101
|
In Silico and In Vitro Inhibition of SARS-CoV-2 PL pro with Gramicidin D. Int J Mol Sci 2023; 24:ijms24031955. [PMID: 36768280 PMCID: PMC9915632 DOI: 10.3390/ijms24031955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study's findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.
Collapse
|
102
|
Antifungal and Anti-Inflammatory Activities of PS1-2 Peptide against Fluconazole-Resistant Candida albicans. Antibiotics (Basel) 2022; 11:antibiotics11121779. [PMID: 36551434 PMCID: PMC9774446 DOI: 10.3390/antibiotics11121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Clinically, fungal pneumonia rarely occurs in adults, and invasive fungal infections can cause substantial morbidity, and mortality due to sepsis and septic shock. In the present study, we have designed peptides that exhibit potent antifungal activities against fluconazole-resistant Candida albicans in physiological monovalent, and divalent ionic buffers, with minimal fungicidal concentrations ranging from 16 to 32 µM. None of these tested peptides resulted in the development of drug resistance similar to fluconazole. Among them, the PS1-2 peptide did not induce stimulation of macrophages by C. albicans, and it exerted antifungal and anti-inflammatory effects against C. albicans-induced intratracheal infection, in an acute lung injury mouse model. PS1-2 is likely a novel therapeutic agent for the control, and prevention of drug-resistant C. albicans infection, and our findings may be useful for designing antimicrobial peptides to combat fungal infection.
Collapse
|
103
|
Cruz GS, dos Santos AT, de Brito EHS, Rádis-Baptista G. Cell-Penetrating Antimicrobial Peptides with Anti-Infective Activity against Intracellular Pathogens. Antibiotics (Basel) 2022; 11:1772. [PMID: 36551429 PMCID: PMC9774436 DOI: 10.3390/antibiotics11121772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are natural or engineered peptide sequences with the intrinsic ability to internalize into a diversity of cell types and simultaneously transport hydrophilic molecules and nanomaterials, of which the cellular uptake is often limited. In addition to this primordial activity of cell penetration without membrane disruption, multivalent antimicrobial activity accompanies some CPPs. Antimicrobial peptides (AMPs) with cell-penetrability exert their effect intracellularly, and they are of great interest. CPPs with antimicrobial activity (CPAPs) comprise a particular class of bioactive peptides that arise as promising agents against difficult-to-treat intracellular infections. This short review aims to present the antibacterial, antiparasitic, and antiviral effects of various cell-penetrating antimicrobial peptides currently documented. Examples include the antimicrobial effects of different CPAPs against bacteria that can propagate intracellularly, like Staphylococcus sp., Streptococcus sp., Chlamydia trachomatis, Escherichia coli, Mycobacterium sp., Listeria sp., Salmonella sp. among others. CPAPs with antiviral effects that interfere with the intracellular replication of HIV, hepatitis B, HPV, and herpes virus. Additionally, CPAPs with activity against protozoa of the genera Leishmania, Trypanosoma, and Plasmodium, the etiological agents of Leishmaniasis, Chagas' Disease, and Malaria, respectively. The information provided in this review emphasizes the potential of multivalent CPAPs, with anti-infective properties for application against various intracellular infections. So far, CPAPs bear a promise of druggability for the translational medical use of CPPs alone or in combination with chemotherapeutics. Moreover, CPAPs could be an exciting alternative for pharmaceutical design and treating intracellular infectious diseases.
Collapse
Grants
- CNPq #305316/2021-4 National Council of Research and Development, the Ministry of Science, Technology, and Inno-vation
- CAPES #88882.454432/2019-01 CNPq #401900/2022-3 Improvement of Higher Education Personnel (CAPES), the Ministry of Education and Culture (MEC), the Federal Government of Brazil, and the National Council of Research and Development, the Ministry of Science, Technology (CNPq), and Innovation (MCTI),
Collapse
Affiliation(s)
- Gabriela Silva Cruz
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceara, Fortaleza 60416-030, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| | - Ariane Teixeira dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceara, Fortaleza 60416-030, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| | - Erika Helena Salles de Brito
- Microbiology Laboratory, Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção 62790-970, Brazil
| | - Gandhi Rádis-Baptista
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceara, Fortaleza 60416-030, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| |
Collapse
|
104
|
Talapko J, Včev A, Meštrović T, Pustijanac E, Jukić M, Škrlec I. Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms 2022; 10:2405. [PMID: 36557658 PMCID: PMC9781915 DOI: 10.3390/microorganisms10122405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota, which represent a community of different microorganisms in the human intestinal tract, are crucial to preserving human health by participating in various physiological functions and acting as a metabolic organ. In physiological conditions, microbiota-host partnership exerts homeostatic stability; however, changes in intestinal microbiota composition (dysbiosis) are an important factor in the pathogenesis of inflammatory bowel disease and its two main disease entities: ulcerative colitis and Crohn's disease. The incidence and prevalence of these inflammatory conditions have increased rapidly in the last decade, becoming a significant problem for the healthcare system and a true challenge in finding novel therapeutic solutions. The issue is that, despite numerous studies, the etiopathogenesis of inflammatory bowel disease is not completely clear. Based on current knowledge, chronic intestinal inflammation occurs due to altered intestinal microbiota and environmental factors, as well as a complex interplay between the genetic predisposition of the host and an inappropriate innate and acquired immune response. It is important to note that the development of biological and immunomodulatory therapy has led to significant progress in treating inflammatory bowel disease. Certain lifestyle changes and novel approaches-including fecal microbiota transplantation and nutritional supplementation with probiotics, prebiotics, and synbiotics-have offered solutions for dysbiosis management and paved the way towards restoring a healthy microbiome, with only minimal long-term unfavorable effects.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
105
|
Aróstica M, Rojas R, Aguilar LF, Carvajal-Rondanelli P, Albericio F, Guzmán F, Cárdenas C. Arginine Homopeptide of 11 Residues as a Model of Cell-Penetrating Peptides in the Interaction with Bacterial Membranes. MEMBRANES 2022; 12:1180. [PMID: 36557087 PMCID: PMC9788509 DOI: 10.3390/membranes12121180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Cell-penetrating peptides rich in arginine are good candidates to be considered as antibacterial compounds, since peptides have a lower chance of generating resistance than commonly used antibiotics. Model homopeptides are a useful tool in the study of activity and its correlation with a secondary structure, constituting an initial step in the construction of functional heteropeptides. In this report, the 11-residue arginine homopeptide (R11) was used to determine its antimicrobial activity against Staphylococcus aureus and Escherichia coli and the effect on the secondary structure, caused by the substitution of the arginine residue by the amino acids Ala, Pro, Leu and Trp, using the scanning technique. As a result, most of the substitutions improved the antibacterial activity, and nine peptides were significantly more active than R11 against the two tested bacteria. The cell-penetrating characteristic of the peptides was verified by SYTOX green assay, with no disruption to the bacterial membranes. Regarding the secondary structure in four different media-PBS, TFE, E. coli membrane extracts and DMPG vesicles-the polyproline II structure, the one of the parent R11, was not altered by unique substitutions, although the secondary structure of the peptides was best defined in E. coli membrane extract. This work aimed to shed light on the behavior of the interaction model of penetrating peptides and bacterial membranes to enhance the development of functional heteropeptides.
Collapse
Affiliation(s)
- Mónica Aróstica
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso y Universidad Técnica Federico Santa María, Valparaíso 2373223, Chile
| | - Roberto Rojas
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Los Castaños, 7 Norte 1348, Viña del Mar 2531098, Chile
| | - Luis Felipe Aguilar
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaíso 2373223, Chile
| | - Patricio Carvajal-Rondanelli
- Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Valparaíso 2360100, Chile
| | - Fernando Albericio
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, Martí i Franqués, 1, 08028 Barcelona, Spain
- School of Chemistry, University of KwaZulu-Natal, King Edward Avenue, Scottsville, Durban 4001, South Africa
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaíso 2373223, Chile
| | - Constanza Cárdenas
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaíso 2373223, Chile
| |
Collapse
|