101
|
Ordaz‐Rodríguez SB, Abadía‐García L, Huerta‐Manzanilla EL, Mendoza‐Sánchez M. Ultrasound‐assisted extraction of pomegranate peel antioxidants: a green process to obtain a meat preservative. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Silvia Betzabe Ordaz‐Rodríguez
- Research and Graduate Studies in Engineering, Faculty of Engineering Autonomous University of Queretaro C.U., Cerro de las Campanas, S/N. Queretaro, Queretaro.76010 Mexico
| | - Lucía Abadía‐García
- Research and Graduate Studies in Food Science and Technology, Faculty of Chemistry Autonomous University of Queretaro C.U., Cerro de las Campanas, S/N. Queretaro, Queretaro.76010 Mexico
| | - Eric Leonardo Huerta‐Manzanilla
- Research and Graduate Studies in Engineering, Faculty of Engineering Autonomous University of Queretaro C.U., Cerro de las Campanas, S/N. Queretaro, Queretaro.76010 Mexico
| | - Magdalena Mendoza‐Sánchez
- Research and Graduate Studies in Engineering, Faculty of Engineering Autonomous University of Queretaro C.U., Cerro de las Campanas, S/N. Queretaro, Queretaro.76010 Mexico
| |
Collapse
|
102
|
Jahan K, Ashfaq A, Younis K, Yousuf O, Islam RU. A review of the effects of ultrasound-assisted extraction factors on plant protein yield and functional properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
103
|
Javed M, Belwal T, Ruyuan Z, Xu Y, Li L, Luo Z. Optimization and Mechanism of Phytochemicals Extraction from Camellia Oleifera Shells Using Novel Biosurfactant Nanobubbles Solution Coupled with Ultrasonication. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
104
|
Yusof NSM, Anandan S, Sivashanmugam P, Flores EMM, Ashokkumar M. A correlation between cavitation bubble temperature, sonoluminescence and interfacial chemistry - A minireview. ULTRASONICS SONOCHEMISTRY 2022; 85:105988. [PMID: 35344863 PMCID: PMC8960979 DOI: 10.1016/j.ultsonch.2022.105988] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 05/20/2023]
Abstract
Ultrasound induced cavitation (acoustic cavitation) process is found useful in various applications. Scientists from various disciplines have been exploring the fundamental aspects of acoustic cavitation processes over several decades. It is well documented that extreme localised temperature and pressure conditions are generated when a cavitation bubble collapses. Several experimental techniques have also been developed to estimate cavitation bubble temperatures. Depending upon specific experimental conditions, light emission from cavitation bubbles is observed, referred to as sonoluminescence. Sonoluminescence studies have been used to develop a fundamental understanding of cavitation processes in single and multibubble systems. This minireview aims to provide some highlights on the development of basic understandings of acoustic cavitation processes using cavitation bubble temperature, sonoluminescence and interfacial chemistry over the past 2-3 decades.
Collapse
Affiliation(s)
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Trichy 620015, India
| | - Palani Sivashanmugam
- Department of Chemical Engineering, National Institute of Technology, Trichy 620015, India
| | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
105
|
Guzmán-Gerónimo RI, Ayala-Tirado RC, Mendoza-López R, Cocotle-Ronzón Y, Herrera-Meza MDS. A novel mayonnaise-type dressing added with avocado pulp and oil as health ingredients processed with ultrasound. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2051606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rosa Isela Guzmán-Gerónimo
- Laboratorio de Innovación de Alimentos, Instituto de Ciencias Básicas, Universidad Veracruzana, Xalapa, México
| | | | | | - Yolanda Cocotle-Ronzón
- Facultad de Ciencias Químicas, Universidad Veracruzana, Zona Universitaria, Xalapa, México
| | | |
Collapse
|
106
|
Yıldız G, Yildiz G, Rafiq Khan M, Aadil RM. High intensity ultrasound treatment to produce and preserve the quality of fresh‐cut kiwifruit. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gökçen Yıldız
- Bursa Technical University Faculty of Engineering and Natural Sciences, Food Engineering Department Bursa Turkey
| | - Gulcin Yildiz
- Igdir University Faculty of Engineering, Food Engineering Department, Iğdır, 76000 Turkey
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| |
Collapse
|
107
|
Dey G, Ghosh A, Tangirala RK. “Technological convergence” of preventive nutrition with non‐thermal processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gargi Dey
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
- GUT LEBEN INC. San Diego California USA
| | - Annesha Ghosh
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
| | - Rajendra K Tangirala
- GUT LEBEN INC. San Diego California USA
- Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
108
|
Surjit Singh CK, Lim HP, Yen-Pin Khoo J, Tey BT, Chan ES. Effects of high-energy emulsification methods and environmental stresses on emulsion stability and retention of tocotrienols encapsulated in Pickering emulsions. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
109
|
Suo G, Zhou C, Su W, Hu X. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. ULTRASONICS SONOCHEMISTRY 2022; 84:105974. [PMID: 35288328 PMCID: PMC8921491 DOI: 10.1016/j.ultsonch.2022.105974] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 05/16/2023]
Abstract
Freshly squeezed pumpkin juice (Cucurbita moschata D.) was sonicated at various power levels at a constant frequency of 25 kHz and a treatment time of 10 min. Samples were stored in the dark for 0, 4, 8, and 12 days at 4 °C and were subsequently analyzed. The combined effects of power level and storage period on color parameters, carotenoid content, particle size distribution, cloud value, rheological characteristics, and microstructure were investigated. The results showed ultrasonic-treated samples had little effect on carotenoid content, cloud value, particle size distribution, and polydispersity during storage compared to those of the untreated samples. The L⁎, a⁎, b⁎, and C* values decreased significantly during 8-12 days of storage, resulting in a significant increase in ΔE, especially 400 W/10 min-treated samples. Meanwhile, the enzyme activity and rheological properties increased significantly on storage days 8-12. However, the microstructure of all samples did not change significantly during storage. Based on these results, during the storage period, the physical and chemical properties of 400 W/10 min-ultrasonic treated pumpkin juice were retained more than those in the untreated pumpkin juice. Therefore, ultrasonic treatment has broad application prospects in preserving bioactive substances and physicochemical properties and improving the storage life of fresh pumpkin juice.
Collapse
Affiliation(s)
- Guanwen Suo
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Chunli Zhou
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China.
| | - Wei Su
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Xueyan Hu
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| |
Collapse
|
110
|
A Review on the Commonly Used Methods for Analysis of Physical Properties of Food Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chemical composition of any food material can be analyzed well by employing various analytical techniques. The physical properties of food are no less important than chemical composition as results obtained from authentic measurement data are able to provide detailed information about the food. Several techniques have been used for years for this purpose but most of them are destructive in nature. The aim of this present study is to identify the emerging techniques that have been used by different researchers for the analysis of the physical characteristics of food. It is highly recommended to practice novel methods as these are non-destructive, extremely sophisticated, and provide results closer to true quantitative values. The physical properties are classified into different groups based on their characteristics. The concise view of conventional techniques mostly used to analyze food material are documented in this work.
Collapse
|
111
|
Simultaneous Optimization of Extraction Yield, Phenolic Compounds and Antioxidant Activity of Moroccan Propolis Extracts: Improvement of Ultrasound-Assisted Technique Using Response Surface Methodology. Processes (Basel) 2022. [DOI: 10.3390/pr10020297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Propolis has given rise to refreshing interest in recent years in the field of conventional medicine. Its extraction represents an important process that requires optimal conditions, which strongly affect the yield of extraction, total polyphenols, flavonoid content, and radical scavenging capacity markers. The objective of the present study was to optimize the ultrasound-assisted extraction conditions of Moroccan propolis. The studied responses were the extraction yield, total polyphenols, flavonoid contents (TPC, TFC), and antioxidant activity of the extract evaluated by DPPH-IC50 and FRAP-EC50 assays. The response surface methodology (RSM) and specifically the Box–Behnken design (BBD) were used, taking into account three variables: sonication time (min), solvent/propolis ratio (mL/g), and ethanol concentration (%). After the realization of experiments and data analysis, optimal response values were 15.39%, 192 mg GAE/g of propolis,45.15 mg QEq/g, 29.8 µg/mL, and 128.3 µmol Fe2+/g for extraction yield, TPC, TFC, DPPH-IC50, and FRAP-EC50, respectively. Besides, optimal ultrasound extraction conditions were 15 min for sonication time, 30 mL/g for solvent/propolis ratio, and 40% for ethanol concentration. All obtained experimental values were in good agreement with the predicted values, suggesting that using an experimental design in the ultrasound-assisted extraction process and optimization was prudently chosen.
Collapse
|
112
|
|
113
|
Xu B, Sylvain Tiliwa E, Yan W, Roknul Azam S, Wei B, Zhou C, Ma H, Bhandari B. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Res Int 2022; 152:110744. [DOI: 10.1016/j.foodres.2021.110744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023]
|
114
|
Noonim P, Venkatachalam K. Combination of salicylic acid and ultrasonication for alleviating chilling injury symptoms of longkong. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Objectives
Chilling injury is a prominent physiological disorder in longkong fruit pericarp when stored under 13 °C for a prolonged period. This study aimed to investigate the effects of individual salicylic acid (SA) and ultrasonication (US) treatments and of the combination salicylic acid and ultrasonication (SA-US) on alleviating the chilling injury symptoms in longkong fruit pericarp when in prolonged cold storage.
Materials and methods
SA (1 mmol/L) and US (40 kHz, 10 min at 90% amplitude, 350 W) were used as individual and combined (SA-US) treatments to control the chilling injury in longkong pericarp. The various quality measures were checked every 2 days in longkong for up to 18 days of cold storage (13 °C, 90% relative humidity).
Results
The results revealed that the control fruits treated with water exhibited severe chilling injury symptoms followed in rank order by US, SA, and SA-US cases. Treatments such as US and SA alone were more effective in controlling chilling injuries than control, while only minimal significant differences were noticed between them. On the other hand, the longkong pericarp treated with the SA-US combination had significantly increased antioxidant enzyme (superoxide dismutase and catalase) activities and decreased levels of membrane lytic (phospholipase D and lipoxygenase) enzymes and browning-inducing enzymes (phenylalanine ammonia lyase and polyphenol oxidase). Consequently, in the longkong pericarp, the chilling injury index, electrolytic leakage, respiration rate, weight loss, firmness, malondialdehyde content, changes in unsaturated and saturated fatty acid contents, and reactive oxygen species were significantly controlled by this treatment.
Conclusions
The present study concludes that longkong fruit treatment with a combination of US and SA is an excellent alternative for controlling the chilling injury symptoms and extending the shelf-life.
Collapse
Affiliation(s)
- Paramee Noonim
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang, Surat Thani, Thailand
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang, Surat Thani, Thailand
| |
Collapse
|
115
|
Ultrasound and Its Combination with Natural Antimicrobials: Effects on Shelf Life and Quality Stability of a Fruit and Vegetable Smoothie. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02745-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
116
|
Tsikrika K, Chu B, Bremner DH, Lemos MA. Effect of Ultrasonic Treatment on Enzyme Activity and Bioactives of Strawberry Puree. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Konstantina Tsikrika
- Division of Engineering and Food Sciences School of Applied Sciences Abertay University Bell Street Dundee DD1 1HG UK
| | - Boon‐Seang Chu
- Division of Engineering and Food Sciences School of Applied Sciences Abertay University Bell Street Dundee DD1 1HG UK
| | - David H. Bremner
- Division of Engineering and Food Sciences School of Applied Sciences Abertay University Bell Street Dundee DD1 1HG UK
| | - M. Adilia Lemos
- Division of Engineering and Food Sciences School of Applied Sciences Abertay University Bell Street Dundee DD1 1HG UK
| |
Collapse
|
117
|
Chavan P, Sharma P, Sharma SR, Mittal TC, Jaiswal AK. Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods 2022; 11:122. [PMID: 35010248 PMCID: PMC8750622 DOI: 10.3390/foods11010122] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology's benefits and downsides. The breadth of ultrasound's application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.
Collapse
Affiliation(s)
- Prasad Chavan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144402, India;
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Pallavi Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Sajeev Rattan Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Tarsem Chand Mittal
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin—City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
118
|
Crespo A, Jiménez A, Ruiz-Moyano S, Merchán AV, Galván AI, Benito MJ, Martín A. Low-frequency ultrasound as a tool for quality control of soft-bodied raw ewe's milk cheeses. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
119
|
Pacheappan GD, Samsudin NIP, Hasan H. The effects of different disinfectants and application conditions on microbial contaminants at dairy processing line. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganga Dewi Pacheappan
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
- Laboratory of Food Safety and Food Integrity Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia Serdang Malaysia
| | - Hanan Hasan
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
- Laboratory of Halal Science Research Halal Products Research Institute Universiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
120
|
Abstract
Growing demands for green and sustainable processing that eliminates the utilization of toxic chemicals and increases efficiency has encouraged the application of novel extraction technologies for the food industry. This review discusses the principles and potential application of several green technology for gelatin extraction. Several novel technologies and their processing efficiency are discussed in this review. Furthermore, factors that affect the quality of the gelatin produced from different sources are also highlighted. The potential application of ultrasound-assisted extraction (UAE), subcritical water extraction, high-pressure processing, and microwave-assisted extraction (MAE) to improve gelatin extraction are addressed. These technologies have the potential to become an efficient extraction method compared to the conventional extraction technologies. Several combinations of green and conventional technologies have been reported to yield promising results. These combinations, especially using conventional pre-treatment and green technologies for extraction, have been found to be more effective in producing gelatin. Since gelatin could be produced from various sources, it exhibits different characteristics; thus, different approaches and extraction method should be identified for specific types of gelatin. Although these technologies have limitations, such as overhydration and sophisticated systems explicitly designed for large-scale production, they are nonetheless more efficient in the long run to safeguard the environment as they reduce solvent usage and carbon footprint along the way.
Collapse
|
121
|
Shin Low S, Nong Lim C, Yew M, Siong Chai W, Low LE, Manickam S, Ti Tey B, Show PL. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. ULTRASONICS SONOCHEMISTRY 2021; 80:105805. [PMID: 34706321 PMCID: PMC8555278 DOI: 10.1016/j.ultsonch.2021.105805] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.
Collapse
Affiliation(s)
- Sze Shin Low
- Continental-NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Chang Nong Lim
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Maxine Yew
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong, China
| | - Liang Ee Low
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Beng Ti Tey
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
122
|
Ahmad N, Zuo Y, Anwar F, Abbas A, Shahid M, Hassan AA, Bilal M, Rasheed T. Ultrasonic-assisted extraction as a green route for hydrolysis of bound phenolics in selected wild fruits: Detection and systematic characterization using GC–MS–TIC method. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
123
|
da Silva RG, Fischer TE, Zardo DM, Los PR, Demiate IM, Nogueira A, Alberti A. Technological potential of the use of ultrasound and freeze concentration in Fuyu persimmon juice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rafaela Gomes da Silva
- Graduate Programme in Food Science and Technology State University of Ponta Grossa Ponta Grossa Brazil
| | - Thaís Estéfane Fischer
- Graduate Programme in Food Science and Technology State University of Ponta Grossa Ponta Grossa Brazil
| | - Danianni Marinho Zardo
- Graduate Programme in Food Science and Technology State University of Ponta Grossa Ponta Grossa Brazil
| | - Paulo Ricardo Los
- Graduate Programme in Food Science and Technology State University of Ponta Grossa Ponta Grossa Brazil
| | - Ivo Mottin Demiate
- Graduate Programme in Food Science and Technology State University of Ponta Grossa Ponta Grossa Brazil
| | - Alessandro Nogueira
- Graduate Programme in Food Science and Technology State University of Ponta Grossa Ponta Grossa Brazil
| | - Aline Alberti
- Graduate Programme in Food Science and Technology State University of Ponta Grossa Ponta Grossa Brazil
| |
Collapse
|
124
|
Soro AB, Oliveira M, O'Donnell CP, Tiwari BK. Ultrasound assisted modulation of yeast growth and inactivation kinetics. ULTRASONICS SONOCHEMISTRY 2021; 80:105819. [PMID: 34768062 PMCID: PMC8591419 DOI: 10.1016/j.ultsonch.2021.105819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The yeast Saccharomyces cerevisiae is well known for its application in the food industry for the purpose of developing fermented food. The ultrasound (US) technology offer a wide range of applications for the food industry, including the enhancement of fermentation rates and inactivation of microbial cells. However, a better understanding and standardization of this technology is still required to ensure the scaling-up process. This study investigated the effect of the US technology on the growth of S. cerevisiae using frequencies of 20, 25, 45 and 130 kHz, treatment periods from 2 to 30 min. Furthermore, yeast kinetics subjected to US treatments were evaluated using modelling tools and scanning electron microscopy (SEM) analysis to explore the impact of sonication on yeast cells. Yeast growth was monitored after different US treatments plotting optical density (OD) at 660 nm for 24 h at 30 ⁰C. Growth curves were fitted using models of modified Gompertz and Scale-Free which showed good parameters of the fit. In particular, US frequencies of 45 and 130 kHz did not have a disruptive effect in lag phase and growth rate of the yeast populations, unlike the frequency of 20 kHz. Moreover, inactivation curves of yeast cells obtained after exposure to 20 and 25 kHz also observed the best fit using the Weibull model. US frequency of 20 kHz achieved significant reductions of 1.3 log cfu/mL in yeast concentration and also induced important cell damage on the external structures of S. cerevisiae. In conclusion, the present study demonstrated the significant effect of applying different US frequencies on the yeast growth for potential application in the food industry.
Collapse
Affiliation(s)
- Arturo B Soro
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Márcia Oliveira
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Colm P O'Donnell
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
125
|
Xu B, Azam SMR, Feng M, Wu B, Yan W, Zhou C, Ma H. Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. ULTRASONICS SONOCHEMISTRY 2021; 81:105855. [PMID: 34871910 PMCID: PMC8649895 DOI: 10.1016/j.ultsonch.2021.105855] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Ultrasound as an eco-friendly green technology has been widely studied in food processing. Nevertheless, there is a lack of publications regarding the application of ultrasound in food processing using large-scale reactors. In this paper, the mechanisms and the devices of multi-frequency power ultrasound (MFPU) are described. Moreover, the MFPU applied in enzymolysis of protein, and washing of fruits and vegetables are reviewed. The application of MFPU can improve the enzymolysis of protein through modification on enzyme, modification on substrate materials, and facilitation of the enzymatic hydrolysis process. The ultrasound treatment can enhance the removal of microorganisms, and pesticides on the surface of fruits and vegetables. Furthermore, the reactors of ultrasound-assisted enzymolysis of protein, and washing of fruits and vegetables on the industrial scale are also detailed. This review paper also considers future trends, limitations, drawbacks, and developments of ultrasound application in enzymolysis and washing.
Collapse
Affiliation(s)
- Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - S M Roknul Azam
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Min Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bengang Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Weiqiang Yan
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
126
|
Das S, Nadar SS, Rathod VK. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int J Biol Macromol 2021; 191:899-917. [PMID: 34534588 DOI: 10.1016/j.ijbiomac.2021.09.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Conventional methods of extracting bioactive molecules are gradually losing pace due to their numerous disadvantages, such as product degradation, lower efficiency, and toxicity. Thus, in light of the rising demand for these bioactive, enzymes have garnered much attention for their efficiency in extraction. However, enzyme-assisted extraction is also plagued with a high capital cost that cannot justify the extraction yields obtained. In order to mitigate these problems, enzyme-assisted extraction can be consorted with non-conventional methods. This review includes current progress concerning the combined approaches while converging the recent advancements in the field that outperformed conventional extraction processes. It also highlights the design of biocatalyst and key parameters involved in the effective extraction of bioactive molecules. An integrated approach for efficiently extracting polyphenols, essential oils, pigments, and vitamins has been comprehensively reviewed. Furthermore, the different immobilization strategies have been discussed for large-scale implementation of enzymes for extraction. The integration of advanced non-conventional methods with enzyme-assisted extraction will open new avenues to enhance the overall extraction efficiency.
Collapse
Affiliation(s)
- Srija Das
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India.
| |
Collapse
|
127
|
Somjid P, Panpipat W, Petcharat T, Chaijan M. Biochemical property and gel-forming ability of mackerel ( Auxis thazard) surimi prepared by ultrasonic assisted washing. RSC Adv 2021; 11:36199-36207. [PMID: 35492760 PMCID: PMC9043366 DOI: 10.1039/d1ra04768j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
A low gel-forming ability is needed to be encountered using the dark-fleshed fish as a raw material. Optimal washing process can be a principled way of improving the gelling properties because washing is the most important step for surimi production. This study aimed to investigate the effect of ultrasonic-assisted washing (UAW) on the biochemical properties and gel-forming ability of frigate mackerel (Auxis thazard) surimi. Unwashed mince and conventional washing (CW) with 3-cycle of water (10 min per cycle) were compared to UAW for 5 and 10 min per cycle. UAW tended to improve the lipid removal, reduce the TCA-soluble peptide, and increase the surface hydrophobicity of surimi, but it had no influence on the Ca2+-ATPase activity, reactive sulfhydryl content, haem protein content, and lipid oxidation. UAW for 5 min per cycle rendered the surimi with the highest gel strength, whiteness, and water holding capacity as well as a regular aggregated network. With this method, the washing time can be reduced to 50% compared to the CW. Therefore, UAW for 5 min per cycle was an alternative approach for the production of mackerel surimi.
Collapse
Affiliation(s)
- Panumas Somjid
- Food Technology and Innovation Research Center of Excellence, Department of Food Science and Innovation, School of Agricultural Technology and Food Industry, Walailak University Thasala Nakhon Si Thammarat 80161 Thailand +66 75 672302 +66 75 672384
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Department of Food Science and Innovation, School of Agricultural Technology and Food Industry, Walailak University Thasala Nakhon Si Thammarat 80161 Thailand +66 75 672302 +66 75 672384
| | - Tanyamon Petcharat
- Food Technology and Innovation Research Center of Excellence, Department of Food Science and Innovation, School of Agricultural Technology and Food Industry, Walailak University Thasala Nakhon Si Thammarat 80161 Thailand +66 75 672302 +66 75 672384
- Professional Culinary Arts Programme, School of Management, Walailak University Nakhon Si Thammarat 80161 Thailand
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Department of Food Science and Innovation, School of Agricultural Technology and Food Industry, Walailak University Thasala Nakhon Si Thammarat 80161 Thailand +66 75 672302 +66 75 672384
| |
Collapse
|
128
|
Hashemi Moosavi M, Mousavi Khaneghah A, Javanmardi F, Hadidi M, Hadian Z, Jafarzadeh S, Huseyn E, Sant'Ana AS. A review of recent advances in the decontamination of mycotoxin and inactivation of fungi by ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 79:105755. [PMID: 34562735 PMCID: PMC8476429 DOI: 10.1016/j.ultsonch.2021.105755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 05/15/2023]
Abstract
Innovative technologies for the pasteurization of food products have increased due to the global demand for higher-quality food products. In this regard, the current article aimed to provide an overview regarding the latest research on US application in the decontamination of fungi in food products and highlight the parameters influencing the effectiveness of this method. Therefore, the related article with inactivation of fungi and mycotoxins by ultrasound among last four years (2018-2021) by using terms such as 'mycotoxin,' 'inactivation,' 'ultrasound,' 'decontamination' among some international databases such as PubMed, Web of Science, Embase and Google Scholar" was retrieved. Ultrasound (US) is considered a non-thermal decontamination method for food products. In US, the release of energy due to the acoustic phenomenon destroys microorganisms. This technology is advantageous as it is inexpensive, eco-friendly, and does not negatively affect food products' food structure and organoleptic properties. The influence of the US on food structure and organoleptic properties dramatically depends on the intensity and energy density applied In addition, it can preserve higher levels of ascorbic acid, lycopene, and chlorophyll in sonicated food products. The treatment conditions, including frequency, intensity, duration, temperature, and processing pressure, influence the effectiveness of decontamination. However, US displays synergistic or antagonistic effects on bacteria, yeasts, molds, and mycotoxins when combined with other types of decontamination methods such as chemical and thermal approaches. Thus, further research is needed to clarify these effects. Overall, the application of US methods in the food industry for decreasing the microbial content of food products during processing has been applied. However, the use of US with other techniques needs to be studied further.
Collapse
Affiliation(s)
- Motahareh Hashemi Moosavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | - Fardin Javanmardi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Zahra Hadian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Jafarzadeh
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Elcin Huseyn
- Research Laboratory of Intelligent Control and Decision Making Systems in, Industry and Economics, Azerbaijan State Oil and Industry University, Azerbaijan
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
129
|
Vibrations and ultrasound in food processing – Sources of vibrations, adverse effects, and beneficial applications – An overview. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
130
|
Guerra AS, Hoyos CG, Molina-Ramírez C, Velásquez-Cock J, Vélez L, Gañán P, Eceiza A, Goff HD, Zuluaga R. Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
131
|
Manzoor MF, Xu B, Khan S, Shukat R, Ahmad N, Imran M, Rehman A, Karrar E, Aadil RM, Korma SA. Impact of high-intensity thermosonication treatment on spinach juice: Bioactive compounds, rheological, microbial, and enzymatic activities. ULTRASONICS SONOCHEMISTRY 2021; 78:105740. [PMID: 34492523 PMCID: PMC8427224 DOI: 10.1016/j.ultsonch.2021.105740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 05/04/2023]
Abstract
To study the impacts of thermosonication (TS), the spinach juice treated with TS (200 W, 400 W, and 600 W, 30 kHz, at 60 ± 1 °C for 20 mint) were investigated for bioactive compounds, antioxidant activities, color properties, particle size, rheological behavior, suspension stability, enzymatic and microbial loads. As a result, TS processing significantly improved the bioactive compounds (total flavonols, total flavonoids, total phenolic, carotenoids, chlorophyll, and anthocyanins), antioxidant activities (DPPH and FRAP assay) in spinach juice. Also, TS treatments had higher b*,L*, hue angle (h0), and chroma (C) values, while minimuma* value as compared to untreated and pasteurized samples. TS processing significantly reduced the particle size, improved the suspension stability and rheological properties (shear stress, apparent viscosity, and shear rate) of spinach juice as compared to the untreated and pasteurized sample. TS plays a synergistic part in microbial reduction and gained maximum microbial safety. Moreover, TS treatments inactivated the polyphenol oxidase and peroxidase from 0.97 and 0.034 Abs min-1 (untreated) to 0.31 and 0.018 Abs min-1, respectively. The spinach juice sample treated at a high intensity (600 W, 30 kHz, at 60 ± 1 °C for 20 mint, TS3) exhibited complete inactivation of microbial loads (<1 log CFU/ml), the highest reduction in enzymatic activities, better suspension stability, color properties, and highest bioactive compounds. Collectively, the verdicts proposed that TS processing could be a worthwhile option to pasteurize the spinach juice to enhance the overall quality.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, 38000 Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Sipper Khan
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70593 Stuttgart, Germany
| | - Rizwan Shukat
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nazir Ahmad
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, China
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazing University, Sharkia, Egypt
| |
Collapse
|
132
|
Structure and physicochemical properties of starch affected by dynamic pressure treatments: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
133
|
Li L, Taha A, Geng M, Zhang Z, Su H, Xu X, Pan S, Hu H. Ultrasound-assisted gelation of β-carotene enriched oleogels based on candelilla wax-nut oils: Physical properties and in-vitro digestion analysis. ULTRASONICS SONOCHEMISTRY 2021; 79:105762. [PMID: 34600303 PMCID: PMC8487090 DOI: 10.1016/j.ultsonch.2021.105762] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 05/25/2023]
Abstract
Candelilla wax mix with peanut, pine nut and walnut oils can form oleogels. Ultrasound increased G’, G’’, firmness and oil-binding capacity of oleogels. Ultrasound treatment improved the protection of β-carotene in oleogels. Ultrasound reduced the amount of β-carotene released during intestinal digestion.
This study investigated the effects of high-intensity ultrasound (HIU, 95 W, 10 s) on the physical properties, stability and in vitro digestion of β-carotene enriched oleogels. Candelilla wax (3 wt%) and nut oils (peanut, pine nut and walnut oil) with or without β-carotene were used to form oleogels. HIU improved the storage modules (G’) of peanut, pine nut and walnut oleogels without β-carotene from 11048.43 ± 728.85 Pa, 38111.67 ± 11663.98 Pa and 21921.13 ± 1011.55 Pa to 13502.40 ± 646.54 Pa, 75322.47 ± 9715.25 Pa and 48480.97 ± 4109.64 Pa, respectively. Moreover, HIU reduced oil loss of peanut, pine nut and walnut oleogels without β-carotene from 23.98 ± 2.58%, 17.14 ± 0.69% and 24.66 ± 1.57% to 17.60 ± 1.10%, 13.84 ± 0.74% and 18.72 ± 3.47%, respectively. X-ray diffraction patterns showed that HIU did not change the form of the crystal (β-polymorphic and β’-polymorphic) but increased the crystal intensity. Polarized light microscope images indicated that all oleogels showed more visible crystals after HIU. After 120 d of storage, HIU decreased the degradation of β-carotene for peanut oil and walnut oil samples (the contents of β-carotene in peanut and walnut oleogels without HIU after 120 d of storage were 897 ± 2 μg/g and 780 ± 1 μg/g, respectively, and those of sonicated samples were 1070 ± 4 μg/g and 932 ± 1 μg/g, respectively). Furthermore, HIU reduced the release of β-carotene in intestinal digestion. In conclusion, HIU could improve the functional properties of wax-nut oils oleogels and their β-carotene enriched oleogels.
Collapse
Affiliation(s)
- Letian Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Ahmed Taha
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Mengjie Geng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Zhongli Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hongchen Su
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
134
|
Gerschenson LN, Fissore EN, Rojas AM, Idrovo Encalada AM, Zukowski EF, Higuera Coelho RA. Pectins obtained by ultrasound from agroindustrial by-products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
135
|
Trombino S, Cassano R, Procopio D, Di Gioia ML, Barone E. Valorization of Tomato Waste as a Source of Carotenoids. Molecules 2021; 26:molecules26165062. [PMID: 34443647 PMCID: PMC8398759 DOI: 10.3390/molecules26165062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Fast-accumulating scientific evidence from many studies has revealed that fruits and vegetables are the main source of bioactive compounds; in most cases, wastes and byproducts generated by the food processing industry present similar or a higher content of antioxidant compounds. In recent years, the ever-growing amount of agricultural and food wastes has raised serious concerns from an environmental point of view. Therefore, there is an increasing interest in finding new ways for their processing toward safely upgrading these wastes for recovering high-value-added products with a sustainable approach. Among food waste, the abundance of bioactive compounds in byproducts derived from tomato suggests possibility of utilizing them as a low-cost source of antioxidants as functional ingredients. This contribution gives an overview of latest studies on the extraction methods of carotenoids from tomato waste, along with an evaluation of their antioxidant activity, as well as their industrial applications.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Roberta Cassano
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Debora Procopio
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Maria Luisa Di Gioia
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
- Correspondence: (M.L.D.G.); (E.B.); Tel.: +39-0984493095 (M.L.D.G.); +39-06-49910935 (E.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Rome, Italy
- Correspondence: (M.L.D.G.); (E.B.); Tel.: +39-0984493095 (M.L.D.G.); +39-06-49910935 (E.B.)
| |
Collapse
|
136
|
Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes (Basel) 2021. [DOI: 10.3390/pr9081406] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traditional extraction techniques have lost their optimum performance because of rising consumer demand and novel technologies. In this regard, several techniques were developed by humans for the extraction of plant materials from various indigenous sources, which are no longer in use. Many of the techniques are not efficient enough to extract maximum plant material. By this time, evolution in extraction has led to development of various techniques including microfiltration, pulsed electric fields, high pressure, microwave assistance, enzyme assistance, supercritical fluid, subcritical fluid and ultrasonication. These innovations in food processing/extraction are known as “Green Food Processing”. These technologies were basically developed by focusing on three universal parameters: simplicity, energy efficiency and economy. These green technologies are practical in a number of different food sectors, mostly for preservation, inhibition of microorganisms, inactivation of enzymes and extraction of plant material. Like the others, ultrasonication could also be used for the said purposes. The primary objective of this review is to confine the potential use of ultrasonication for extraction of oils, pectin and phytochemicals by reviewing the literature systematically.
Collapse
|
137
|
Pelissari EMR, Covre KV, do Rosario DKA, de São José JFB. Application of chemometrics to assess the influence of ultrasound and chemical sanitizers on vegetables: Impact on natural microbiota, Salmonella Enteritidis and physicochemical nutritional quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
138
|
Eom SJ, Lim TG, Jhun H, Lee NH, Kang MC, Song KM. Inhibitory effect of Saccharomyces cerevisiae extract obtained through ultrasound-assisted extraction on melanoma cells. ULTRASONICS SONOCHEMISTRY 2021; 76:105620. [PMID: 34119906 PMCID: PMC8207304 DOI: 10.1016/j.ultsonch.2021.105620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Although the immune enhancing effect of yeast has been widely reported, studies specifically investigating its effects on skin cancer are lacking. Therefore, this study aimed to develop a yeast extract capable of inhibiting melanoma cells using ultrasound technology, which can lyse the cell walls allowing subsequent rapid yeast extraction. To compare the extraction efficiency across different extraction methods, the total yield, as well as total glucan, α-glucan, and β-glucan yields were measured. Ultrasound-assisted extract of yeast (UAEY) was found to effectively inhibit melanoma cell growth and proliferation as well as the expression of cyclin D1 and c-myc, in vitro. Additionally, the extract reduced melanoma tumor volume and cyclin D1 levels in BALB/c nu/nu mice. The optimal extraction conditions were 0.2 M NaOH, 3 h, 70 °C, 20 kHz, and 800 W, resulting in an increased total extraction and β-glucan yields of 73.6% and 7.1%, respectively, compared with that achieved using a conventional chemical (0.5 M NaOH) extraction method. Taken together, the results of this study suggest that UAEY may represent an effective anti-skin cancer agent.
Collapse
Affiliation(s)
- Su Jin Eom
- Research Group of Food Processing, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Tae-Gyu Lim
- Food Science and Technology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Nam Hyouck Lee
- Research Group of Food Processing, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Kyung-Mo Song
- Research Group of Food Processing, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
139
|
Ali A, Wei S, Liu Z, Fan X, Sun Q, Xia Q, Liu S, Hao J, Deng C. Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
140
|
Chen C, Zhang M, Xu B, Chen J. Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- R & D Center, Yangzhou Yechun Food Production & Distribution Co, Yangzhou, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Baoguo Xu
- R & D Center, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jingjing Chen
- R & D Center, Haitong Food Group Co, Cixi, Zhejiang, China
| |
Collapse
|
141
|
New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
142
|
López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R. Enhancing carotenoid and phenolic contents in plant food matrices by applying non-thermal technologies: Bioproduction vs improved extractability. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
143
|
Wainaina I, Wafula E, Sila D, Kyomugasho C, Grauwet T, Van Loey A, Hendrickx M. Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Compr Rev Food Sci Food Saf 2021; 20:3690-3718. [PMID: 34056842 DOI: 10.1111/1541-4337.12770] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Over the past years, the shift toward plant-based foods has largely increased the global awareness of the nutritional importance of legumes (common beans (Phaseolus vulgaris L.) in particular) and their potential role in sustainable food systems. Nevertheless, the many benefits of bean consumption may not be realized in large parts of the world, since long cooking time (lack of convenience) limits their utilization. This review focuses on the current insights in the cooking behavior (cookability) of common beans and the variables that have a direct and/or indirect impact on cooking time. The review includes the various methods to evaluate textural changes and the effect of cooking on sensory attributes and nutritional quality of beans. In this review, it is revealed that the factors involved in cooking time of beans are diverse and complex and thus necessitate a careful consideration of the choice of (pre)processing conditions to conveniently achieve palatability while ensuring maximum nutrient retention in beans. In order to harness the full potential of beans, there is a need for a multisectoral collaboration between breeders, processors, and nutritionists.
Collapse
Affiliation(s)
- Irene Wainaina
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Elizabeth Wafula
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Daniel Sila
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| |
Collapse
|
144
|
Singla M, Sit N. Application of ultrasound in combination with other technologies in food processing: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105506. [PMID: 33714087 PMCID: PMC7960546 DOI: 10.1016/j.ultsonch.2021.105506] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.
Collapse
Affiliation(s)
- Mohit Singla
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
145
|
Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
146
|
Huang S, Rao G, Ashraf U, Deng Q, Dong H, Zhang H, Mo Z, Pan S, Tang X. Ultrasonic seed treatment improved morpho-physiological and yield traits and reduced grain Cd concentrations in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112119. [PMID: 33714137 DOI: 10.1016/j.ecoenv.2021.112119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Rice cultivation under cadmium (Cd) contaminated soil often results in reduced growth with excess grain Cd concentrations. A pot experiment was conducted to assess the potential of ultrasonic seed treatment to alleviate Cd stress in rice. Seeds of two aromatic rice cultivars i.e., Xiangyaxiangzhan and Meixiangzhan 2 and two non-aromatic rice cultivars i.e., Huahang 31 and Guangyan 1 were exposed to ultrasonic waves for 1.5 min in 20-40 KHz mixing frequency. The experimental treatments were comprised of untreated seeds (U0) and ultrasonic treated seeds (U1) transplanted in un-contaminated soil (H0) and Cd-contaminated soil (H1). Results revealed that Cd contents and Cd accumulation in grain in U1 were 33.33-42.31% and 12.86-57.58% lower than U0 for fragrant rice cultivars under H1. Meanwhile, biomass production was higher in U1 than U0 under H0 and better yield was assessed in U1 for all cultivars under H1. The activity of peroxidase (POD) in flag leaves was increased by 8.28-115.65% for all cultivars while malondialdehyde (MDA) contents were significantly decreased in U1 compared with U0 under H0. Conclusively, ultrasonic treatment modulated Cd distribution and accumulation in different parts while improved physiological performance as well as yield and grain quality of rice under Cd contaminated conditions.
Collapse
Affiliation(s)
- Suihua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Gangshun Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Umair Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China; Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770 Punjab, Pakistan
| | - Quanqing Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Hao Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huailin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| |
Collapse
|
147
|
Phospholipids from marine source: Extractions and forthcoming industrial applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
148
|
Franco-Vega A, Reyes-Jurado F, González-Albarrán D, Ramírez-Corona N, Palou E, López-Malo A. Developments and Advances of High Intensity Pulsed Light and its Combination with Other Treatments for Microbial Inactivation in Food Products. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09280-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
149
|
Karwowska M, Stadnik J, Stasiak DM, Wójciak K, Lorenzo JM. Strategies to improve the nutritional value of meat products: incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Małgorzata Karwowska
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Joanna Stadnik
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Dariusz M. Stasiak
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Karolina Wójciak
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia Rúa Galicia No 4 Parque Tecnológico de Galicia San Cibrao das Viñas Ourense 32900 Spain
- Área de Tecnología de los Alimentos Facultad de Ciencias de Ourense Universidad de Vigo Ourense 32004 Spain
| |
Collapse
|
150
|
Flores EMM, Cravotto G, Bizzi CA, Santos D, Iop GD. Ultrasound-assisted biomass valorization to industrial interesting products: state-of-the-art, perspectives and challenges. ULTRASONICS SONOCHEMISTRY 2021; 72:105455. [PMID: 33444940 PMCID: PMC7808943 DOI: 10.1016/j.ultsonch.2020.105455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 05/04/2023]
Abstract
Nowadays, the application of ultrasound (US) energy for assisting the lignocellulosic biomass and waste materials conversion into value-added products has dramatically increased. In this sense, this review covers theoretical aspects, promising applications, challenges and perspectives about US and its use for biomass treatment. The combination of US energy with a suitable reaction time, temperature and solvent contributes to the destruction of recalcitrant lignin structure, allowing the products to be used in thermochemical and biological process. The main mechanisms related to US propagation and impact on the fragmentation of lignocellulosic materials, selectivity, and yield of conversion treatments are discussed. Moreover, the synergistic effects between US and alternative green solvents with the perspective of industrial applications are investigated. The present survey analysed the last ten years of literature, studying challenges and perspectives of US application in biorefinery. We were aiming to highlight value-added products and some new areas of research.
Collapse
Affiliation(s)
- Erico M M Flores
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Cezar A Bizzi
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniel Santos
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabrielle D Iop
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|