101
|
Individual differences in aesthetic engagement are reflected in resting-state fMRI connectivity: Implications for stress resilience. Neuroimage 2018; 179:156-165. [PMID: 29908310 DOI: 10.1016/j.neuroimage.2018.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE Individual differences in aesthetic engagement-the propensity to be moved by art, nature, and beauty-are associated with positive health outcomes, as well as stress resilience. The purpose of the current study was to identify potential neural substrate mechanisms underlying individual differences in aesthetic engagement and reported proneness to aesthetic chill. METHODS Data from the Human Connectome Project (HCP) 1200 Subjects Release were utilized. Resting-state fMRI connectivity was extracted for 361 regions in the brain including cortical, subcortical and cerebellar regions for each participant, using participant-specific segmentation and parcellation of subcortical gray matter nuclei and a network-based statistics analytical approach. The Aesthetic Interests subcluster of the Openness to Experience scale (NEO-Five Factor Inventory; NEO-FFI) was used to characterize individual differences in aesthetic engagement and chill. RESULTS Participants reporting higher aesthetic engagement, particularly proneness to aesthetic chill responses, exhibited significantly higher connectivity between the default network and sensory and motor cortices, higher connectivity between the ventral default and salience networks, and decreased connectivity between the cerebellum and somatomotor cortex. CONCLUSIONS Current findings suggest that greater integration of the default mode network, involving processing of internal narrative, with neural representations of sensory perception and salience detection may be a mechanism underlying individual differences in aesthetic engagement. Thus, these individual differences may reflect general integration of environmental perception with internal emotional experience, which in turn may facilitate comfort with novelty, self-regulation, and positive adaptation to potentially stressful experiences.
Collapse
|
102
|
Müller F, Dolder PC, Schmidt A, Liechti ME, Borgwardt S. Altered network hub connectivity after acute LSD administration. Neuroimage Clin 2018; 18:694-701. [PMID: 29560311 PMCID: PMC5857492 DOI: 10.1016/j.nicl.2018.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/15/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
LSD is an ambiguous substance, said to mimic psychosis and to improve mental health in people suffering from anxiety and depression. Little is known about the neuronal correlates of altered states of consciousness induced by this substance. Limited previous studies indicated profound changes in functional connectivity of resting state networks after the administration of LSD. The current investigation attempts to replicate and extend those findings in an independent sample. In a double-blind, randomized, cross-over study, 100 μg LSD and placebo were orally administered to 20 healthy participants. Resting state brain activity was assessed by functional magnetic resonance imaging. Within-network and between-network connectivity measures of ten established resting state networks were compared between drug conditions. Complementary analysis were conducted using resting state networks as sources in seed-to-voxel analyses. Acute LSD administration significantly decreased functional connectivity within visual, sensorimotor and auditory networks and the default mode network. While between-network connectivity was widely increased and all investigated networks were affected to some extent, seed-to-voxel analyses consistently indicated increased connectivity between networks and subcortical (thalamus, striatum) and cortical (precuneus, anterior cingulate cortex) hub structures. These latter observations are consistent with findings on the importance of hubs in psychopathological states, especially in psychosis, and could underlay therapeutic effects of hallucinogens as proposed by a recent model.
Collapse
Affiliation(s)
- Felix Müller
- University of Basel, Department of Psychiatry (UPK), Basel 4012, Switzerland
| | - Patrick C Dolder
- University of Basel, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel 4031, Switzerland
| | - André Schmidt
- University of Basel, Department of Psychiatry (UPK), Basel 4012, Switzerland
| | - Matthias E Liechti
- University of Basel, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel 4031, Switzerland
| | - Stefan Borgwardt
- University of Basel, Department of Psychiatry (UPK), Basel 4012, Switzerland.
| |
Collapse
|
103
|
Swanson LR. Unifying Theories of Psychedelic Drug Effects. Front Pharmacol 2018; 9:172. [PMID: 29568270 PMCID: PMC5853825 DOI: 10.3389/fphar.2018.00172] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 01/29/2023] Open
Abstract
How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories-model psychoses theory, filtration theory, and psychoanalytic theory-and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks-entropic brain theory, integrated information theory, and predictive processing-and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function.
Collapse
Affiliation(s)
- Link R. Swanson
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, United States
- Department of Philosophy, University of Minnesota, Minneapolis, MN, United States
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
104
|
Mason SL, Daws RE, Soreq E, Johnson EB, Scahill RI, Tabrizi SJ, Barker RA, Hampshire A. Predicting clinical diagnosis in Huntington's disease: An imaging polymarker. Ann Neurol 2018; 83:532-543. [PMID: 29405351 PMCID: PMC5900832 DOI: 10.1002/ana.25171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real-life clinical diagnosis in HD. METHOD A multivariate machine learning approach was applied to resting-state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross-group comparisons between preHD and controls, and within the preHD group in relation to "estimated" and "actual" proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. RESULTS Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. INTERPRETATION We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532-543.
Collapse
Affiliation(s)
- Sarah L. Mason
- John Van Geest Centre for Brain RepairUniversity of CambridgeUnited Kingdom
| | - Richard E. Daws
- The Computational, Cognitive & Clinical Neuroimaging Laboratory (CNL), Division of Brain SciencesImperial College LondonUnited Kingdom
| | - Eyal Soreq
- The Computational, Cognitive & Clinical Neuroimaging Laboratory (CNL), Division of Brain SciencesImperial College LondonUnited Kingdom
| | - Eileanoir B. Johnson
- Huntington's Disease Research CentreUCL Institute of Neurology, University College LondonUnited Kingdom
| | - Rachael I. Scahill
- Huntington's Disease Research CentreUCL Institute of Neurology, University College LondonUnited Kingdom
| | - Sarah J. Tabrizi
- Huntington's Disease Research CentreUCL Institute of Neurology, University College LondonUnited Kingdom
| | - Roger A. Barker
- John Van Geest Centre for Brain RepairUniversity of CambridgeUnited Kingdom
- Department of Clinical NeuroscienceUniversity of CambridgeUnited Kingdom
| | - Adam Hampshire
- The Computational, Cognitive & Clinical Neuroimaging Laboratory (CNL), Division of Brain SciencesImperial College LondonUnited Kingdom
| |
Collapse
|
105
|
Atasoy S, Roseman L, Kaelen M, Kringelbach ML, Deco G, Carhart-Harris RL. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci Rep 2017; 7:17661. [PMID: 29247209 PMCID: PMC5732294 DOI: 10.1038/s41598-017-17546-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022] Open
Abstract
Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.
Collapse
Affiliation(s)
- Selen Atasoy
- Center of Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Leor Roseman
- Psychedelic Research Group, Psychopharmacology Unit, Centre for Psychiatry, Department of Medicine, Imperial College London, London, UK
| | - Mendel Kaelen
- Psychedelic Research Group, Psychopharmacology Unit, Centre for Psychiatry, Department of Medicine, Imperial College London, London, UK
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center of Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Robin L Carhart-Harris
- Psychedelic Research Group, Psychopharmacology Unit, Centre for Psychiatry, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
106
|
Tian Y, Yang L, Xu W, Zhang H, Wang Z, Zhang H, Zheng S, Shi Y, Xu P. Predictors for drug effects with brain disease: Shed new light from EEG parameters to brain connectomics. Eur J Pharm Sci 2017; 110:26-36. [PMID: 28456573 DOI: 10.1016/j.ejps.2017.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023]
Abstract
Though researchers spent a lot of effort to develop treatments for neuropsychiatric disorders, the poor translation of drug efficacy data from animals to human hampered the success of these therapeutic approaches in human. Pharmaceutical industry is challenged by low clinical success rates for new drug registration. To maximize the success in drug development, biomarkers are required to act as surrogate end points and predictors of drug effects. The pathology of brain disease could be in part due to synaptic dysfunction. Electroencephalogram (EEG), generating from the result of the postsynaptic potential discharge between cells, could be a potential measure to bridge the gaps between animal and human data. Here we discuss recent progress on using relevant EEG characteristics and brain connectomics as biomarkers to monitor drug effects and measure cognitive changes on animal models and human in real-time. It is expected that the novel approach, i.e. EEG connectomics, will offer a deeper understanding on the drug efficacy at a microcirculatory level, which will be useful to support the development of new treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yin Tian
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China.
| | - Li Yang
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Wei Xu
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Huiling Zhang
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Zhongyan Wang
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Haiyong Zhang
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Shuxing Zheng
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Yupan Shi
- Biomedical Engineering Department, Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, High School Innovation Team of Architecture and Core Technologies of Smart Medical System, ChongQing University of Posts and Telecommunications, ChongQing 400065, China
| | - Peng Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
107
|
Sellers EM, Romach MK, Leiderman DB. Studies with psychedelic drugs in human volunteers. Neuropharmacology 2017; 142:116-134. [PMID: 29162429 DOI: 10.1016/j.neuropharm.2017.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022]
Abstract
Scientific curiosity and fascination have played a key role in human research with psychedelics along with the hope that perceptual alterations and heightened insight could benefit well-being and play a role in the treatment of various neuropsychiatric disorders. These motivations need to be tempered by a realistic assessment of the hurdles to be cleared for therapeutic use. Development of a psychedelic drug for treatment of a serious psychiatric disorder presents substantial although not insurmountable challenges. While the varied psychedelic agents described in this chapter share some properties, they have a range of pharmacologic effects that are reflected in the gradation in intensity of hallucinogenic effects from the classical agents to DMT, MDMA, ketamine, dextromethorphan and new drugs with activity in the serotonergic system. The common link seems to be serotonergic effects modulated by NMDA and other neurotransmitter effects. The range of hallucinogens suggest that they are distinct pharmacologic agents and will not be equally safe or effective in therapeutic targets. Newly synthesized specific and selective agents modeled on the legacy agents may be worth considering. Defining therapeutic targets that represent unmet medical need, addressing market and commercial issues, and finding treatment settings to safely test and use such drugs make the human testing of psychedelics not only interesting but also very challenging. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.
Collapse
Affiliation(s)
- Edward M Sellers
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Medicine, University of Toronto, Toronto, ON, Canada; Psychiatry, University of Toronto, Toronto, ON, Canada; Surgery, University of Toronto, Toronto, ON, Canada; DL Global Partners Inc, Toronto, ON, Canada.
| | - Myroslava K Romach
- Psychiatry, University of Toronto, Toronto, ON, Canada; Surgery, University of Toronto, Toronto, ON, Canada; DL Global Partners Inc, Toronto, ON, Canada
| | | |
Collapse
|
108
|
Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci Rep 2017; 7:13187. [PMID: 29030624 PMCID: PMC5640601 DOI: 10.1038/s41598-017-13282-7] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
Psilocybin with psychological support is showing promise as a treatment model in psychiatry but its therapeutic mechanisms are poorly understood. Here, cerebral blood flow (CBF) and blood oxygen-level dependent (BOLD) resting-state functional connectivity (RSFC) were measured with functional magnetic resonance imaging (fMRI) before and after treatment with psilocybin (serotonin agonist) for treatment-resistant depression (TRD). Quality pre and post treatment fMRI data were collected from 16 of 19 patients. Decreased depressive symptoms were observed in all 19 patients at 1-week post-treatment and 47% met criteria for response at 5 weeks. Whole-brain analyses revealed post-treatment decreases in CBF in the temporal cortex, including the amygdala. Decreased amygdala CBF correlated with reduced depressive symptoms. Focusing on a priori selected circuitry for RSFC analyses, increased RSFC was observed within the default-mode network (DMN) post-treatment. Increased ventromedial prefrontal cortex-bilateral inferior lateral parietal cortex RSFC was predictive of treatment response at 5-weeks, as was decreased parahippocampal-prefrontal cortex RSFC. These data fill an important knowledge gap regarding the post-treatment brain effects of psilocybin, and are the first in depressed patients. The post-treatment brain changes are different to previously observed acute effects of psilocybin and other 'psychedelics' yet were related to clinical outcomes. A 'reset' therapeutic mechanism is proposed.
Collapse
|
109
|
Walpola IC, Nest T, Roseman L, Erritzoe D, Feilding A, Nutt DJ, Carhart-Harris RL. Altered Insula Connectivity under MDMA. Neuropsychopharmacology 2017; 42:2152-2162. [PMID: 28195139 PMCID: PMC5603811 DOI: 10.1038/npp.2017.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.
Collapse
Affiliation(s)
- Ishan C Walpola
- Department of Psychiatry, McGill University Faculty of Medicine, McGill University, Montreal, Quebec, Canada,Department of Psychiatry, McGill University, 6825 LaSalle Boulevard, Montreal, Quebec, Canada H4H 1R3, Tel: 5147662010, E-mail:
| | - Timothy Nest
- Department of Psychiatry, McGill University Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Leor Roseman
- Division of Brain Sciences, Faculty of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - David Erritzoe
- Division of Brain Sciences, Faculty of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | - David J Nutt
- Division of Brain Sciences, Faculty of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Division of Brain Sciences, Faculty of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK
| |
Collapse
|
110
|
Liechti ME. Modern Clinical Research on LSD. Neuropsychopharmacology 2017; 42:2114-2127. [PMID: 28447622 PMCID: PMC5603820 DOI: 10.1038/npp.2017.86] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
All modern clinical studies using the classic hallucinogen lysergic acid diethylamide (LSD) in healthy subjects or patients in the last 25 years are reviewed herein. There were five recent studies in healthy participants and one in patients. In a controlled setting, LSD acutely induced bliss, audiovisual synesthesia, altered meaning of perceptions, derealization, depersonalization, and mystical experiences. These subjective effects of LSD were mediated by the 5-HT2A receptor. LSD increased feelings of closeness to others, openness, trust, and suggestibility. LSD impaired the recognition of sad and fearful faces, reduced left amygdala reactivity to fearful faces, and enhanced emotional empathy. LSD increased the emotional response to music and the meaning of music. LSD acutely produced deficits in sensorimotor gating, similar to observations in schizophrenia. LSD had weak autonomic stimulant effects and elevated plasma cortisol, prolactin, and oxytocin levels. Resting-state functional magnetic resonance studies showed that LSD acutely reduced the integrity of functional brain networks and increased connectivity between networks that normally are more dissociated. LSD increased functional thalamocortical connectivity and functional connectivity of the primary visual cortex with other brain areas. The latter effect was correlated with subjective hallucinations. LSD acutely induced global increases in brain entropy that were associated with greater trait openness 14 days later. In patients with anxiety associated with life-threatening disease, anxiety was reduced for 2 months after two doses of LSD. In medical settings, no complications of LSD administration were observed. These data should contribute to further investigations of the therapeutic potential of LSD in psychiatry.
Collapse
Affiliation(s)
- Matthias E Liechti
- Psychopharmacology Research, Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Psychopharmacology Research, Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Psychopharmacology Research, Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
111
|
Winkelman MJ. The Mechanisms of Psychedelic Visionary Experiences: Hypotheses from Evolutionary Psychology. Front Neurosci 2017; 11:539. [PMID: 29033783 PMCID: PMC5625021 DOI: 10.3389/fnins.2017.00539] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Neuropharmacological effects of psychedelics have profound cognitive, emotional, and social effects that inspired the development of cultures and religions worldwide. Findings that psychedelics objectively and reliably produce mystical experiences press the question of the neuropharmacological mechanisms by which these highly significant experiences are produced by exogenous neurotransmitter analogs. Humans have a long evolutionary relationship with psychedelics, a consequence of psychedelics' selective effects for human cognitive abilities, exemplified in the information rich visionary experiences. Objective evidence that psychedelics produce classic mystical experiences, coupled with the finding that hallucinatory experiences can be induced by many non-drug mechanisms, illustrates the need for a common model of visionary effects. Several models implicate disturbances of normal regulatory processes in the brain as the underlying mechanisms responsible for the similarities of visionary experiences produced by psychedelic and other methods for altering consciousness. Similarities in psychedelic-induced visionary experiences and those produced by practices such as meditation and hypnosis and pathological conditions such as epilepsy indicate the need for a general model explaining visionary experiences. Common mechanisms underlying diverse alterations of consciousness involve the disruption of normal functions of the prefrontal cortex and default mode network (DMN). This interruption of ordinary control mechanisms allows for the release of thalamic and other lower brain discharges that stimulate a visual information representation system and release the effects of innate cognitive functions and operators. Converging forms of evidence support the hypothesis that the source of psychedelic experiences involves the emergence of these innate cognitive processes of lower brain systems, with visionary experiences resulting from the activation of innate processes based in the mirror neuron system (MNS).
Collapse
Affiliation(s)
- Michael J Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
112
|
Abstract
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Collapse
Affiliation(s)
- RL Carhart-Harris
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - DJ Nutt
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
113
|
Sampedro F, de la Fuente Revenga M, Valle M, Roberto N, Domínguez-Clavé E, Elices M, Luna LE, Crippa JAS, Hallak JEC, de Araujo DB, Friedlander P, Barker SA, Álvarez E, Soler J, Pascual JC, Feilding A, Riba J. Assessing the Psychedelic "After-Glow" in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities. Int J Neuropsychopharmacol 2017; 20:698-711. [PMID: 28525587 PMCID: PMC5581489 DOI: 10.1093/ijnp/pyx036] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca.
Collapse
Affiliation(s)
- Frederic Sampedro
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Mario de la Fuente Revenga
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Marta Valle
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Natalia Roberto
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Elisabet Domínguez-Clavé
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Matilde Elices
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Luís Eduardo Luna
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - José Alexandre S Crippa
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Jaime E C Hallak
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Draulio B de Araujo
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Pablo Friedlander
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Steven A Barker
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Enrique Álvarez
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Joaquim Soler
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Juan C Pascual
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Amanda Feilding
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Jordi Riba
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| |
Collapse
|
114
|
Atasoy S, Deco G, Kringelbach ML, Pearson J. Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics. Neuroscientist 2017; 24:277-293. [PMID: 28863720 DOI: 10.1177/1073858417728032] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.
Collapse
Affiliation(s)
- Selen Atasoy
- 1 Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- 1 Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.,2 Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain.,3 Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,4 School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Morten L Kringelbach
- 5 Department of Psychiatry, University of Oxford, Oxford, UK.,6 Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Joel Pearson
- 7 School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
115
|
Thomas K, Malcolm B, Lastra D. Psilocybin-Assisted Therapy: A Review of a Novel Treatment for Psychiatric Disorders. J Psychoactive Drugs 2017; 49:446-455. [PMID: 28481178 DOI: 10.1080/02791072.2017.1320734] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent research suggests that functional connectivity changes may be involved in the pathophysiology of psychiatric disorders. Hyperconnectivity in the default mode network has been associated with psychopathology, but psychedelic serotonin agonists like psilocybin may profoundly disrupt these dysfunctional neural network circuits and provide a novel treatment for psychiatric disorders. We have reviewed the current literature to investigate the efficacy and safety of psilocybin-assisted therapy for the treatment of psychiatric disorders. There were seven clinical trials that investigated psilocybin-assisted therapy as a treatment for psychiatric disorders related to anxiety, depression, and substance use. All trials demonstrated reductions in psychiatric rating scale scores or increased response and remission rates. There were large effect sizes related to improved depression and anxiety symptoms. Psilocybin may also potentially reduce alcohol or tobacco use and increase abstinence rates in addiction, but the benefits of these two trials were less clear due to open-label study designs without statistical analysis. Psilocybin-assisted therapy efficacy and safety appear promising, but more robust clinical trials will be required to support FDA approval and identify the potential role in clinical psychiatry.
Collapse
Affiliation(s)
- Kelan Thomas
- a Assistant Professor, Clinical Sciences , Touro University California , Vallejo , CA , USA
| | - Benjamin Malcolm
- b Assistant Professor, Pharmacy Practice and Administration , Western University of Health Sciences, Pomona, CA, USA
| | - Dan Lastra
- c Pharmacy Student , Touro University California , Vallejo , CA , USA
| |
Collapse
|
116
|
Nour MM, Evans L, Carhart-Harris RL. Psychedelics, Personality and Political Perspectives. J Psychoactive Drugs 2017; 49:182-191. [PMID: 28443703 DOI: 10.1080/02791072.2017.1312643] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The psychedelic experience (including psychedelic-induced ego dissolution) can effect lasting change in a person's attitudes and beliefs. Here, we aimed to investigate the association between naturalistic psychedelic use and personality, political perspectives, and nature relatedness using an anonymous internet survey. Participants (N = 893) provided information about their naturalistic psychedelic, cocaine, and alcohol use, and answered questions relating to personality traits of openness and conscientiousness (Ten-Item Personality Inventory), nature relatedness (Nature-Relatedness Scale), and political attitudes (one-item liberalism-conservatism measure and five-item libertarian-authoritarian measure). Participants also rated the degree of ego dissolution experienced during their "most intense" recalled psychedelic experience (Ego-Dissolution Inventory). Multivariate linear regression analysis indicated that lifetime psychedelic use (but not lifetime cocaine use or weekly alcohol consumption) positively predicted liberal political views, openness and nature relatedness, and negatively predicted authoritarian political views, after accounting for potential confounding variables. Ego dissolution experienced during a participant's "most intense" psychedelic experience positively predicted liberal political views, openness and nature relatedness, and negatively predicted authoritarian political views. Further work is needed to investigate the nature of the relationship between the peak psychedelic experience and openness to new experiences, egalitarian political views, and concern for the environment.
Collapse
Affiliation(s)
- Matthew M Nour
- a NIHR Academic Clinical Fellow , Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London , UK
| | - Lisa Evans
- b Master's Student , Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine , Imperial College London, London , UK
| | - Robin L Carhart-Harris
- c Head of Psychedelic Research , Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine , Imperial College London, London , UK
| |
Collapse
|
117
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
118
|
Nichols DE, Johnson MW, Nichols CD. Psychedelics as Medicines: An Emerging New Paradigm. Clin Pharmacol Ther 2016; 101:209-219. [PMID: 28019026 DOI: 10.1002/cpt.557] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
Scientific interest in serotonergic psychedelics (e.g., psilocybin and LSD; 5-HT2A receptor agonists) has dramatically increased within the last decade. Clinical studies administering psychedelics with psychotherapy have shown preliminary evidence of robust efficacy in treating anxiety and depression, as well as addiction to tobacco and alcohol. Moreover, recent research has suggested that these compounds have potential efficacy against inflammatory diseases through novel mechanisms, with potential advantages over existing antiinflammatory agents. We propose that psychedelics exert therapeutic effects for psychiatric disorders by acutely destabilizing local brain network hubs and global network connectivity via amplification of neuronal avalanches, providing the occasion for brain network "resetting" after the acute effects have resolved. Antiinflammatory effects may hold promise for efficacy in treatment of inflammation-related nonpsychiatric as well as potentially for psychiatric disorders. Serotonergic psychedelics operate through unique mechanisms that show promising effects for a variety of intractable, debilitating, and lethal disorders, and should be rigorously researched.
Collapse
Affiliation(s)
- D E Nichols
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - M W Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C D Nichols
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
119
|
Dos Santos RG, Osório FL, Crippa JAS, Hallak JEC. Classical hallucinogens and neuroimaging: A systematic review of human studies: Hallucinogens and neuroimaging. Neurosci Biobehav Rev 2016; 71:715-728. [PMID: 27810345 DOI: 10.1016/j.neubiorev.2016.10.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
Abstract
Serotonergic hallucinogens produce alterations of perceptions, mood, and cognition, and have anxiolytic, antidepressant, and antiaddictive properties. These drugs act as agonists of frontocortical 5-HT2A receptors, but the neural basis of their effects are not well understood. Thus, we conducted a systematic review of neuroimaging studies analyzing the effects of serotonergic hallucinogens in man. Studies published in the PubMed, Lilacs, and SciELO databases until 12 April 2016 were included using the following keywords: "ayahuasca", "DMT", "psilocybin", "LSD", "mescaline" crossed one by one with the terms "mri", "fmri", "pet", "spect", "imaging" and "neuroimaging". Of 279 studies identified, 25 were included. Acute effects included excitation of frontolateral/frontomedial cortex, medial temporal lobe, and occipital cortex, and inhibition of the default mode network. Long-term use was associated with thinning of the posterior cingulate cortex, thickening of the anterior cingulate cortex, and decreased neocortical 5-HT2A receptor binding. Despite the high methodological heterogeneity and the small sample sizes, the results suggest that hallucinogens increase introspection and positive mood by modulating brain activity in the fronto-temporo-parieto-occipital cortex.
Collapse
Affiliation(s)
- Rafael G Dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil.
| | - Flávia L Osório
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| | - José Alexandre S Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil
| |
Collapse
|
120
|
Bogenschutz MP, Forcehimes AA. Development of a Psychotherapeutic Model for Psilocybin-Assisted Treatment of Alcoholism. JOURNAL OF HUMANISTIC PSYCHOLOGY 2016. [DOI: 10.1177/0022167816673493] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Research activity on the potential clinical value of classic hallucinogens and other psychedelics has increased markedly in the past two decades, and promises to continue to expand. Experimental study of hallucinogen-assisted treatment, and any future clinical use, requires the development of psychotherapeutic models that are appropriate to the disorder being treated and effectively integrated with the pharmacologic component of the treatment. To provide a framework for thinking about possible treatment models, we provide an overview of the history of psychedelic-assisted treatment, review what is known about the therapeutic mechanisms of these treatments, and consider the various purposes of psychotherapy in the context of both research and clinical use of psychedelic-assisted treatment. We then provide a description of a therapy model we have developed and are currently using in a trial of psilocybin-assisted treatment for alcoholism. Finally, we discuss advantages and disadvantages of a range of alternative models, emphasizing the need for research to determine the most effective treatment models for any indications for which efficacy becomes established.
Collapse
|
121
|
Kuypers KPC, Riba J, de la Fuente Revenga M, Barker S, Theunissen EL, Ramaekers JG. Ayahuasca enhances creative divergent thinking while decreasing conventional convergent thinking. Psychopharmacology (Berl) 2016; 233:3395-403. [PMID: 27435062 PMCID: PMC4989012 DOI: 10.1007/s00213-016-4377-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Ayahuasca is a South American psychotropic plant tea traditionally used in Amazonian shamanism. The tea contains the psychedelic 5-HT2A receptor agonist N,N-dimethyltryptamine (DMT), plus β-carboline alkaloids with monoamine oxidase-inhibiting properties. Increasing evidence from anecdotal reports and open-label studies indicates that ayahuasca may have therapeutic effects in treatment of substance use disorders and depression. A recent study on the psychological effects of ayahuasca found that the tea reduces judgmental processing and inner reactivity, classic goals of mindfulness psychotherapy. Another psychological facet that could potentially be targeted by ayahuasca is creative divergent thinking. This mode of thinking can enhance and strengthen psychological flexibility by allowing individuals to generate new and effective cognitive, emotional, and behavioral strategies. The present study aimed to assess the potential effects of ayahuasca on creative thinking. METHODS We visited two spiritual ayahuasca workshops and invited participants to conduct creativity tests before and during the acute effects of ayahuasca. In total, 26 participants consented. Creativity tests included the "pattern/line meanings test" (PLMT) and the "picture concept test" (PCT), both assessing divergent thinking and the latter also assessing convergent thinking. RESULTS While no significant effects were found for the PLMT, ayahuasca intake significantly modified divergent and convergent thinking as measured by the PCT. While convergent thinking decreased after intake, divergent thinking increased. CONCLUSIONS The present data indicate that ayahuasca enhances creative divergent thinking. They suggest that ayahuasca increases psychological flexibility, which may facilitate psychotherapeutic interventions and support clinical trial initiatives.
Collapse
Affiliation(s)
- K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - J Riba
- Human Experimental Neuropsychopharmacology, Sant Pau Institute of Biomedical Research, Barcelona, Spain
| | - M de la Fuente Revenga
- Human Experimental Neuropsychopharmacology, Sant Pau Institute of Biomedical Research, Barcelona, Spain
| | - S Barker
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - E L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
122
|
|
123
|
Abstract
Hallucinogens fall into several different classes, as broadly defined by pharmacological mechanism of action, and chemical structure. These include psychedelics, entactogens, dissociatives, and other atypical hallucinogens. Although these classes do not share a common primary mechanism of action, they do exhibit important similarities in their ability to occasion temporary but profound alterations of consciousness, involving acute changes in somatic, perceptual, cognitive, and affective processes. Such effects likely contribute to their recreational use. However, a growing body of evidence indicates that these drugs may have therapeutic applications beyond their potential for abuse. This review will present data on several classes of hallucinogens with a particular focus on psychedelics, entactogens, and dissociatives, for which clinical utility has been most extensively documented. Information on each class is presented in turn, tracing relevant historical insights, highlighting similarities and differences between the classes from the molecular to the behavioral level, and presenting the most up-to-date information on clinically oriented research with these substances, with important ramifications for their potential therapeutic value. (PsycINFO Database Record
Collapse
Affiliation(s)
- Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brennan Kersgaard
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter H. Addy
- Department of Medical Informatics, Department of Veterans Affairs, West Haven, CT
- Department of Medical Informatics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
124
|
Roseman L, Sereno MI, Leech R, Kaelen M, Orban C, McGonigle J, Feilding A, Nutt DJ, Carhart‐Harris RL. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion. Hum Brain Mapp 2016; 37:3031-40. [PMID: 27125770 PMCID: PMC6867480 DOI: 10.1002/hbm.23224] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 01/31/2023] Open
Abstract
The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leor Roseman
- Centre for Neuropsychopharmacology, Department of MedicineImperial College LondonLondonW12 0NNUnited Kingdom
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of MedicineImperial College LondonLondonW12 0NNUnited Kingdom
| | - Martin I. Sereno
- Birkbeck‐UCL Centre for Neuroimaging (BUCNI)LondonWC1H 0APUnited Kingdom
| | - Robert Leech
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of MedicineImperial College LondonLondonW12 0NNUnited Kingdom
| | - Mendel Kaelen
- Centre for Neuropsychopharmacology, Department of MedicineImperial College LondonLondonW12 0NNUnited Kingdom
| | - Csaba Orban
- Centre for Neuropsychopharmacology, Department of MedicineImperial College LondonLondonW12 0NNUnited Kingdom
| | - John McGonigle
- Centre for Neuropsychopharmacology, Department of MedicineImperial College LondonLondonW12 0NNUnited Kingdom
| | - Amanda Feilding
- The Beckley FoundationBeckley ParkOxfordOX3 9SYUnited Kingdom
| | - David J. Nutt
- Centre for Neuropsychopharmacology, Department of MedicineImperial College LondonLondonW12 0NNUnited Kingdom
| | - Robin L. Carhart‐Harris
- Centre for Neuropsychopharmacology, Department of MedicineImperial College LondonLondonW12 0NNUnited Kingdom
| |
Collapse
|
125
|
Tófoli LF, de Araujo DB. Treating Addiction: Perspectives from EEG and Imaging Studies on Psychedelics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 129:157-85. [PMID: 27503452 DOI: 10.1016/bs.irn.2016.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite reports of apparent benefits, social and political pressure beginning in the late 1960s effectively banned scientific inquiry into psychedelic substances. Covert examination of psychedelics persisted through the 1990s; the turn of the century and especially the past 10 years, however, has seen a resurgent interest in psychedelic substances (eg, LSD, ayahuasca, psilocybin). This chapter outlines relevant EEG and brain imaging studies evaluating the effects of psychedelics on the brain. This chapter also reviews evidence of the use of psychedelics as adjunct therapy for a number of psychiatric and addictive disorders. In particular, psychedelics appear to have efficacy in treating depression and alcohol-use disorders.
Collapse
Affiliation(s)
- L F Tófoli
- School of Medical Sciences, University of Campinas, Campinas, Brazil.
| | - D B de Araujo
- Brain Institute/Hospital Universitario Onofre Lopes, UFRN, Natal, Brazil
| |
Collapse
|
126
|
Gallimore AR, Strassman RJ. A Model for the Application of Target-Controlled Intravenous Infusion for a Prolonged Immersive DMT Psychedelic Experience. Front Pharmacol 2016; 7:211. [PMID: 27471468 PMCID: PMC4944667 DOI: 10.3389/fphar.2016.00211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
The state of consciousness induced by N,N-dimethyltryptamine (DMT) is one of the most extraordinary of any naturally-occurring psychedelic substance. Users consistently report the complete replacement of normal subjective experience with a novel "alternate universe," often densely populated with a variety of strange objects and other highly complex visual content, including what appear to be sentient "beings." The phenomenology of the DMT state is of great interest to psychology and calls for rigorous academic enquiry. The extremely short duration of DMT effects-less than 20 min-militates against single dose administration as the ideal model for such enquiry. Using pharmacokinetic modeling and DMT blood sampling data, we demonstrate that the unique pharmacological characteristics of DMT, which also include a rapid onset and lack of acute tolerance to its subjective effects, make it amenable to administration by target-controlled intravenous infusion. This is a technology developed to maintain a stable brain concentration of anesthetic drugs during surgery. Simulations of our model demonstrate that this approach will allow research subjects to be induced into a stable and prolonged DMT experience, making it possible to carefully observe its psychological contents, and provide more extensive accounts for subsequent analyses. This model would also be valuable in performing functional neuroimaging, where subjects are required to remain under the influence of the drug for extended periods. Finally, target-controlled intravenous infusion of DMT may aid the development of unique psychotherapeutic applications of this psychedelic agent.
Collapse
Affiliation(s)
- Andrew R. Gallimore
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| | - Rick J. Strassman
- Department of Psychiatry, University of New Mexico School of MedicineAlbuquerque, NM, USA
| |
Collapse
|
127
|
Nour MM, Evans L, Nutt D, Carhart-Harris RL. Ego-Dissolution and Psychedelics: Validation of the Ego-Dissolution Inventory (EDI). Front Hum Neurosci 2016; 10:269. [PMID: 27378878 PMCID: PMC4906025 DOI: 10.3389/fnhum.2016.00269] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/20/2016] [Indexed: 02/05/2023] Open
Abstract
AIMS The experience of a compromised sense of "self", termed ego-dissolution, is a key feature of the psychedelic experience. This study aimed to validate the Ego-Dissolution Inventory (EDI), a new 8-item self-report scale designed to measure ego-dissolution. Additionally, we aimed to investigate the specificity of the relationship between psychedelics and ego-dissolution. METHOD Sixteen items relating to altered ego-consciousness were included in an internet questionnaire; eight relating to the experience of ego-dissolution (comprising the EDI), and eight relating to the antithetical experience of increased self-assuredness, termed ego-inflation. Items were rated using a visual analog scale. Participants answered the questionnaire for experiences with classical psychedelic drugs, cocaine and/or alcohol. They also answered the seven questions from the Mystical Experiences Questionnaire (MEQ) relating to the experience of unity with one's surroundings. RESULTS Six hundred and ninety-one participants completed the questionnaire, providing data for 1828 drug experiences (1043 psychedelics, 377 cocaine, 408 alcohol). Exploratory factor analysis demonstrated that the eight EDI items loaded exclusively onto a single common factor, which was orthogonal to a second factor comprised of the items relating to ego-inflation (rho = -0.110), demonstrating discriminant validity. The EDI correlated strongly with the MEQ-derived measure of unitive experience (rho = 0.735), demonstrating convergent validity. EDI internal consistency was excellent (Cronbach's alpha 0.93). Three analyses confirmed the specificity of ego-dissolution for experiences occasioned by psychedelic drugs. Firstly, EDI score correlated with drug-dose for psychedelic drugs (rho = 0.371), but not for cocaine (rho = 0.115) or alcohol (rho = -0.055). Secondly, the linear regression line relating the subjective intensity of the experience to ego-dissolution was significantly steeper for psychedelics (unstandardized regression coefficient = 0.701) compared with cocaine (0.135) or alcohol (0.144). Ego-inflation, by contrast, was specifically associated with cocaine experiences. Finally, a binary Support Vector Machine classifier identified experiences occasioned by psychedelic drugs vs. cocaine or alcohol with over 85% accuracy using ratings of ego-dissolution and ego-inflation alone. CONCLUSION Our results demonstrate the psychometric structure, internal consistency and construct validity of the EDI. Moreover, we demonstrate the close relationship between ego-dissolution and the psychedelic experience. The EDI will facilitate the study of the neuronal correlates of ego-dissolution, which is relevant for psychedelic-assisted psychotherapy and our understanding of psychosis.
Collapse
Affiliation(s)
- Matthew M Nour
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Imperial College LondonLondon, UK; Institute of Psychiatry Psychology and Neuroscience, King's College LondonLondon, UK
| | - Lisa Evans
- Faculty of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London London, UK
| | - David Nutt
- Faculty of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London London, UK
| | - Robin L Carhart-Harris
- Faculty of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London London, UK
| |
Collapse
|
128
|
Smith SD, Katherine Fredborg B, Kornelsen J. An examination of the default mode network in individuals with autonomous sensory meridian response (ASMR). Soc Neurosci 2016; 12:361-365. [DOI: 10.1080/17470919.2016.1188851] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
129
|
Lebedev AV, Kaelen M, Lövdén M, Nilsson J, Feilding A, Nutt DJ, Carhart-Harris RL. LSD-induced entropic brain activity predicts subsequent personality change. Hum Brain Mapp 2016; 37:3203-13. [PMID: 27151536 DOI: 10.1002/hbm.23234] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A V Lebedev
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - M Kaelen
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| | - M Lövdén
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - J Nilsson
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - A Feilding
- The Beckley Foundation, Beckley Park, United Kingdom
| | - D J Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| | - R L Carhart-Harris
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| |
Collapse
|
130
|
Carhart-Harris RL, Kaelen M, Bolstridge M, Williams TM, Williams LT, Underwood R, Feilding A, Nutt DJ. The paradoxical psychological effects of lysergic acid diethylamide (LSD). Psychol Med 2016; 46:1379-1390. [PMID: 26847689 DOI: 10.1017/s0033291715002901] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Lysergic acid diethylamide (LSD) is a potent serotonergic hallucinogen or psychedelic that modulates consciousness in a marked and novel way. This study sought to examine the acute and mid-term psychological effects of LSD in a controlled study. METHOD A total of 20 healthy volunteers participated in this within-subjects study. Participants received LSD (75 µg, intravenously) on one occasion and placebo (saline, intravenously) on another, in a balanced order, with at least 2 weeks separating sessions. Acute subjective effects were measured using the Altered States of Consciousness questionnaire and the Psychotomimetic States Inventory (PSI). A measure of optimism (the Revised Life Orientation Test), the Revised NEO Personality Inventory, and the Peter's Delusions Inventory were issued at baseline and 2 weeks after each session. RESULTS LSD produced robust psychological effects; including heightened mood but also high scores on the PSI, an index of psychosis-like symptoms. Increased optimism and trait openness were observed 2 weeks after LSD (and not placebo) and there were no changes in delusional thinking. CONCLUSIONS The present findings reinforce the view that psychedelics elicit psychosis-like symptoms acutely yet improve psychological wellbeing in the mid to long term. It is proposed that acute alterations in mood are secondary to a more fundamental modulation in the quality of cognition, and that increased cognitive flexibility subsequent to serotonin 2A receptor (5-HT2AR) stimulation promotes emotional lability during intoxication and leaves a residue of 'loosened cognition' in the mid to long term that is conducive to improved psychological wellbeing.
Collapse
Affiliation(s)
- R L Carhart-Harris
- Imperial College London,Centre for Neuropsychopharmacology,Division of Brain Sciences,Faculty of Medicine,London,UK
| | - M Kaelen
- Imperial College London,Centre for Neuropsychopharmacology,Division of Brain Sciences,Faculty of Medicine,London,UK
| | - M Bolstridge
- Imperial College London,Centre for Neuropsychopharmacology,Division of Brain Sciences,Faculty of Medicine,London,UK
| | - T M Williams
- Department of Psychiatry,The University of Bristol,Bristol,UK
| | - L T Williams
- Imperial College London,Centre for Neuropsychopharmacology,Division of Brain Sciences,Faculty of Medicine,London,UK
| | - R Underwood
- Institute of Psychiatry, Psychology & Neuroscience,Department of Psychology,King's College London,London,UK
| | - A Feilding
- The Beckley Foundation,Beckley Park,Oxford,UK
| | - D J Nutt
- Imperial College London,Centre for Neuropsychopharmacology,Division of Brain Sciences,Faculty of Medicine,London,UK
| |
Collapse
|
131
|
Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A 2016; 113:4853-8. [PMID: 27071089 DOI: 10.1073/pnas.1518377113] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.
Collapse
|
132
|
Tagliazucchi E, Roseman L, Kaelen M, Orban C, Muthukumaraswamy S, Murphy K, Laufs H, Leech R, McGonigle J, Crossley N, Bullmore E, Williams T, Bolstridge M, Feilding A, Nutt D, Carhart-Harris R. Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution. Curr Biol 2016; 26:1043-50. [DOI: 10.1016/j.cub.2016.02.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/06/2016] [Accepted: 02/02/2016] [Indexed: 10/21/2022]
|
133
|
Bogenschutz MP, Johnson MW. Classic hallucinogens in the treatment of addictions. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:250-8. [PMID: 25784600 DOI: 10.1016/j.pnpbp.2015.03.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 01/09/2023]
Abstract
Addictive disorders are very common and have devastating individual and social consequences. Currently available treatment is moderately effective at best. After many years of neglect, there is renewed interest in potential clinical uses for classic hallucinogens in the treatment of addictions and other behavioral health conditions. In this paper we provide a comprehensive review of both historical and recent clinical research on the use of classic hallucinogens in the treatment of addiction, selectively review other relevant research concerning hallucinogens, and suggest directions for future research. Clinical trial data are very limited except for the use of LSD in the treatment of alcoholism, where a meta-analysis of controlled trials has demonstrated a consistent and clinically significant beneficial effect of high-dose LSD. Recent pilot studies of psilocybin-assisted treatment of nicotine and alcohol dependence had strikingly positive outcomes, but controlled trials will be necessary to evaluate the efficacy of these treatments. Although plausible biological mechanisms have been proposed, currently the strongest evidence is for the role of mystical or other meaningful experiences as mediators of therapeutic effects. Classic hallucinogens have an excellent record of safety in the context of clinical research. Given our limited understanding of the clinically relevant effects of classic hallucinogens, there is a wealth of opportunities for research that could contribute important new knowledge and potentially lead to valuable new treatments for addiction.
Collapse
Affiliation(s)
- Michael P Bogenschutz
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, MSC11 6035, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, USA.
| |
Collapse
|
134
|
Behroozaghdam M, Hashemi M, Javadi G, Mahdian R, Soleimani M. Expression of bax and bcl2 Genes in MDMA-induced Hepatotoxicity on Rat Liver Using Quantitative Real-Time PCR Method through Triggering Programmed Cell Death. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e24609. [PMID: 26732379 PMCID: PMC4698330 DOI: 10.5812/ircmj.24609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 12/07/2014] [Indexed: 11/25/2022]
Abstract
Background: 3-4methylenedioxymethamphetamine (MDMA) is a synthetic and psychoactive drug, which is known popularly as Ecstasy and has toxic effects on human organs. Objectives: Considering the potential toxic interaction, this study was performed to quantify the expression of bax and bcl2 genes in MDMA-induced hepatotoxicity on rat liver. Subsequently, we evaluated pentoxifylline as a possible protective drug on hepatotoxicity. Materials and Methods: Adult male Wistar rats weighting 250 - 300 grams were used in the study. The rats were equally distributed into four experimental groups (5 rat/group). MDMA was dissolved in PBS and injected intraperitoneally (IP) including untreated control, MDMA (MDMA dissolved in PBS), treated-1 (MDMA followed by PTX) and treated-2 (PTX followed by MDMA). All animals given MDMA received 3 doses of 7.5mg/kg with two hours gap between doses. Liver tissue was removed after anaesthetizing. Subsequently, RNA isolation, cDNA synthesis and Real-Time PCR were performed. Finally, data analyzed statistically to determine significantly differences between the groups (P value < 0.05). Results: Using Real-Time quantitative PCR results, the gene expression ratio of bcl2 were calculated 93.80±20.64, 340.45 ± 36.60 and 47.13 ± 5.84 fold in MDMA, treated-1 and treated-2 groups, respectively. Furthermore, this ratio for bax gene obtained 2.13±0.33 fold in MDMA, 1.55 ± 0.26 fold in treated-1 and 10.44 ± 1.56 fold in treated-2 groups. Conclusions: The present study focused on molecular mechanism of MDMA in programmed cell death using gene expression quantification of a pro-apoptotic and anti-apoptoic gene in MDMA-induced hepatotoxocity. The results showed that MDMA prompted apoptosis in liver and pentoxifylline protected against hepatotoxicity before and after taking MDMA.
Collapse
Affiliation(s)
- Mitra Behroozaghdam
- Department of Genetics, Faculty of Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, IR Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, IR Iran
- Corresponding Author: Mehrdad Hashemi, Department of genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, IR Iran. Tel: +98-2122006664, Fax: +21-22008049, E-mail:
| | - Gholamreza Javadi
- Department of Genetics, Faculty of Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, IR Iran
| | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, IR Iran
- Department of Anatomy, Iran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
135
|
de Wit H, Gorka SM, Phan KL. The Ups and Downs of 3,4-Methylenedioxymethamphetamine: Linking Subjective Effects to Spontaneous Brain Function. Biol Psychiatry 2015; 78:519-21. [PMID: 26386625 DOI: 10.1016/j.biopsych.2015.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois.
| | - Stephanie M Gorka
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
136
|
Onu M, Badea L, Roceanu A, Tivarus M, Bajenaru O. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease. Neuroradiology 2015; 57:957-68. [PMID: 26174425 DOI: 10.1007/s00234-015-1556-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/24/2015] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Our study is using Independent Component Analysis (ICA) to evaluate functional connectivity changes in Parkinson's disease (PD) in an unbiased manner. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data was collected for 27 PD patients and 16 healthy subjects. Differences for intra- and inter-network connectivity between healthy subjects and patients were investigated using FMRIB Software Library (FSL) tools (Melodic ICA, dual regression, FSLNets). RESULTS Twenty-three ICA maps were identified as components of neuronal origin. For intra-network connectivity changes, eight components showed a significant connectivity increase in patients (p < 0.05); these were correlated with clinical scores and were largest for (sensori)motor networks. For inter-network connectivity changes, we found higher connectivity between the sensorimotor network and the spatial attention network (p = 0.0098) and lower connectivity between anterior and posterior default mode networks (DMN) (p = 0.024), anterior DMN and visual recognition networks (p = 0.026), as well as between visual attention and main dorsal attention networks (p = 0.03), for patients as compared to healthy subjects. The area under the Receiver Operating Characteristics (ROC) curve for the best predictor (partial correlation between sensorimotor and spatial attention networks) was 0.772. These functional alterations were not associated with any gray or white matter structural changes. CONCLUSION Our results show higher connectivity between sensorimotor and spatial attention areas in patients that may be related to the reduced movement automaticity in PD.
Collapse
Affiliation(s)
- Mihaela Onu
- Medical Imaging Department, Clinical Hospital "Prof. Dr. Th. Burghele", 20, Panduri Street, Bucharest, 050659, Romania. .,Carol Davila University of Medicine and Pharmacy, Biophysics, Bucharest, Romania.
| | - Liviu Badea
- National Institute for Research and Development in Informatics, Artificial Intelligence and Bioinformatics Group, Bucharest, Romania
| | - Adina Roceanu
- University of Bucharest Emergency Hospital, Neurology Department, Bucharest, Romania
| | - Madalina Tivarus
- University of Rochester Medical Center, Department of Imaging Sciences and Rochester Center for Brain Imaging, Rochester, NY, USA
| | - Ovidiu Bajenaru
- University of Bucharest Emergency Hospital, Neurology Department, Bucharest, Romania
| |
Collapse
|
137
|
Gallimore AR. Restructuring consciousness -the psychedelic state in light of integrated information theory. Front Hum Neurosci 2015; 9:346. [PMID: 26124719 PMCID: PMC4464176 DOI: 10.3389/fnhum.2015.00346] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The psychological state elicited by the classic psychedelics drugs, such as LSD and psilocybin, is one of the most fascinating and yet least understood states of consciousness. However, with the advent of modern functional neuroimaging techniques, the effect of these drugs on neural activity is now being revealed, although many of the varied phenomenological features of the psychedelic state remain challenging to explain. Integrated information theory (IIT) is one of the foremost contemporary theories of consciousness, providing a mathematical formalization of both the quantity and quality of conscious experience. This theory can be applied to all known states of consciousness, including the psychedelic state. Using the results of functional neuroimaging data on the psychedelic state, the effects of psychedelic drugs on both the level and structure of consciousness can be explained in terms of the conceptual framework of IIT. This new IIT-based model of the psychedelic state provides an explanation for many of its phenomenological features, including unconstrained cognition, alterations in the structure and meaning of concepts and a sense of expanded awareness. This model also suggests that whilst cognitive flexibility, creativity, and imagination are enhanced during the psychedelic state, this occurs at the expense of cause-effect information, as well as degrading the brain's ability to organize, categorize, and differentiate the constituents of conscious experience. Furthermore, the model generates specific predictions that can be tested using a combination of functional imaging techniques, as has been applied to the study of levels of consciousness during anesthesia and following brain injury.
Collapse
Affiliation(s)
- Andrew R Gallimore
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| |
Collapse
|
138
|
Lebedev AV, Lövdén M, Rosenthal G, Feilding A, Nutt DJ, Carhart-Harris RL. Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Hum Brain Mapp 2015; 36:3137-53. [PMID: 26010878 DOI: 10.1002/hbm.22833] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 02/03/2023] Open
Abstract
Ego-disturbances have been a topic in schizophrenia research since the earliest clinical descriptions of the disorder. Manifesting as a feeling that one's "self," "ego," or "I" is disintegrating or that the border between one's self and the external world is dissolving, "ego-disintegration" or "dissolution" is also an important feature of the psychedelic experience, such as is produced by psilocybin (a compound found in "magic mushrooms"). Fifteen healthy subjects took part in this placebo-controlled study. Twelve-minute functional MRI scans were acquired on two occasions: subjects received an intravenous infusion of saline on one occasion (placebo) and 2 mg psilocybin on the other. Twenty-two visual analogue scale ratings were completed soon after scanning and the first principal component of these, dominated by items referring to "ego-dissolution", was used as a primary measure of interest in subsequent analyses. Employing methods of connectivity analysis and graph theory, an association was found between psilocybin-induced ego-dissolution and decreased functional connectivity between the medial temporal lobe and high-level cortical regions. Ego-dissolution was also associated with a "disintegration" of the salience network and reduced interhemispheric communication. Addressing baseline brain dynamics as a predictor of drug-response, individuals with lower diversity of executive network nodes were more likely to experience ego-dissolution under psilocybin. These results implicate MTL-cortical decoupling, decreased salience network integrity, and reduced inter-hemispheric communication in psilocybin-induced ego disturbance and suggest that the maintenance of "self"or "ego," as a perceptual phenomenon, may rest on the normal functioning of these systems.
Collapse
Affiliation(s)
- Alexander V Lebedev
- Aging Research Center, Karolinska Institutet & Stockholm University, Sweden.,Centre for Age-Related Medicine, Stavanger University Hospital, Norway
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet & Stockholm University, Sweden
| | - Gidon Rosenthal
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, Israel
| | | | - David J Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| | - Robin L Carhart-Harris
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| |
Collapse
|
139
|
Hendricks PS, Thorne CB, Clark CB, Coombs DW, Johnson MW. Classic psychedelic use is associated with reduced psychological distress and suicidality in the United States adult population. J Psychopharmacol 2015; 29:280-8. [PMID: 25586402 DOI: 10.1177/0269881114565653] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mental health problems are endemic across the globe, and suicide, a strong corollary of poor mental health, is a leading cause of death. Classic psychedelic use may occasion lasting improvements in mental health, but the effects of classic psychedelic use on suicidality are unknown. We evaluated the relationships of classic psychedelic use with psychological distress and suicidality among over 190,000 USA adult respondents pooled from the last five available years of the National Survey on Drug Use and Health (2008-2012) while controlling for a range of covariates. Lifetime classic psychedelic use was associated with a significantly reduced odds of past month psychological distress (weighted odds ratio (OR)=0.81 (0.72-0.91)), past year suicidal thinking (weighted OR=0.86 (0.78-0.94)), past year suicidal planning (weighted OR=0.71 (0.54-0.94)), and past year suicide attempt (weighted OR=0.64 (0.46-0.89)), whereas lifetime illicit use of other drugs was largely associated with an increased likelihood of these outcomes. These findings indicate that classic psychedelics may hold promise in the prevention of suicide, supporting the view that classic psychedelics' most highly restricted legal status should be reconsidered to facilitate scientific study, and suggesting that more extensive clinical research with classic psychedelics is warranted.
Collapse
Affiliation(s)
- Peter S Hendricks
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher B Thorne
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Brendan Clark
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David W Coombs
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
140
|
Carhart-Harris RL, Kaelen M, Whalley MG, Bolstridge M, Feilding A, Nutt DJ. LSD enhances suggestibility in healthy volunteers. Psychopharmacology (Berl) 2015; 232:785-94. [PMID: 25242255 DOI: 10.1007/s00213-014-3714-z] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Lysergic acid diethylamide (LSD) has a history of use as a psychotherapeutic aid in the treatment of mood disorders and addiction, and it was also explored as an enhancer of mind control. OBJECTIVES The present study sought to test the effect of LSD on suggestibility in a modern research study. METHODS Ten healthy volunteers were administered with intravenous (i.v.) LSD (40-80 μg) in a within-subject placebo-controlled design. Suggestibility and cued mental imagery were assessed using the Creative Imagination Scale (CIS) and a mental imagery test (MIT). CIS and MIT items were split into two versions (A and B), balanced for 'efficacy' (i.e. A ≈ B) and counterbalanced across conditions (i.e. 50 % completed version 'A' under LSD). The MIT and CIS were issued 110 and 140 min, respectively, post-infusion, corresponding with the peak drug effects. RESULTS Volunteers gave significantly higher ratings for the CIS (p = 0.018), but not the MIT (p = 0.11), after LSD than placebo. The magnitude of suggestibility enhancement under LSD was positively correlated with trait conscientiousness measured at baseline (p = 0.0005). CONCLUSIONS These results imply that the influence of suggestion is enhanced by LSD. Enhanced suggestibility under LSD may have implications for its use as an adjunct to psychotherapy, where suggestibility plays a major role. That cued imagery was unaffected by LSD implies that suggestions must be of a sufficient duration and level of detail to be enhanced by the drug. The results also imply that individuals with high trait conscientiousness are especially sensitive to the suggestibility-enhancing effects of LSD.
Collapse
Affiliation(s)
- R L Carhart-Harris
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK,
| | | | | | | | | | | |
Collapse
|