized and functions in mitochondria, which play a critical role in viral infections. Not surprisingly, melatonin synthesis can become a target of viral strategies that manipulate the mitochondrial status. For example, a viral infection can switch energy metabolism from respiration to widely anaerobic glycolysis even if plenty of oxygen is available (the Warburg effect) when the host cell cannot generate acetyl-coenzyme A, a metabolite required for melatonin biosynthesis. Under some conditions, including aging, gender, predisposed health conditions, already compromised mitochondria, when exposed to further viral challenges, lose their capacity for producing sufficient amounts of melatonin. This leads to a reduced support of mitochondrial functions and makes these individuals more vulnerable to infectious diseases. Thus, the maintenance of mitochondrial function by melatonin supplementation can be expected to generate beneficial effects on the outcome of viral infectious diseases, particularly COVID-19.
Collapse
Affiliation(s)
- Dun-Xian Tan
- S.T. Bio-Life, San Antonio, TX 78240, USA
- Correspondence: ; Tel.: +1-215-672-550
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
107
|
Che H, Li H, Li Y, Wang YQ, Yang ZY, Wang RL, Wang LH. Melatonin exerts neuroprotective effects by inhibiting neuronal pyroptosis and autophagy in STZ-induced diabetic mice. FASEB J 2020; 34:14042-14054. [PMID: 32910484 DOI: 10.1096/fj.202001328r] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) patients are at a higher risk of developing brain injury characterized by neuronal death. Melatonin, a hormone produced by the pineal gland, exerts neuroprotective effects against brain damage. However, the effect of melatonin on diabetes-induced brain injury has not been elucidated. This study was to evaluate the role of melatonin against neuronal death in DM and to elucidate the underlying mechanisms. Herein, we found that melatonin administration significantly alleviated the neuronal death in both streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-treated neuronal cells. Melatonin inhibited neuronal pyroptosis and excessive autophagy, as evidenced by decreased levels of NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, LC3, Beclin1, and ATG12 both in vivo and in vitro. MicroRNA-214-3p (miR-214-3p) was decreased in DM mice and HG-treated cells, and such a downregulation was corrected by melatonin, which was accompanied by repression of caspase-1 and ATG12. Furthermore, downregulation of miR-214-3p abrogated the anti-pyroptotic and anti-autophagic actions of melatonin in vitro. Our results indicate that melatonin exhibits a neuroprotective effect by inhibiting neuronal pyroptosis and excessive autophagy through modulating the miR-214-3p/caspase-1 and miR-214-3p/ATG12 axes, respectively, and it might be a potential agent for the treatment of brain damage in the setting of DM.
Collapse
Affiliation(s)
- Hui Che
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue-Qiu Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen-Yu Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Rui-Ling Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Hong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
108
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
109
|
Bordoni L, Gabbianelli R. Mitochondrial DNA and Neurodegeneration: Any Role for Dietary Antioxidants? Antioxidants (Basel) 2020; 9:E764. [PMID: 32824558 PMCID: PMC7466149 DOI: 10.3390/antiox9080764] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The maintenance of the mitochondrial function is essential in preventing and counteracting neurodegeneration. In particular, mitochondria of neuronal cells play a pivotal role in sustaining the high energetic metabolism of these cells and are especially prone to oxidative damage. Since overproduction of reactive oxygen species (ROS) is involved in the pathogenesis of neurodegeneration, dietary antioxidants have been suggested to counteract the detrimental effects of ROS and to preserve the mitochondrial function, thus slowing the progression and limiting the extent of neuronal cell loss in neurodegenerative disorders. In addition to their role in the redox-system homeostasis, mitochondria are unique organelles in that they contain their own genome (mtDNA), which acts at the interface between environmental exposures and the molecular triggers of neurodegeneration. Indeed, it has been demonstrated that mtDNA (including both genetics and, from recent evidence, epigenetics) might play relevant roles in modulating the risk for neurodegenerative disorders. This mini-review describes the link between the mitochondrial genome and cellular oxidative status, with a particular focus on neurodegeneration; moreover, it provides an overview on potential beneficial effects of antioxidants in preserving mitochondrial functions through the protection of mtDNA.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | | |
Collapse
|
110
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
111
|
Mihardja M, Roy J, Wong KY, Aquili L, Heng BC, Chan YS, Fung ML, Lim LW. Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer's disease. Ann N Y Acad Sci 2020; 1478:43-62. [PMID: 32700392 DOI: 10.1111/nyas.14436] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the hallmark pathologies of amyloid-beta plaques and neurofibrillary tangles. Symptoms of this devastating disease include behavioral changes and deterioration of higher cognitive functions. Impairment of neurogenesis has also been shown to occur in AD, which adversely impacts new neuronal cell growth, differentiation, and survival. This impairment possibly results from the cumulative effects of the various pathologies of AD. Preclinical studies have suggested that the administration of melatonin-the pineal hormone primarily responsible for the regulation of the circadian rhythm-targets the effects of AD pathologies and improves cognitive impairment. It is postulated that by mitigating the effect of these pathologies, melatonin can also rescue neurogenesis impairment. This review aims to explore the effect of AD pathologies on neurogenesis, as well as the mechanisms by which melatonin is able to ameliorate AD pathologies to potentially promote neurogenesis.
Collapse
Affiliation(s)
- Mazel Mihardja
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Luca Aquili
- Division of Psychology, College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Boon Chin Heng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Peking University School of Stomatology, Beijing, China
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
112
|
Melatonin receptor 1A gene polymorphism rs13140012 and serum melatonin in atherosclerotic versus non-atherosclerotic Egyptian ESRD patients: pilot study. Heliyon 2020; 6:e04394. [PMID: 32685724 PMCID: PMC7358736 DOI: 10.1016/j.heliyon.2020.e04394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/20/2020] [Accepted: 07/01/2020] [Indexed: 02/04/2023] Open
Abstract
Aim To study the relationship between melatonin levels and Melatonin membrane receptor 1A (MTNR1A) SNP (rs13140012) in end-stage renal disease patients (ESRD) in Alexandria, Egypt on maintenance hemodialysis with or without atherosclerosis. Materials and methods 40 end-stage renal disease patients on regular hemodialysis were divided into 2 subgroups, one with (n = 20) and one without atherosclerosis (n = 20) and normal subjects (n = 40). Serum melatonin, carotid intimal medial thickness (CIMT) were measured. Melatonin membrane receptor 1A (MTNR1A) SNP (rs13140012) genotyping was done using 5'nuclease Allelic discrimination. Results Serum melatonin was significantly lower in ESRD patients [1.6 to 11.30 (pg/mL) with a median of 2.5] than the control group [20.50 to 56.40 (pg/mL) with a median of 35.20]. Serum melatonin was significantly lower in atherosclerotic patients subgroup [1.6–2.50 (pg/mL) with a median value of 2.30] than non-atherosclerotic patients subgroup [2.0–11.30 (pg/mL) with a median of 4.9]. No significant association was found between serum melatonin and (MTNR1A) SNP (rs13140012) (p = 0.633). Conclusion These results lead us to suggest that melatonin production is impaired in ESRD patients (included in this pilot study), and this impairment is more evident in atherosclerotic ESRD patients.
Collapse
|
113
|
Porte Alcon S, Gorojod RM, Kotler ML. Kinetic and protective role of autophagy in manganese-exposed BV-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118787. [PMID: 32592735 DOI: 10.1016/j.bbamcr.2020.118787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) plays an important role in many physiological processes. Nevertheless, Mn accumulation in the brain can cause a parkinsonian-like syndrome known as manganism. Unfortunately, the therapeutic options for this disease are scarce and of limited efficacy. For this reason, a great effort is being made to understand the cellular and molecular mechanisms involved in Mn toxicity in neuronal and glial cells. Even though evidence indicates that Mn activates autophagy in microglia, the consequences of this activation in cell death remain unknown. In this study, we demonstrated a key role of reactive oxygen species in Mn-induced damage in microglial cells. These species generated by Mn2+ induce lysosomal alterations, LMP, cathepsins release and cell death. Besides, we described for the first time the kinetic of Mn2+-induced autophagy in BV-2 microglial cells and its relevance to cell fate. We found that Mn promotes a time-dependent increase in LC3-II and p62 expression levels, suggesting autophagy activation. Possibly, cells trigger autophagy to neutralize the risks associated with lysosomal rupture. In addition, pre-treatment with both Rapamycin and Melatonin enhanced autophagy and retarded Mn2+ cytotoxicity. In summary, our results demonstrated that, despite the damage inflicted on a subset of lysosomes, the autophagic pathway plays a protective role in Mn-induced microglial cell death. We propose that 2 h Mn2+ exposure will not induce disturbances in the autophagic flux. However, as time passes, the accumulated damage inside the cell could trigger a dysfunction of this mechanism. These findings may represent a valuable contribution to future research concerning manganism therapies.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
114
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
115
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|
116
|
Merlo S, Luaces JP, Spampinato SF, Toro-Urrego N, Caruso GI, D’Amico F, Capani F, Sortino MA. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules 2020; 10:biom10030364. [PMID: 32120833 PMCID: PMC7175216 DOI: 10.3390/biom10030364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin exerts direct neuroprotection against cerebral hypoxic damage, but the mechanisms of its action on microglia have been less characterized. Using both in vitro and in vivo models of hypoxia, we here focused on the role played by silent mating type information regulation 2 homolog 1 (SIRT1) in melatonin's effects on microglia. Viability of rat primary microglia or microglial BV2 cells and SH-SY5Y neurons was significantly reduced after chemical hypoxia with CoCl2 (250 μM for 24 h). Melatonin (1 μM) significantly attenuated CoCl2 toxicity on microglia, an effect prevented by selective SIRT1 inhibitor EX527 (5 μM) and AMP-activated protein kinase (AMPK) inhibitor BML-275 (2 μM). CoCl2 did not modify SIRT1 expression, but prevented nuclear localization, while melatonin appeared to restore it. CoCl2 induced nuclear localization of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-kB), an effect contrasted by melatonin in an EX527-dependent fashion. Treatment of microglia with melatonin attenuated potentiation of neurotoxicity. Common carotid occlusion was performed in p7 rats, followed by intraperitoneal injection of melatonin (10 mg/kg). After 24 h, the number of Iba1+ microglia in the hippocampus of hypoxic rats was significantly increased, an effect not prevented by melatonin. At this time, SIRT1 was only detectable in the amoeboid, Iba1+ microglial population selectively localized in the corpus callosum. In these cells, nuclear localization of SIRT1 was significantly lower in hypoxic animals, an effect prevented by melatonin. NF-kB showed an opposite expression pattern, where nuclear localization in Iba1+ cells was significantly higher in hypoxic, but not in melatonin-treated animals. Our findings provide new evidence for a direct effect of melatonin on hypoxic microglia through SIRT1, which appears as a potential pharmacological target against hypoxic-derived neuronal damage.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Juan Pablo Luaces
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Nicolas Toro-Urrego
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Grazia Ilaria Caruso
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Fabio D’Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
- Correspondence: ; Tel.: +39-095-4781192
| |
Collapse
|
117
|
Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging. Int J Mol Sci 2020; 21:ijms21031135. [PMID: 32046301 PMCID: PMC7036809 DOI: 10.3390/ijms21031135] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Melatonin is probably produced in all cells but is only secreted by the pineal gland. The pineal secretion of melatonin is determined by the light–dark cycle, and it is only released at night. Melatonin regulates biological rhythms via its receptors located in the suprachiasmatic nuclei of the hypothalamus. Melatonin also has strong antioxidant activities to scavenge free radicals such as reactive oxygen species (ROS). The direct free radical scavenging actions are receptor independent. ROS play an important role in reproductive function including in the ovulatory process. However, excessive ROS can also have an adverse effect on oocytes because of oxidative stress, thereby causing infertility. It is becoming clear that melatonin is located in the ovarian follicular fluid and in the oocytes themselves, which protects these cells from oxidative damage as well as having other beneficial actions in oocyte maturation, fertilization, and embryo development. Trials on humans have investigated the improvement of outcomes of assisted reproductive technology (ART), such as in vitro fertilization and embryo transfer (IVF-ET), by way of administering melatonin to patients suffering from infertility. In addition, clinical research has examined melatonin as an anti-aging molecule via its antioxidative actions, and its relationship with the aging diseases, e.g., Alzheimer’s and Parkinson’s disease, is also underway. Melatonin may also reduce ovarian aging, which is a major issue in assisted reproductive technology. This review explains the relationship between melatonin and human reproductive function, as well as the clinical applications expected to improve the outcomes of assisted reproductive technology such as IVF, while also discussing possibilities for melatonin in preventing ovarian aging.
Collapse
|
118
|
Abstract
Five N-amide substituted melatonin (MLT) derivatives were synthesized and evaluated for antioxidative activities, and compounds 9–12 showed higher electron spin resonance (ESR) response than MLT. 4-Bromobenzoyl and naphthoyl derivatives (10 and 11) presented stronger hydroxyl radical inhibitory effect than MLT in Fenton reaction. The substitution at the N1-position on the MLT core structure with acetyl (8), benzoyl (9), 4-bromobenzoyl (10), and naphthoyl (11) and N2-substitution with 4-bromobenzoyl (12) decreased the reducing power of the derivatives in ferric reducing antioxidant power (FRAP) assay. Compounds 8–11 also presented lower antioxidant capacity than their parent compound in 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) disodium salt (ABTS) assay; whereas, compound 12 presented radical scavenging activity similarly to MLT. All aryl derivatives (9–12) showed higher ability to quench peroxyl radicals than MLT about three times, especially the benzoylated derivatives (9 and 10) that presented the highest ability in oxygen radical absorbance capacity (ORAC) assay.
Collapse
|
119
|
Furtado A, Astaburuaga R, Costa A, Duarte AC, Gonçalves I, Cipolla-Neto J, Lemos MC, Carro E, Relógio A, Santos CRA, Quintela T. The Rhythmicity of Clock Genes is Disrupted in the Choroid Plexus of the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 77:795-806. [PMID: 32741824 DOI: 10.3233/jad-200331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, was recently identified as an important component of the circadian clock system. OBJECTIVE The fact that circadian rhythm disruption is closely associated to Alzheimer's disease (AD) led us to investigate whether AD pathology can contribute to disturbances of the circadian clock in the CP. METHODS For this purpose, we evaluated the expression of core-clock genes at different time points, in 6- and 12-month-old female and male APP/PS1 mouse models of AD. In addition, we also assessed the effect of melatonin pre-treatment in vitro before amyloid-β stimulus in the daily pattern of brain and muscle Arnt-like protein 1 (Bmal1) expression. RESULTS Our results showed a dysregulation of circadian rhythmicity of Bmal1 expression in female and male APP/PS1 transgenic 12-month-old mice and of Period 2 (Per2) expression in male mice. In addition, a significant circadian pattern of Bmal1 was measured the intermittent melatonin pre-treatment group, showing that melatonin can reset the CP circadian clock. CONCLUSION These results demonstrated a connection between AD and the disruption of circadian rhythm in the CP, representing an attractive target for disease prevention and/or treatment.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Rosario Astaburuaga
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Medical Department of Hematology, Oncology, and Tumor Immunology and Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
| | - Ana Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - José Cipolla-Neto
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Manuel C Lemos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Spain
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Medical Department of Hematology, Oncology, and Tumor Immunology and Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Department of Human Medicine, Institute for Systems Medicine and Bioinformatics, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
120
|
Molina-Carballo A, Jerez-Calero AE, Muñoz-Hoyos A. Possible Protective Role of Melatonin in Pediatric Infectious Diseases and Neurodevelopmental Pathologies. JOURNAL OF CHILD SCIENCE 2020. [DOI: 10.1055/s-0040-1716713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractMelatonin, produced in every cell that possesses mitochondria, acts as an endogenous free radical scavenger, and improves energetic metabolism and immune function, by complex molecular crosstalk with other intracellular compounds. There is greatly increasing evidence regarding beneficial effects of acute and chronic administration of high melatonin doses, in infectious, developmental, and degenerative pathologies, as an endothelial cell and every cell protectant.
Collapse
Affiliation(s)
- Antonio Molina-Carballo
- Department of Pediatrics, Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, the Andalusian Health Service, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Emilio Jerez-Calero
- Department of Pediatrics, Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, the Andalusian Health Service, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Muñoz-Hoyos
- Department of Pediatrics, Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, the Andalusian Health Service, School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
121
|
Cardinali DP. An Assessment of Melatonin's Therapeutic Value in the Hypoxic-Ischemic Encephalopathy of the Newborn. Front Synaptic Neurosci 2019; 11:34. [PMID: 31920617 PMCID: PMC6914689 DOI: 10.3389/fnsyn.2019.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the most frequent causes of brain injury in the newborn. From a pathophysiological standpoint, a complex process takes place at the cellular and tissue level during the development of newborn brain damage in the absence of oxygen. Initially, the lesion is triggered by a deficit in the supply of oxygen to cells and tissues, causing a primary energy insufficiency. Subsequently, high energy phosphate levels recover transiently (the latent phase) that is followed by a secondary phase, in which many of the pathophysiological mechanisms involved in the development of neonatal brain damage ensue (i.e., excitotoxicity, massive influx of Ca2+, oxidative and nitrosative stress, inflammation). This leads to cell death by necrosis or apoptosis. Eventually, a tertiary phase occurs, characterized by the persistence of brain damage for months and even years after the HI insult. Hypothermia is the only therapeutic strategy against HIE that has been incorporated into neonatal intensive care units with limited success. Thus, there is an urgent need for agents with the capacity to curtail acute and chronic damage in HIE. Melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, has a potential role as a neuroprotective agent both acutely and chronically in HIE. Melatonin displays a remarkable antioxidant and anti-inflammatory activity and is capable to cross the blood-brain barrier readily. Moreover, in many animal models of brain degeneration, melatonin was effective to impair chronic mechanisms of neuronal death. In animal models, and in a limited number of clinical studies, melatonin increased the level of protection developed by hypothermia in newborn asphyxia. This review article summarizes briefly the available therapeutic strategies in HIE and assesses the role of melatonin as a potentially relevant therapeutic tool to cover the hypoxia-ischemia phase and the secondary and tertiary phases following a hypoxic-ischemic insult.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
122
|
Farfán-García ED, Márquez-Gómez R, Barrón-González M, Pérez-Capistran T, Rosales-Hernández MC, Pinto-Almazán R, Soriano-Ursúa MA. Monoamines and their Derivatives on GPCRs: Potential Therapy for Alzheimer's Disease. Curr Alzheimer Res 2019; 16:871-894. [PMID: 30963972 DOI: 10.2174/1570159x17666190409144558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Albeit cholinergic depletion remains the key event in Alzheimer's Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Ricardo Márquez-Gómez
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Mónica Barrón-González
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Teresa Pérez-Capistran
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofisica y Biocatalisis, Seccion de Estudios de Posgrado e Investigacion Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigacion Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal Mexico-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| |
Collapse
|