101
|
Guo S, Xu JJ, Wei N, Han JY, Xue R, Xu PS, Gao CY. Honokiol Attenuates the Memory Impairments, Oxidative Stress, Neuroinflammation, and GSK-3β Activation in Vascular Dementia Rats. J Alzheimers Dis 2019; 71:97-108. [PMID: 31322570 DOI: 10.3233/jad-190324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Si Guo
- Department of Medical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Medical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, People’s Republic of China
| | - Jing-Jing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jun-Ya Han
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Po-Shi Xu
- Department of Medical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Medical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, People’s Republic of China
| | - Chuan-Yu Gao
- Department of Cardiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, People’s Republic of China
| |
Collapse
|
102
|
Cipollini V, Troili F, Giubilei F. Emerging Biomarkers in Vascular Cognitive Impairment and Dementia: From Pathophysiological Pathways to Clinical Application. Int J Mol Sci 2019; 20:ijms20112812. [PMID: 31181792 PMCID: PMC6600494 DOI: 10.3390/ijms20112812] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Vascular pathology is the second most common neuropathology of dementia after Alzheimer’s disease (AD), with small vessels disease (SVD) being considered the major cause of vascular cognitive impairment and dementia (VCID). This review aims to evaluate pathophysiological pathways underlying a diagnosis of VCID. Firstly, we will discuss the role of endothelial dysfunction, blood-brain barrier disruption and neuroinflammation in its pathogenesis. Then, we will analyse different biomarkers including the ones of inflammatory responses to central nervous system tissue injuries, of coagulation and thrombosis and of circulating microRNA. Evidences on peripheral biomarkers for VCID are still poor and large-scale, prospectively designed studies are needed to translate these findings into clinical practice, in order to set different combinations of biomarkers to use for differential diagnosis among types of dementia.
Collapse
Affiliation(s)
- Virginia Cipollini
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| | - Fernanda Troili
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| | - Franco Giubilei
- S. Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Roma, Italy.
| |
Collapse
|
103
|
Hort J, Vališ M, Kuča K, Angelucci F. Vascular Cognitive Impairment: Information from Animal Models on the Pathogenic Mechanisms of Cognitive Deficits. Int J Mol Sci 2019; 20:E2405. [PMID: 31096580 PMCID: PMC6566630 DOI: 10.3390/ijms20102405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of cognitive deficit after Alzheimer's disease. Since VCI patients represent an important target population for prevention, an ongoing effort has been made to elucidate the pathogenesis of this disorder. In this review, we summarize the information from animal models on the molecular changes that occur in the brain during a cerebral vascular insult and ultimately lead to cognitive deficits in VCI. Animal models cannot effectively represent the complex clinical picture of VCI in humans. Nonetheless, they allow some understanding of the important molecular mechanisms leading to cognitive deficits. VCI may be caused by various mechanisms and metabolic pathways. The pathological mechanisms, in terms of cognitive deficits, may span from oxidative stress to vascular clearance of toxic waste products (such as amyloid beta) and from neuroinflammation to impaired function of microglia, astrocytes, pericytes, and endothelial cells. Impaired production of elements of the immune response, such as cytokines, and vascular factors, such as insulin-like growth factor 1 (IGF-1), may also affect cognitive functions. No single event could be seen as being the unique cause of cognitive deficits in VCI. These events are interconnected, and may produce cascade effects resulting in cognitive impairment.
Collapse
Affiliation(s)
- Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic.
- International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Martin Vališ
- Department of Neurology, University Hospital Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 05 Hradec Kralove, Czech Republic.
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic.
| |
Collapse
|
104
|
Zhang S, Hu X, Guo S, Shi L, He Q, Zhang P, Yu S, Zhao R. Myricetin ameliorated ischemia/reperfusion-induced brain endothelial permeability by improvement of eNOS uncoupling and activation eNOS/NO. J Pharmacol Sci 2019; 140:62-72. [PMID: 31130510 DOI: 10.1016/j.jphs.2019.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) has been considered as a major pathological change in stroke. eNOS/NO play a key role in maintain BBB function. Myricetin is one of the common flavones widely exists in food and fruit, show certain protective effect on the brain function. This experiment establishes oxygeneglucose deprivation and reoxygenation (OGD/R) brain cell model. The regulated effects of Myricetin on BBB function, eNOS/NO and eNOS uncoupling were evaluated. To investigate the molecular mechanism, Akt and Nrf2 inhibitor were also used. The result showed that Myricetin could significantly decreased the enhancement of endothelial permeability and inflammation in OGD/R model, in addition regulated eNOS/NO pathway. The regulate effect in endothelial permeability and eNOS activity by Myricetin were both decreased when combined with Akt inhibitor or Nrf2 inhibitor, and was abrogated when combined with Akt and Nrf2 inhibitor simultaneously. The regulated effect on eNOS uncoupling by Myricetin were abrogated when combined with Nrf2 inhibitor, but not with Akt inhibitor. In conclusion, Myricetin showed significant protect effect on ischemia/reperfusion-induced brain endothelial permeability, and related to simultaneously regulated Akt pathway and improvement of eNOS uncoupling through Nrf2 pathway.
Collapse
Affiliation(s)
- Song Zhang
- Department of Pharmacy, Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Xuehui Hu
- Department of Nursing, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Shun Guo
- Department of Pharmacy, Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Lei Shi
- Department of Pharmacy, Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Qing He
- Department of Cardiovascular Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Ping Zhang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - ShiQiang Yu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Rong Zhao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
105
|
Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019; 16:9. [PMID: 30967147 PMCID: PMC6456952 DOI: 10.1186/s12987-019-0129-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 01/09/2023] Open
Abstract
The fine balance between the secretion, composition, volume and turnover of cerebrospinal fluid (CSF) is strictly regulated. However, during certain neurological diseases, this balance can be disrupted. A significant disruption to the normal CSF circulation can be life threatening, leading to increased intracranial pressure (ICP), and is implicated in hydrocephalus, idiopathic intracranial hypertension, brain trauma, brain tumours and stroke. Yet, the exact cellular, molecular and physiological mechanisms that contribute to altered hydrodynamic pathways in these diseases are poorly defined or hotly debated. The traditional views and concepts of CSF secretion, flow and drainage have been challenged, also due to recent findings suggesting more complex mechanisms of brain fluid dynamics than previously proposed. This review evaluates and summarises current hypotheses of CSF dynamics and presents evidence for the role of impaired CSF dynamics in elevated ICP, alongside discussion of the proteins that are potentially involved in altered CSF physiology during neurological disease. Undoubtedly CSF secretion, absorption and drainage are important aspects of brain fluid homeostasis in maintaining a stable ICP. Traditionally, pharmacological interventions or CSF drainage have been used to reduce ICP elevation due to over production of CSF. However, these drugs are used only as a temporary solution due to their undesirable side effects. Emerging evidence suggests that pharmacological targeting of aquaporins, transient receptor potential vanilloid type 4 (TRPV4), and the Na+-K+-2Cl- cotransporter (NKCC1) merit further investigation as potential targets in neurological diseases involving impaired brain fluid dynamics and elevated ICP.
Collapse
Affiliation(s)
- Steven William Bothwell
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Medical Sciences Building, University Drive, Callaghan, NSW 2308 Australia
| | - Damir Janigro
- FloTBI Inc., Cleveland, OH USA
- Department of Physiology, Case Western Reserve University, Cleveland, OH USA
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Medical Sciences Building, University Drive, Callaghan, NSW 2308 Australia
- Hunter Medical Research Institute, Newcastle, NSW Australia
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|