101
|
Piro G, Carbone C, Santoro R, Tortora G, Melisi D. Predictive biomarkers for the treatment of resectable esophageal and esophago-gastric junction adenocarcinoma: from hypothesis generation to clinical validation. Expert Rev Mol Diagn 2018; 18:357-370. [PMID: 29544370 DOI: 10.1080/14737159.2018.1454312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Esophageal and esophago-gastric junction (EGJ) adenocarcinomas remain a major health problem worldwide with a worryingly increasing incidence. Recent trials indicate survivals benefit for preoperative or perioperative chemoradiotherapy compared to surgery alone. Beside standard chemoradiotherapy regimens, new therapeutic approaches with targeted therapies have been proposed for the treatment of resectable disease. However, clinical outcomes remain extremely poor due to drug resistance phenomena. The failure of these approaches could be partially ascribed to their incorrect application in patients. Therefore, the identification of strong biomarkers for optimal patient management is urgently needed. Areas covered: This review aims to summarize and critically discuss the most relevant findings regarding predictive biomarker development for neoadjuvant treatment of resectable esophageal and esophago-gastric junction adenocarcinoma patients. Expert commentary: Optimizing the currently available therapeutic modalities through a more accurate selection of patients may avoid the use of ineffective and potentially toxic treatments. During the last decade, the advent of high-throughput '-omics' technologies has set the basis for a new biomarker discovery approach from 'molecule by molecule' screening towards a large-scale systematic screening process with exponential increases in putative biomarkers, which often failed to provide adequate clinical validation.
Collapse
Affiliation(s)
- Geny Piro
- a Digestive Molecular Clinical Oncology Research Unit, Department of Medicine , Università degli studi di Verona , Verona , Italy.,b Laboratory of Oncology and Molecular Therapy, Department of Medicine , Università degli studi di Verona , Verona , Italy.,d Comprehensive Cancer Centre , Azienda Ospedaliera Universitaria Integrata , Verona , Italy
| | - Carmine Carbone
- a Digestive Molecular Clinical Oncology Research Unit, Department of Medicine , Università degli studi di Verona , Verona , Italy.,d Comprehensive Cancer Centre , Azienda Ospedaliera Universitaria Integrata , Verona , Italy
| | - Raffaela Santoro
- a Digestive Molecular Clinical Oncology Research Unit, Department of Medicine , Università degli studi di Verona , Verona , Italy.,d Comprehensive Cancer Centre , Azienda Ospedaliera Universitaria Integrata , Verona , Italy
| | - Giampaolo Tortora
- b Laboratory of Oncology and Molecular Therapy, Department of Medicine , Università degli studi di Verona , Verona , Italy.,c Medical Oncology Unit , Azienda Ospedaliera Universitaria Integrata , Verona , Italy.,d Comprehensive Cancer Centre , Azienda Ospedaliera Universitaria Integrata , Verona , Italy
| | - Davide Melisi
- a Digestive Molecular Clinical Oncology Research Unit, Department of Medicine , Università degli studi di Verona , Verona , Italy.,c Medical Oncology Unit , Azienda Ospedaliera Universitaria Integrata , Verona , Italy.,d Comprehensive Cancer Centre , Azienda Ospedaliera Universitaria Integrata , Verona , Italy
| |
Collapse
|
102
|
Li W, Jiang Z, Xiao X, Wang Z, Wu Z, Ma Q, Cao L. Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-κB pathway in pancreatic cancer cells. Int J Oncol 2018; 52:1593-1602. [PMID: 29512729 DOI: 10.3892/ijo.2018.4295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
Curcumin is a natural polyphenol compound derived from turmeric. It possesses multiple pharmacological properties, including antioxidant, anti-inflammatory and anti-tumor progression properties. Our recent study demonstrated that superoxide dismutase (SOD)-dependent production of hydrogen peroxide (H2O2) promoted the invasive and migratory activity of pancreatic cancer cells. However, whether curcumin suppresses SOD-induced cancer progression and the related mechanisms remains unclear. Since epithelial‑to-mesenchymal transition (EMT) plays a key role in tumor metastasis, the aim of the present study was to examine whether curcumin intervenes with SOD-induced EMT in pancreatic cancer and the underlying mechanism. The human pancreatic cancer cells BxPC-3 and Panc-1 were exposed to SOD in the presence or absence of curcumin, catalase (CAT, a scavenger of H2O2), or LY 294002 [a phosphoinositide-3 kinase (PI3K) inhibitor]. Intracellular reactive oxygen species (ROS) and H2O2 were evaluated by 2,7-dichlorodihydrofluorecein diacetate and H2O2 assay, respectively. The activation of p-Akt and p-nuclear factor (NF)-κB were examined by western blotting. The migratory and invasive abilities of pancreatic cancer cells were tested by the wound healing and Transwell invasion assays. The expression of E-cadherin, N-cadherin and vimentin (EMT-related genes) were measured by reverse transcription-quantitative polymerase chain reaction and western blotting at the mRNA and protein levels, respectively. The findings of the present study demonstrated that curcumin decreased SOD-induced production of ROS and H2O2 in BxPC-3 and Panc-1 cells. Curcumin was able to suppress SOD-induced invasion and migration, and it also regulated the expression of the above‑mentioned EMT-related genes and cell morphology. SOD-induced cell invasion was also inhibited by catalase and LY 294002. Furthermore, the levels of p-Akt and p-NF-κB caused by SOD could be offset by treatment with curcumin and LY 294002. To summarize, these results demonstrated that curcumin was able to prevent SOD-driven H2O2-induced pancreatic cancer metastasis by blocking the PI3K/Akt/NF-κB signaling pathway. The use of curcumin to inhibit the H2O2/Akt/NF-κB axis may be a promising therapeutic approach to the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhengdong Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
103
|
Roche J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers (Basel) 2018; 10:cancers10020052. [PMID: 29462906 PMCID: PMC5836084 DOI: 10.3390/cancers10020052] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) occurs during normal embryonic development, tissue regeneration, organ fibrosis, and wound healing.[...].
Collapse
Affiliation(s)
- Joëlle Roche
- Université de Poitiers, UMR-CNRS 7267, Laboratoire EBI, SEVE, F-86073 Poitiers, France.
| |
Collapse
|
104
|
Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer. Int J Mol Sci 2018; 19:ijms19020431. [PMID: 29389861 PMCID: PMC5855653 DOI: 10.3390/ijms19020431] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022] Open
Abstract
Altered expression of secreted factors by tumor cells or cells of the tumor microenvironment is a key event in cancer development and progression. In the last decade, emerging evidences supported the autocrine and paracrine activity of the members of the Angiopoietin-like (ANGPTL) protein family in angiogenesis, inflammation and in the regulation of different steps of carcinogenesis and metastasis development. Thus, ANGPTL proteins become attractive either as prognostic or predictive biomarkers, or as novel target for cancer treatment. Here, we outline the current knowledge about the functions of the ANGPTL proteins in angiogenesis, cancer progression and metastasis. Moreover, we discuss the most recent evidences sustaining their role as prognostic or predictive biomarkers for cancer therapy. Although the role of ANGPTL proteins in cancer has not been fully elucidated, increasing evidence suggest their key effects in the proliferative and invasive properties of cancer cells. Moreover, given the common overexpression of ANGPTL proteins in several aggressive solid tumors, and their role in tumor cells and cells of the tumor microenvironment, the field of research about ANGPTL proteins network may highlight new potential targets for the development of future therapeutic strategies.
Collapse
|
105
|
Jia L, Tian Y, Chen Y, Zhang G. The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway. Onco Targets Ther 2018; 11:313-321. [PMID: 29391808 PMCID: PMC5769571 DOI: 10.2147/ott.s154339] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction Temozolomide (TMZ) is commonly used for glioma chemotherapy. However, TMZ resistance limits the therapeutic effect of TMZ in glioma treatment. LncRNA-H19 acts as an oncogenic LncRNA in some types of cancers and has been reported to be up-regulated in glioma. Materials and methods In our present study, we established TMZ-resistant glioma cells (U-251TMZ and M059JTMZ) to explore the effect of H19 on the chemoresistance of glioma cells. Results We observed that the expression of H19 was significantly increased in U-251TMZ and M059JTMZ cells. Knockdown of H19 expression using specific shRNA in U-251TMZ and M059JTMZ led to decreased half maximal inhibitory concentration (IC50) values for TMZ and increased cell apoptosis rates, indicating that the silencing of H19 decreased chemoresistance of glioma cells to TMZ. In addition, silencing of H19 suppressed epithelial-mesenchymal transition (EMT) by increasing the expression of epithelial marker E-cadherin and decreasing the expression of mesenchymal marker Vimentin and ZEB1. Moreover, inducing EMT by TGF-β1 treatment led to increased IC50 values for TMZ and decreased cell apoptosis rates compared with TMZ+H19 shRNA group, suggesting that the induction of EMT counteracted the inhibitory effect of H19 shRNA on chemoresistance of glioma cells to TMZ. Furthermore, the reduced expression of H19 down-regulated the expression of β-Catenin and its downstream targets c-myc and Survivin in TMZ-treated glioma cells. Activation of Wnt/β-Catenin pathway by Licl treatment promoted EMT and enhanced chemoresistance to TMZ compared with TMZ+H19 shRNA group. Conclusion Taken together, our data suggest that H19 decreased chemoresistance of glioma cells to TMZ by suppressing EMT via the inhibition of Wnt/β-Catenin pathway. Our study might represent a novel therapeutic target for TMZ-resistant glioma.
Collapse
Affiliation(s)
- Linwei Jia
- Department of Neurosurgery, CangZhou Central Hospital, Hebei, China
| | - Yaohui Tian
- Department of Neurosurgery, CangZhou Central Hospital, Hebei, China
| | - Yonghan Chen
- Department of Neurosurgery, CangZhou Central Hospital, Hebei, China
| | - Gang Zhang
- Department of Neurosurgery, CangZhou Central Hospital, Hebei, China
| |
Collapse
|
106
|
Ansari D, Friess H, Bauden M, Samnegård J, Andersson R. Pancreatic cancer: disease dynamics, tumor biology and the role of the microenvironment. Oncotarget 2018; 9:6644-6651. [PMID: 29464100 PMCID: PMC5814240 DOI: 10.18632/oncotarget.24019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is known for its propensity to metastasize. Recent studies have challenged the commonly held belief that pancreatic cancer is a stepwise process, where tumor cells disseminate late in primary tumor development. Instead it has been suggested that pancreatic tumor cells may disseminate early and develop independently and in parallel to the primary tumor. Circulating tumor cells can be found in most patients with pancreatic cancer, even in those with localized stage. Also, recent phylogenetic analyses have revealed evidence for a branched evolution where metastatic lineages can develop early in tumor development. In this Review, we discuss current models of pancreatic cancer progression and the importance of the tumor microenvironment, in order to better understand the recalcitrant nature of this disease.
Collapse
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Helmut Friess
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johan Samnegård
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|