101
|
Pósa V, Stefanelli A, Nunes JHB, Hager S, Mathuber M, May NV, Berger W, Keppler BK, Kowol CR, Enyedy ÉA, Heffeter P. Thiosemicarbazone Derivatives Developed to Overcome COTI-2 Resistance. Cancers (Basel) 2022; 14:4455. [PMID: 36139615 PMCID: PMC9497102 DOI: 10.3390/cancers14184455] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
COTI-2 is currently being evaluated in a phase I clinical trial for the treatment of gynecological and other solid cancers. As a thiosemicarbazone, this compound contains an N,N,S-chelating moiety and is, therefore, expected to bind endogenous metal ions. However, besides zinc, the metal interaction properties of COTI-2 have not been investigated in detail so far. This is unexpected, as we have recently shown that COTI-2 forms stable ternary complexes with copper and glutathione, which renders this drug a substrate for the resistance efflux transporter ABCC1. Herein, the complex formation of COTI-2, two novel terminal N-disubstituted derivatives (COTI-NMe2 and COTI-NMeCy), and the non-substituted analogue (COTI-NH2) with iron, copper, and zinc ions was characterized in detail. Furthermore, their activities against drug-resistant cancer cells was investigated in comparison to COTI-2 and Triapine. These data revealed that, besides zinc, also iron and copper ions need to be considered to play a role in the mode of action and resistance development of these thiosemicarbazones. Moreover, we identified COTI-NMe2 as an interesting new drug candidate with improved anticancer activity and resistance profile.
Collapse
Affiliation(s)
- Vivien Pósa
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Alessia Stefanelli
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Julia H. Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Inorganic Chemistry Department, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-970, SP, Brazil
| | - Sonja Hager
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Christian R. Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Éva A. Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| |
Collapse
|
102
|
Tang S, Zhao L, Wu XB, Wang Z, Cai LY, Pan D, Li Y, Zhou Y, Shen Y. Identification of a Novel Cuproptosis-Related Gene Signature for Prognostic Implication in Head and Neck Squamous Carcinomas. Cancers (Basel) 2022; 14:cancers14163986. [PMID: 36010978 PMCID: PMC9406337 DOI: 10.3390/cancers14163986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Head and neck squamous carcinoma (HNSC) is a common malignancy that requires novel therapeutic targets. Cuproptosis is an emerging research hotspot. The purpose of this study is to mine the cuproptosis-related genes to find prognosis-related genes. We successfully identified a 24-gene signature for predicting overall survival (OS) in HNSC patients and may expand the range of potential targets for treating HNSC. Abstract Head and neck squamous carcinoma (HNSC) is a frequent and deadly malignancy that is challenging to manage. The existing treatment options have considerable efficacy limitations. Hence, the identification of new therapeutic targets and the development of efficacious treatments are urgent needs. Cuproptosis, a non-apoptotic programmed cell death caused by excess copper, has only very recently been discovered. The present study investigated the prognostic importance of genes involved in cuproptosis through the mRNA expression data and related clinical information of HNSC patients downloaded from public databases. Our results revealed that many cuproptosis-related genes were differentially expressed between normal and HNSC tissues in the TCGA cohort. Moreover, 39 differentially expressed genes were associated with the prognosis of HNSC patients. Then, a 24-gene signature was identified in the TCGA cohort utilizing the LASSO Cox regression model. HNSC expression data used for validation were obtained from the GEO database. Consequently, we divided patients into high- and low-risk groups based on the 24-gene signature. Furthermore, we demonstrated that the high-risk group had a worse prognosis when compared to the low-risk group. Additionally, significant differences were found between the two groups in metabolic pathways, immune microenvironment, etc. In conclusion, we found a cuproptosis-related gene signature that can be used effectively to predict OS in HNSC patients. Thus, targeting cuproptosis might be an alternative and promising strategy for HNSC patients.
Collapse
Affiliation(s)
- Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Li Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Xing-Bo Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Lu-Yao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Ying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
- State Institute of Drug/Medical Device Clinical Trial, West China Hospital of Stomatology, Chengdu 610041, China
- Correspondence: (Y.Z.); (Y.S.)
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
- Correspondence: (Y.Z.); (Y.S.)
| |
Collapse
|
103
|
Wang X, Han M, Chen S, Sun Y, Tan R, Huang B. The copper-associated protein STEAP2 correlated with glioma prognosis and immune infiltration. Front Cell Neurosci 2022; 16:944682. [PMID: 36060273 PMCID: PMC9433562 DOI: 10.3389/fncel.2022.944682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
High-grade glioma is characterized by cell heterogeneity, gene mutations, and poor prognosis. Abnormal copper homeostasis affects the pathogenesis of glioma, but the underlying mechanisms and involved proteins are unknown. Here, we selected 90 copper-related proteins and verified their expression differences in glioma and normal tissues in the TCGA cohort followed by GO and KEGG clustering analyses. We then developed and validated a prognostic model. Moreover, we examined the mutation burden of copper-related proteins and discussed the differences in the immune microenvironment in the high- and low-risk groups. Furthermore, we focused on STEAP2 and demonstrated that STEAP2 expression was relatively low in tumor tissues compared to normal tissues, implying a favorable prognosis. Our findings provide a foundation for future research targeting copper-related proteins and their immune microenvironment to improve prognosis and responses to immunotherapy.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Songyu Chen
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- *Correspondence: Ruirong Tan,
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Bin Huang,
| |
Collapse
|
104
|
Li X, Zhou W, Zhu C, Liu J, Ming Z, Ma C, Li Q. Multi-omics analysis reveals prognostic and therapeutic value of cuproptosis-related lncRNAs in oral squamous cell carcinoma. Front Genet 2022; 13:984911. [PMID: 36046246 PMCID: PMC9421074 DOI: 10.3389/fgene.2022.984911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research revealed copper and lncRNA can regulate tumor progression. Additionally, cuproptosis has been proven can cause cell death that may affect the development of tumor. However, there is little research focused on the potential prognostic and therapeutic role of cuproptosis-related lncRNA in OSCC patients.Methods: Data used were for bioinformatics analyses were downloaded from both the TCGA database and GEO database. The R software were used for statistical analysis. Mapping was done using the tool of FigureYa.Results: The signature consist of 7 cuproptosis-related lncRNA was identified through lasso and Cox regression analysis and a nomogram was developed. In addition, we performed genomic analyses including pathway enrichment analysis and mutation analysis between two groups. It was found that OSCC patients were prone to TP53, TTN, FAT1 and NOTCH1 mutations and a difference of mutation analysis between the two groups was significant. Results of TIDE analysis indicating that patients in low risk group were more susceptible to immunotherapy. Accordingly, results of subclass mapping analysis confirmed our findings, which revealed that patients with low riskscore were more likely to respond to immunotherapy.Conclusion: We have successfully identified and validated a novel prognostic signature with a strong independent predictive capacity. And we have found that patients with low riskscore were more susceptible to immunotherapy, especially PD-1 inhibitor therapy.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenbin Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chang Zhu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiechen Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zedong Ming
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Cong Ma
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qing Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- *Correspondence: Qing Li,
| |
Collapse
|
105
|
Falcone E, Ritacca AG, Hager S, Schueffl H, Vileno B, El Khoury Y, Hellwig P, Kowol CR, Heffeter P, Sicilia E, Faller P. Copper-Catalyzed Glutathione Oxidation is Accelerated by the Anticancer Thiosemicarbazone Dp44mT and Further Boosted at Lower pH. J Am Chem Soc 2022; 144:14758-14768. [PMID: 35929814 PMCID: PMC9389589 DOI: 10.1021/jacs.2c05355] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Glutathione (GSH) is the most abundant thiol in mammalian
cells
and plays a crucial role in maintaining redox cellular homeostasis.
The thiols of two GSH molecules can be oxidized to the disulfide GSSG.
The cytosolic GSH/GSSG ratio is very high (>100), and its reduction
can lead to apoptosis or necrosis, which are of interest in cancer
research. CuII ions are very efficient oxidants of thiols,
but with an excess of GSH, CuIn(GS)m clusters are formed, in which CuI is very slowly reoxidized by O2 at pH 7.4 and
even more slowly at lower pH. Here, the aerobic oxidation of GSH by
CuII was investigated at different pH values in the presence
of the anticancer thiosemicarbazone Dp44mT, which accumulates in lysosomes
and induces lysosomal membrane permeabilization in a Cu-dependent
manner. The results showed that CuII-Dp44mT catalyzes GSH
oxidation faster than CuII alone at pH 7.4 and hence accelerates
the production of very reactive hydroxyl radicals. Moreover, GSH oxidation
and hydroxyl radical production by CuII-Dp44mT were accelerated
at the acidic pH found in lysosomes. To decipher this unusually faster
thiol oxidation at lower pH, density functional theory (DFT) calculations,
electrochemical and spectroscopic studies were performed. The results
suggest that the acceleration is due to the protonation of CuII-Dp44mT on the hydrazinic nitrogen, which favors the rate-limiting
reduction step without subsequent dissociation of the CuI intermediate. Furthermore, preliminary biological studies in cell
culture using the proton pump inhibitor bafilomycin A1 indicated that
the lysosomal pH plays a role in the activity of CuII-Dp44mT.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Sonja Hager
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Youssef El Khoury
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
106
|
Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management. Molecules 2022; 27:4708. [PMID: 35897885 PMCID: PMC9329979 DOI: 10.3390/molecules27154708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Huda A. Qari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India;
| | - Abdulhameed F. Alkhateeb
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
107
|
Xu S, Liu D, Chang T, Wen X, Ma S, Sun G, Wang L, Chen S, Xu Y, Zhang H. Cuproptosis-Associated lncRNA Establishes New Prognostic Profile and Predicts Immunotherapy Response in Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:938259. [PMID: 35910212 PMCID: PMC9334800 DOI: 10.3389/fgene.2022.938259] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) accounts for 80% of all kidney cancers and has a poor prognosis. Recent studies have shown that copper-dependent, regulated cell death differs from previously known death mechanisms (apoptosis, ferroptosis, and necroptosis) and is dependent on mitochondrial respiration (Tsvetkov et al., Science, 2022, 375 (6586), 1254–1261). Studies also suggested that targeting cuproptosis may be a novel therapeutic strategy for cancer therapy. In ccRCC, both cuproptosis and lncRNA were critical, but the mechanisms were not fully understood. The aim of our study was to construct a prognostic profile based on cuproptosis-associated lncRNAs to predict the prognosis of ccRCC and to study the immune profile of clear cell renal cell carcinoma (ccRCC). Methods: We downloaded the transcriptional profile and clinical information of ccRCC from The Cancer Genome Atlas (TCGA). Co-expression network analysis, Cox regression method, and least absolute shrinkage and selection operator (LASSO) method were used to identify cuproptosis-associated lncRNAs and to construct a risk prognostic model. In addition, the predictive performance of the model was validated and recognized by an integrated approach. We then also constructed a nomogram to predict the prognosis of ccRCC patients. Differences in biological function were investigated by GO, KEGG, and immunoassay. Immunotherapy response was measured using tumor mutational burden (TMB) and tumor immune dysfunction and rejection (TIDE) scores. Results: We constructed a panel of 10 cuproptosis-associated lncRNAs (HHLA3, H1-10-AS1, PICSAR, LINC02027, SNHG15, SNHG8, LINC00471, EIF1B-AS1, LINC02154, and MINCR) to construct a prognostic prediction model. The Kaplan–Meier and ROC curves showed that the feature had acceptable predictive validity in the TCGA training, test, and complete groups. The cuproptosis-associated lncRNA model had higher diagnostic efficiency compared to other clinical features. The analysis of Immune cell infiltration and ssGSEA further confirmed that predictive features were significantly associated with the immune status of ccRCC patients. Notably, the superimposed effect of patients in the high-risk group and high TMB resulted in shorter survival. In addition, the higher TIDE scores in the high-risk group suggested a poorer outcome for immune checkpoint blockade response in these patients. Conclusion: The ten cuproptosis-related risk profiles for lncRNA may help assess the prognosis and molecular profile of ccRCC patients and improve treatment options, which can be further applied in the clinic.
Collapse
Affiliation(s)
- Shengxian Xu
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Dongze Liu
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Taihao Chang
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Xiaodong Wen
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Shenfei Ma
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Guangyu Sun
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Longbin Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuaiqi Chen
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Hongtuan Zhang
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
- *Correspondence: Hongtuan Zhang,
| |
Collapse
|
108
|
Zhan L, Qian Q, Zhang Y, Qi Z, Zhang L, Fang H, Tang Z, Zhou Y. Copper Functionalized Poly (Acrylic Acid-co-Itaconic Acid) Nanohydrogel: Its Antibacterial Properties on Oral Pathogens and Biocompatibility. Colloids Surf B Biointerfaces 2022; 218:112741. [DOI: 10.1016/j.colsurfb.2022.112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
|
109
|
Downregulated Copper Homeostasis-Related Gene FOXO1 as a Novel Indicator for the Prognosis and Immune Response of Breast Cancer. J Immunol Res 2022; 2022:9140461. [PMID: 35800988 PMCID: PMC9256448 DOI: 10.1155/2022/9140461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Copper (Cu) is one of the essential microelements for all living systems. Studies have illustrated the biological significance of Cu homeostasis in human cancers, including breast cancer (BRCA). Nevertheless, the detailed roles of Cu homeostasis in BRCA need to be further explored. Here, we identified a downregulated Cu homeostasis-related gene FOXO1 and investigated the potential functions of FOXO1 in BRCA through several bioinformation databases. The BRCA patients with high level of FOXO1 displayed favorable prognostic values. Subsequently, enrichment analysis of FOXO1 coexpressed genes revealed that the top three enriched KEGG pathways were spliceosome, oxidative phosphorylation, and ribosome. Immunoinfiltration analysis indicated that aberrantly expressed FOXO1 showed positive correlations with the subcellular infiltration of macrophages and neutrophils in BRCA. Moreover, FOXO1 expression was positively associated with multiple immune checkpoints, such as sialic acid-binding immunoglobulin-like lectin 15 (SIGLEC15), indoleamine 2,3-dioxygenase 1 (IDO1), programmed cell death 1 ligand 1 (PD-L1/CD274), hepatitis A virus cellular receptor 2 (HAVCR2), programmed cell death 1 (PDCD1), cytotoxic T lymphocyte antigen 4 (CTLA4), and programmed cell death 1 ligand 2 (PDCD1LG2). Overall, these findings would deepen our understanding of FOXO1 in BRCA prognosis and immunotherapy response, representing a promising therapeutic strategy for BRCA patients.
Collapse
|
110
|
Pósa V, Hajdu B, Tóth G, Dömötör O, Kowol CR, Keppler BK, Spengler G, Gyurcsik B, Enyedy ÉA. The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J Inorg Biochem 2022; 231:111786. [PMID: 35287037 DOI: 10.1016/j.jinorgbio.2022.111786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022]
Abstract
Thiosemicarbazones are promising candidates for anticancer therapy and their mechanism of action is often linked to their metal chelating ability. In this study, five (thio)semicarbazones with different donor sets (NNS, NNO, ONS, ONO) were selected and their behaviour in aqueous solution, the stability of their copper(II) complexes in addition to their cytotoxicity, DNA-binding, DNA cleavage ability and inhibition of topoisomerase IIα were investigated and compared. We aimed to reveal relationships between the structural variations, the significantly different physico-chemical properties, solution speciation and biological activity. The cytotoxicity of the ligands did not show correlation with the solubility, lipophilicity and permeability; and the decreased activity of the oxygen donor containing compounds was explained by their stronger preference towards chelation of iron(III) over iron(II). Meanwhile, among the copper complexes the most lipophilic species with the highest stability and membrane permeability exhibited the highest cytotoxicity. The studied copper(II) complexes interact with DNA, and reaction with glutathione led to heavy DNA cleavage in the case of the highly stable complexes which could be reduced in a reversible reaction with moderate rate. All the tested copper complexes inhibited topoisomerase IIα, however, this property of the complexes with low stability is most probably linked to the liberated free copper(II).
Collapse
Affiliation(s)
- Vivien Pósa
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Gábor Tóth
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
111
|
Bian Z, Fan R, Xie L. A Novel Cuproptosis-Related Prognostic Gene Signature and Validation of Differential Expression in Clear Cell Renal Cell Carcinoma. Genes (Basel) 2022; 13:genes13050851. [PMID: 35627236 PMCID: PMC9141858 DOI: 10.3390/genes13050851] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cell carcinoma, which is characterized by metabolic reprogramming. Cuproptosis, a novel form of cell death, is highly linked to mitochondrial metabolism and mediated by protein lipoylation. However, the clinical impacts of cuproptosis-related genes (CRGs) in ccRCC largely remain unclear. In the current study, we systematically evaluated the genetic alterations of cuproptosis-related genes in ccRCC. Our results revealed that CDKN2A, DLAT, DLD, FDX1, GLS, PDHA1 and PDHB exhibited differential expression between ccRCC and normal tissues (|log2(fold change)| > 2/3 and p < 0.05). Utilizing an iterative sure independence screening (SIS) method, we separately constructed the prognostic signature of CRGs for predicting the overall survival (OS) and progression-free survival (PFS) in ccRCC patients. The prognostic score of CRGs yielded an area under the curve (AUC) of 0.658 and 0.682 for the prediction of 5-year OS and PFS, respectively. In the Kaplan−Meier survival analysis of OS, a higher risk score of cuproptosis-related gene signature was significantly correlated with worse overall survival (HR = 2.72 (2.01−3.68), log-rank p = 1.76 × 10−7). Patients with a higher risk had a significantly shorter PFS (HR = 2.83 (2.08−3.85), log-rank p = 3.66 × 10−7). Two independent validation datasets (GSE40435 (N = 101), GSE53757 (N = 72)) were collected for meta-analysis, suggesting that CDKN2A (log2(fold change) = 1.46, 95%CI: 1.75−2.35) showed significantly higher expression in ccRCC tissues while DLAT (log2(fold change) = −0.54, 95%CI: −0.93−−0.15) and FDX1 (log2(fold change) = −1.01, 95%CI: −1.61−−0.42) were lowly expressed. The expression of CDKN2A and FDX1 in ccRCC was also significantly associated with immune infiltration levels and programmed cell death protein 1 (PD-1) expression (CDKN2A: r = 0.24, p = 2.14 × 10−8; FDX1: r = −0.17, p = 1.37 × 10−4). In conclusion, the cuproptosis-related gene signature could serve as a potential prognostic predictor for ccRCC patients and may offer novel insights into the cancer treatment.
Collapse
Affiliation(s)
- Zilong Bian
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Correspondence: (Z.B.); (L.X.)
| | - Rong Fan
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Lingmin Xie
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Correspondence: (Z.B.); (L.X.)
| |
Collapse
|
112
|
Sun F, Wang H, Nie J, Hong B. Repurposing disulfiram as a chemo-therapeutic sensitizer: molecular targets and mechanisms. Anticancer Agents Med Chem 2022; 22:2920-2926. [PMID: 35430981 DOI: 10.2174/1871520621666220415102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Currently, chemo-therapy is still the main strategy for cancer treatment. However, chemo-therapy resistance remains its main challenge. Disulfiram [DSF] is a drug approved by FDA for the treatment of alcohol addiction, but it is later discovered that it has the anticancer activity. Importantly, there have been many literatures reporting that DSF can be used as a chemo-therapeutic sensitizer to enhance the anticancer activity of chemo-drugs in a variety of cancers. Furthermore, the combinations of DSF and chemo-drugs have been tested in clinic trials. In the review, we summarized the possible molecular targets and mechanisms of DSF to reverse chemo-resistance. We also further discussed the opportunities and challenges of DSF as a chemo-therapeutic sensitizer. In conclusion, DSF could be a potential repurposed drug to sensitize cancer cells to chemo-therapy in clinic.
Collapse
Affiliation(s)
- Feilong Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
113
|
Rusanov DA, Zou J, Babak MV. Biological Properties of Transition Metal Complexes with Metformin and Its Analogues. Pharmaceuticals (Basel) 2022; 15:ph15040453. [PMID: 35455450 PMCID: PMC9031419 DOI: 10.3390/ph15040453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely prescribed medication for the treatment and management of type 2 diabetes. It belongs to a class of biguanides, which are characterized by a wide range of diverse biological properties, including anticancer, antimicrobial, antimalarial, cardioprotective and other activities. It is known that biguanides serve as excellent N-donor bidentate ligands and readily form complexes with virtually all transition metals. Recent evidence suggests that the mechanism of action of metformin and its analogues is linked to their metal-binding properties. These findings prompted us to summarize the existing data on the synthetic strategies and biological properties of various metal complexes with metformin and its analogues. We demonstrated that coordination of biologically active biguanides to various metal centers often resulted in an improved pharmacological profile, including reduced drug resistance as well as a wider spectrum of activity. In addition, coordination to the redox-active metal centers, such as Au(III), allowed for various activatable strategies, leading to the selective activation of the prodrugs and reduced off-target toxicity.
Collapse
Affiliation(s)
- Daniil A. Rusanov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Laboratory of Medicinal Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Avenue 47, 119991 Moscow, Russia
| | - Jiaying Zou
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Correspondence:
| |
Collapse
|
114
|
Oliveri V. Selective Targeting of Cancer Cells by Copper Ionophores: An Overview. Front Mol Biosci 2022; 9:841814. [PMID: 35309510 PMCID: PMC8931543 DOI: 10.3389/fmolb.2022.841814] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Conventional cancer therapies suffer from severe off-target effects because most of them target critical facets of cells that are generally shared by all rapidly proliferating cells. The development of new therapeutic agents should aim to increase selectivity and therefore reduce side effects. In addition, these agents should overcome cancer cell resistance and target cancer stem cells. Some copper ionophores have shown promise in this direction thanks to an intrinsic selectivity in preferentially inducing cuproptosis of cancer cells compared to normal cells. Here, Cu ionophores are discussed with a focus on selectivity towards cancer cells and on the mechanisms responsible for this selectivity. The proposed strategies, to further improve the targeting of cancer cells by copper ionophores, are also reported.
Collapse
|
115
|
Aloysius Dhivya M, Sulochana KN, Devi SRB. High glucose induced inflammation is inhibited by copper chelation via rescuing mitochondrial fusion protein 2 in retinal pigment epithelial cells. Cell Signal 2022; 92:110244. [PMID: 34999205 DOI: 10.1016/j.cellsig.2022.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Altered trace element homeostasis is associated with diabetic complications, and studies have shown elevated copper levels in the serum of individuals with type 1 & 2 diabetes. Copper chelation has been shown to be beneficial by preventing or reversing diabetic organ damage and developing as a new treatment strategy for treating diabetic complications. Diabetic retinopathy is the major vision-threatening complication of diabetes. Recent studies have reported copper to be elevated in the serum of patients with diabetic retinopathy. Here in this study, we attempt to unravel the role of copper chelator penicillamine in retinal pigment epithelial cells exposed to high glucose (HG) and copper as a model for diabetic retinopathy. We have found that high glucose by itself and along with copper alters the mitochondrial morphology, reduces the expression of the mitochondrial fusion protein 2 (MFN2), and induces endoplasmic reticulum (ER) stress and inflammation. Copper chelation with penicillamine reduced all these changes in mitochondria, thereby rescuing the cells from mitochondrial damage and inflammation.
Collapse
Affiliation(s)
- M Aloysius Dhivya
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India; Sastra University, Trichy - Tanjore Road, Thirumalaisamudram, Thanjavur, Tamil Nadu 613401, India
| | - K N Sulochana
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India
| | - S R Bharathi Devi
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India.
| |
Collapse
|
116
|
Shurygina IA, Prozorova GF, Trukhan IS, Korzhova SA, Dremina NN, Emel’yanov AI, Say OV, Kuznetsova NP, Pozdnyakov AS, Shurygin MG. Evaluation of the Safety and Toxicity of the Original Copper Nanocomposite Based on Poly-N-vinylimidazole. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:16. [PMID: 35009966 PMCID: PMC8746882 DOI: 10.3390/nano12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
A new original copper nanocomposite based on poly-N-vinylimidazole was synthesized and characterized by a complex of modern physicochemical and biological methods. The low cytotoxicity of the copper nanocomposite in relation to the cultured hepatocyte cells was found. The possibility to involve the copper from the nanocomposite in the functioning of the copper-dependent enzyme systems was evaluated during the incubation of the hepatocyte culture with this nanocomposite introduced to the nutrient medium. The synthesized new water-soluble copper-containing nanocomposite is promising for biotechnological and biomedical research as a new non-toxic hydrophilic preparation that is allowed to regulate the work of key enzymes involved in energy metabolism and antioxidant protection as well as potentially serving as an additional source of copper.
Collapse
Affiliation(s)
- Irina A. Shurygina
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia; (I.S.T.); (N.N.D.); (O.V.S.); (M.G.S.)
| | - Galina F. Prozorova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; (G.F.P.); (S.A.K.); (A.I.E.); (N.P.K.); (A.S.P.)
| | - Irina S. Trukhan
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia; (I.S.T.); (N.N.D.); (O.V.S.); (M.G.S.)
| | - Svetlana A. Korzhova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; (G.F.P.); (S.A.K.); (A.I.E.); (N.P.K.); (A.S.P.)
| | - Nataliya N. Dremina
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia; (I.S.T.); (N.N.D.); (O.V.S.); (M.G.S.)
| | - Artem I. Emel’yanov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; (G.F.P.); (S.A.K.); (A.I.E.); (N.P.K.); (A.S.P.)
| | - Olesya V. Say
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia; (I.S.T.); (N.N.D.); (O.V.S.); (M.G.S.)
| | - Nadezhda P. Kuznetsova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; (G.F.P.); (S.A.K.); (A.I.E.); (N.P.K.); (A.S.P.)
| | - Alexander S. Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; (G.F.P.); (S.A.K.); (A.I.E.); (N.P.K.); (A.S.P.)
| | - Michael G. Shurygin
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia; (I.S.T.); (N.N.D.); (O.V.S.); (M.G.S.)
| |
Collapse
|