101
|
Nutritional Analysis of Red-Purple and White-Fleshed Pitaya ( Hylocereus) Species. Molecules 2022; 27:molecules27030808. [PMID: 35164073 PMCID: PMC8839306 DOI: 10.3390/molecules27030808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Pitaya is one of the most preferred and produced tropical fruit species recently introduced to the Mediterrranean region in Turkey. Due to its nutritional fruits with high economic value, the popularity of pitaya increases steadily in Turkey as an alternative crop. No detailed nutritional analysis has been undertaken in Turkey so far on fruits of the pitaya species. In this study, we determined and compared some nutritional parameters in fruit flesh of two pitaya (dragon fruit) species (Hylocereus polyrhizus: Siyam and Hylocereus undatus: Vietnam Jaina) grown in the Adana province located in the eastern Mediterranean region in Turkey. The individual sugars, antioxidant activity, total phenolic content, phenolic compounds and volatiles were determined for the first time in Turkey on two pitaya species. The results showed that total phenol content and antioxidant capacity are notably higher in red-fleshed fruits than white-fleshed ones and the predominant phenolic compound in fruits of both species was quercetin. The total sugar content and most of the phenolic compounds in fruits of two pitaya species were similar. A total of 51 volatile compounds were detected by using two Solid Phase Micro Extraction (SPME) fibers, coupled with Gas Chromatography Mass Spectrometry (GC-MS) techniques, and more volatile compounds were presented in the white-fleshed species. Total phenolic content (TPC) of the red-fleshed and white-fleshed pitaya species were 16.66 and 17.11 mg GAE/100 g FW (fresh weight). This study provides a first look at the biochemical comparison of red-fleshed and white-fleshed pitaya species introduced and cultivated in Turkey. The results also showed, for the first time, the biochemical content and the potential health benefit of Hylocereus grown in different agroecological conditions, providing important information for pitaya researchers and application perspective.
Collapse
|
102
|
Effect of milk-derived bioactive peptides on the lipid stability and functional properties of beef nuggets. Sci Rep 2022; 12:1242. [PMID: 35075149 PMCID: PMC8786938 DOI: 10.1038/s41598-021-04691-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
The present study was conducted to ascertain the beneficial effects of bioactive peptides on the oxidative stability and functional properties of beef nuggets. In this study, milk casein protein hydrolysates were extracted and incorporated into beef nuggets which were then subjected to different assessment parameters including oxidative stability, functional capability as well as microbial and physico-chemical quality tests were performed for determining the meat quality at different storage periods. The casein protein hydrolysate powder (CPH) was added at different concentrations in nuggets CPH 2%, 4%, 6% and 8%, with reference to storage period of 0, 5, 10 and 15 days at 4 °C. The results regarding total phenolic contents (TPC) and DPPH free radical scavenging assay showed a significant increased with respect to CPH powder and significantly decreased with respect to storage interval. The TVBN, TBARS and POV of the CPH powder incorporated raw beef nuggets also differed significantly within groups with storage time. Higher POV and TBARS were noticed in the CPH 8% incorporated beef nuggets. However, the raw beef nuggets that were made by the incorporation 8% CPH powder, maintained significantly lower level of TBARS at the end of the storage period in contrast with the levels of the control (CPH 0%). The results of the pH and Hunter color test also showed a significant difference with respect to different groups. The microbiological analysis of beef nuggets showed a significant decrease in the level of both the total aerobic and coliform counts and also indicated a decreasing trend in the level of contamination by these bacteria within the groups. This depicted that the casein protein hydrolysate powder (CPH) or simply, the peptide powder has the strong ability to decrease lipid oxidation and related shelf-life retarding natural processes occurring in the meat. It can also greatly enhance the functional properties of the raw meat (beef) and meat products. Thus, it is seen that the bioactive peptides (BAP’s) are a key factor in improving the oxidative stability and functional properties of beef nuggets.
Collapse
|
103
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
104
|
Laguna BDCC, Flores Gallegos AC, Ascacio Valdés JA, Iliná A, Galindo AS, Castañeda Facio AO, Esparza González SC, Herrera RR. Physicochemical and functional properties of the undervalued fruits of cactus Cylindropuntia imbricate (“xoconostle”) and antioxidant potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
105
|
Otieno OD, Mulaa FJ, Obiero G, Midiwo J. Utilization of fruit waste substrates in mushroom production and manipulation of chemical composition. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
106
|
SAFDAR MN, KAUSAR T, NADEEM M, MURTAZA M, SOHAIL S, MUMTAZ A, SIDDIQUI N, JABBAR S, AFZAL S. Extraction of phenolic compounds from (Mangifera indica L.) and kinnow (Citrus reticulate L.) peels for the development of functional fruit bars. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.09321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | | | - Saba SOHAIL
- National Agricultural Research Centre, Pakistan
| | - Amer MUMTAZ
- National Agricultural Research Centre, Pakistan
| | | | | | - Saeed AFZAL
- National Agricultural Research Centre, Pakistan
| |
Collapse
|
107
|
Rahman N, Sabang SM, Abdullah R, Bohari B. Antioxidant properties of the methanolic extract of avocado fruit peel ( Persea americana Mill.) from Indonesia. J Adv Pharm Technol Res 2022; 13:166-170. [PMID: 35935697 PMCID: PMC9355060 DOI: 10.4103/japtr.japtr_22_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
This study analyzed the antioxidant activity and the phytochemical substances in avocado fruit peel extracted with methanol. In this study, antioxidant activity was determined by IC50 based on the regression value of DPPH free radicals' inhibition. Phytochemical content was measured qualitatively concerning the total content of phenols, flavonoids, tannins, saponins, and alkaloids. Our measurements showed that the methanolic extract of avocado fruit peels from Indonesia had the value of each phytochemical compound as follows: total phenol was 21.833 ± 0.118 mg/100 g extract; total flavonoids were 2.607 ± 0.111 mg/100 g extract; total tannin was 38.357 ± 0.202; saponin content was 8.874% ± 0.031%; and total alkaloid was 9.95 ± 0.035 mg CE/g extract. They then provided the antioxidant activity in IC50, which reached 185.891 ± 1.598 ppm. Avocado fruit peels are identified as a phytochemical source that contributes to antioxidant activities.
Collapse
Affiliation(s)
- Nurdin Rahman
- Department of Nutrition, Tadulako University, Palu, Indonesia
| | | | - Rukman Abdullah
- Department of Medical Education, Sultan Ageng Tirtayasa University, Banten, Indonesia
| | - Bohari Bohari
- Department of Nutrition, Sultan Ageng Tirtayasa University, Banten, Indonesia,Address for correspondence: Mr. Bohari Bohari, Persada Banten Blok A6 No 27, City of Serang, Banten, Indonesia. E-mail:
| |
Collapse
|
108
|
Hu T, Subbiah V, Wu H, BK A, Rauf A, Alhumaydhi FA, Suleria HAR. Determination and Characterization of Phenolic Compounds from Australia-Grown Sweet Cherries ( Prunus avium L.) and Their Potential Antioxidant Properties. ACS OMEGA 2021; 6:34687-34699. [PMID: 34963952 PMCID: PMC8697386 DOI: 10.1021/acsomega.1c05112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 05/05/2023]
Abstract
Sweet cherries (Prunus avium L.) are popular fruits around the world with a high nutritional value and abundant phenolic compounds. Phenolic compounds of cherries contribute to positive health benefits. This study aimed at determining the phenolic content and antioxidant activities in four Australian-grown sweet cherry cultivars, including Bing, Ron's, Merchant, and Lapins, as well as the identification of individual phenolic compounds with liquid chromatography-electrospray ionization-quantum time-of-flight-mass spectrometry (LC-ESI-QTOF-MS2). Lapins exhibits the highest total phenolic content (TPC) value (1.73 ± 0.90 mg gallic acid equivalents (GAE)/g) while Ron's exhibits the highest total flavonoid content (TFC) value (0.51 ± 0.02 mg QE/g). In 2,2'-azinobis-(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS), reducing power assay (RPA), and total antioxidant content (TAC) assays, Merchant exhibited the highest values (0.51 ± 0.07, 1.74 ± 0.04, and 2.79 ± 0.09 mg AAE/g, respectively) and almost showed the highest antioxidant activity. Ron's presented the highest value (1.21 ± 0.09 mg EDTA/g) in ferrous ion-chelating activity (FICA) assay and exhibits the strongest metal chelating ability. The correlation between phenolic contents and antioxidant assays was observed. In the LC-ESI-QTOF-MS2 analysis, a total of 43 phenolic compounds has been detected in four sweet cherry cultivars, including 11 phenolic acids, 25 flavonoids, 5 other phenolic compounds, 1 lignan, and 1 stilbene. Venn graph showed that Lapins has the greatest number of unique compounds. Our study shows the presence of phenolic acids and provides information to be utilized as an ingredient in food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
- Tianyi Hu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vigasini Subbiah
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amrit BK
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, 23561 KPK, Pakistan
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
109
|
Marino A, Battaglini M, Desii A, Lavarello C, Genchi G, Petretto A, Ciofani G. Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-based in vitro model of Parkinson's disease. Biomater Sci 2021; 9:8171-8188. [PMID: 34617936 DOI: 10.1039/d1bm01202a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with no satisfactory therapy options. Similar to other neurodegenerative conditions, such as Alzheimer's and Huntington's diseases, oxidative stress plays a key factor in the neurodegeneration process. To counteract the uncontrolled increase of reactive oxygen species (ROS) and oxidative stress-dependent cell death, several preclinical and clinical tests exploit natural-derived organic antioxidants, such as polyphenols. Despite some promising results, free antioxidants show scarce brain accumulation and may exhaust their scavenging activity before reaching the brain. In this work, we developed an antioxidant therapeutic nanoplatform consisting of nano-sized functionalized liposomes loaded with selected polyphenol-rich vegetal extracts with high blood-brain barrier crossing capabilities. The antioxidant extracts were obtained from the grape seeds and skins as a byproduct of wine production (i.e., pomace), following a sustainable circular approach with reduced environmental impact. The antioxidant nanoplatform was successfully tested in a relevant in vitro model of PD, where it completely rescued the ROS levels, prevented the aggregation of α-synuclein fibrils, and restored cell viability, paving the way for preclinical translation of the approach.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Chiara Lavarello
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, 16147 Genova, Italy.,University of Genoa, Department of Chemistry and Industrial Chemistry, Via Dodecaneso 31, 16146 Genova, Italy
| | - Giada Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| |
Collapse
|
110
|
Variation in Phenolic Compounds and Antioxidant Activity of Various Organs of African Cabbage ( Cleome gynandra L.) Accessions at Different Growth Stages. Antioxidants (Basel) 2021; 10:antiox10121952. [PMID: 34943055 PMCID: PMC8750509 DOI: 10.3390/antiox10121952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 01/18/2023] Open
Abstract
The presence of nutritional and health-benefiting compounds has increased awareness of orphan leafy vegetables such as Cleome gynandra (CG), whose phytochemicals vary among accessions and organs during growth. This study investigated the polyphenol accumulation and antioxidant activities (AOA) of eight CG accessions from the vegetative stage to the seed set stage. Plants were separated into leaves and stem (LS), flowers, and silique organs, and extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC), rutin and astragalin content, and AOA using 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). There were significant interaction effects of growth stages and accessions that contributed to changes in compounds content and AOA. TPC accumulated in plant generative parts, whereas flavonoids accumulated in young plant organs. HPLC profiling revealed that rutin was the most abundant compound in all organs, with flowers having the highest levels, while astragalin was only found in flowers. Silique extracts, particularly accession KF-14, recorded the highest TPC, which corresponded to the strongest radical scavenging activity in ABTS and DPPH assays and a strong linear correlation. The germplasm contained accessions with significantly different and varying levels of bioactive compounds and AOA. These findings potentiate the exploitation of CG organs such as siliques for AOA, flowers for rutin and astragalin, and young shoots for flavonoids. Moreover, the significant accumulation of the compounds in particular accessions of the germplasms suggest that such superior accessions may be useful candidates in genetic breeding programs to improve CG vegetable.
Collapse
|
111
|
Del Castillo-Llamosas A, Rodríguez-Martínez B, Del Río PG, Eibes G, Garrote G, Gullón B. Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. BIORESOURCE TECHNOLOGY 2021; 342:125981. [PMID: 34583108 DOI: 10.1016/j.biortech.2021.125981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Avocado industrial processing generates huge quantities of residues that are currently wasted without any valuable commercial application. This work deals with autohydrolysis of Avocado peel (AP) for the concomitant recovery of oligosaccharides and polyphenolics. Temperature of 150 °C allowed the highest recovery of oligosaccharides (14.3 g oligosaccharides/100 g AP) and high recovery of antioxidant phenolics (3.48 g gallic acid equivalents/100 g AP and 10.80 g Trolox equivalents/100 g AP measured with ABTS●+ assay). The liquor obtained at this temperature was characterized by TGA and FTIR to study its thermal stability and functional groups. UHPLC-TOF MS analysis of an ethyl acetate extract of AP liquor enabled the tentative identification of 43 compounds, belonging to various metabolite families, including flavonoids, phenolic acids, organic acids, lignans and fatty acids. These findings demonstrated that autohydrolysis of AP is a suitable technology to obtain bioactive agents with potential uses in food and cosmetic industries.
Collapse
Affiliation(s)
| | | | - Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain.
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15706 A Coruña, Spain
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| |
Collapse
|
112
|
Ademosun AO. Glycemic properties of soursop-based ice cream enriched with moringa leaf powder. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-207-214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Diabetes is a common disease all over the world that is often a cause of mortality. Ice cream is popular in many countries. However, sugar and fat in its composition makes ice cream a high-caloric product. Soursop (Annona muricata L.) and moringa (Moringa oleifera L.), African medicinal plants, contain natural sugars and are rich in phytochemicals. We aimed to produce ice cream with these plants and evaluate its remedial properties.
Study objects and methods. The study featured ice cream purchased in a local store (control sample) and soursop ice cream with moringa leaf powder (experimental samples). The experimental ice cream samples included ice cream with soursop, ice cream with soursop and 0.1 g of moringa, and ice cream with soursop and 1 g of moringa. The antioxidant properties, glycemic indices, amylose and amylopectin contents, as well as α-amylase and α-glucosidase inhibitory properties of the samples were determined using the standard methods.
Results and discussion. Comparing with the other samples, ice cream with 1 g of moringa showed the highest total phenol and flavonoid contents, ABTS scavenging ability, DPPH radical scavenging ability, hydroxyl scavenging ability, ferric reducing antioxidant properties, and lowest glycemic index. Sensory evaluation revealed a lower overall acceptability of the experimental samples compared to the control ice cream. This could be due a peculiar taste of moringa (the formulation did not include sugar).
Conclusion. Ice cream based on soursop and moringa can be a good alternative to sugar-sweetened ice cream due to its antioxidant properties, low glycemic index, and acceptable sensory attributes.
Collapse
|
113
|
Haghani S, Hadidi M, Pouramin S, Adinepour F, Hasiri Z, Moreno A, Munekata PES, Lorenzo JM. Application of Cornelian Cherry ( Cornus mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants (Basel) 2021; 10:antiox10111777. [PMID: 34829648 PMCID: PMC8615067 DOI: 10.3390/antiox10111777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, cornelian cherry (Cornus mas L.) peel (CCP) was incorporated into a probiotic ice cream formulation containing Bifidobacterium lactis to investigate the potential effect of CCP on the viability of B. lactis in the ice cream after simulated gastrointestinal stress and during 120 days of storage. Furthermore, the effect of the addition of CCP (3, 6, and 9%) on bioactive compounds, antioxidant activity, and physicochemical and sensory attributes of the ice cream was evaluated. The results showed that the addition of CCP significantly enhanced vitamin C, total polyphenols, total anthocyanin content, and antioxidant activity of the ice cream. During frozen storage of the ice cream, phenolic compounds and anthocyanins were quite stable, but vitamin C significantly decreased. The addition of CCP had no significant effect on the viability of B. lactis throughout the freezing process, but increments of 6% and 9% CCP increased the viability of B. lactis in the ice cream and after simulated gastrointestinal processes in all storage periods. These findings imply that CCP is a promising candidate to be used for producing functional ice cream.
Collapse
Affiliation(s)
- Shaghayegh Haghani
- Department of Food Science and Industries, Khazar Institute of Higher Education, Mahmoudabad 86414-46318, Mazandaran, Iran; (S.H.); (S.P.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
- Correspondence: (M.H.); (P.E.S.M.)
| | - Shiva Pouramin
- Department of Food Science and Industries, Khazar Institute of Higher Education, Mahmoudabad 86414-46318, Mazandaran, Iran; (S.H.); (S.P.)
| | - Fateme Adinepour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgán 49138-15739, Golestan, Iran;
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Chaharmahal and Bakhtiari Province, Iran;
| | - Andrés Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence: (M.H.); (P.E.S.M.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
114
|
Ali A, Bashmil YM, Cottrell JJ, Suleria HAR, Dunshea FR. LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants (Basel) 2021; 10:antiox10111770. [PMID: 34829641 PMCID: PMC8615083 DOI: 10.3390/antiox10111770] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
Culinary spices and herbs have been used to impart a characteristic flavour and aroma in food due to their appealing fragrance. Recently, bioactive compounds from herbs, especially phenolics, have gained much attention due to their potential health outcomes. The aim of this study was to characterize and quantify the phenolic compounds from 10 widely used Australian-grown herbs (oregano, rosemary, bay, basil, sage, fenugreek, dill, parsley, mint and thyme). For this purpose, liquid chromatography mass spectrometry (LC-MS) was used for the complete profiling of polyphenolic compounds and quantification of abundant phenolic compounds was completed with high-performance liquid chromatography—photodiode array detection (HPLC-PDA). Polyphenols from Australian-grown herbs were estimated through total phenolic content (TP), total flavonoids (TF) and total tannins (TT) along with their in-vitro antioxidant activities. Oregano and mint were estimated with the highest value of TP (140.59 ± 9.52 and 103.28 ± 8.08 mg GAE/g, milligram gallic acid equivalent/gram) while rosemary and mint had the highest TF (8.19 ± 0.74 and 7.05 ± 0.43 mg QE (quercetin equivalent)/g). In this study, eighty-four (84) phenolic compounds were screened and confirmed through LC-MS/MS by comparing their masses and fragmentation pattern with published libraries. The results of this study validate the use of these herbs as bioactives and their positive impact on human health.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia; (A.A.); (Y.M.B.); (J.J.C.); (H.A.R.S.)
| | - Yasmeen M. Bashmil
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia; (A.A.); (Y.M.B.); (J.J.C.); (H.A.R.S.)
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia; (A.A.); (Y.M.B.); (J.J.C.); (H.A.R.S.)
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia; (A.A.); (Y.M.B.); (J.J.C.); (H.A.R.S.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia; (A.A.); (Y.M.B.); (J.J.C.); (H.A.R.S.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
- Correspondence:
| |
Collapse
|
115
|
Phenolic compounds in mango fruit: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
116
|
Zou X, BK A, Rauf A, Saeed M, Al-Awthan YS, A. Al-Duais M, Bahattab O, Hamayoon Khan M, Suleria HAR. Screening of Polyphenols in Tobacco ( Nicotiana tabacum) and Determination of Their Antioxidant Activity in Different Tobacco Varieties. ACS OMEGA 2021; 6:25361-25371. [PMID: 34632194 PMCID: PMC8495694 DOI: 10.1021/acsomega.1c03275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 05/06/2023]
Abstract
Tobacco (Nicotiana tabacum) is an herbaceous plant originating from South America and processed into cigarettes for consumption. Polyphenols are considered vital components of tobacco in view of their contribution to antioxidant properties. This study aimed to determine the phenolic compounds in different tobacco varieties by applying cold extraction with methanol and distilled water. The extracts were screened for phenolic compound diversity and distribution as well as their antioxidant potential in different tobacco varieties. The results showed that the methanolic extract of tobacco SP-28 exhibited the highest value in the total phenolic content (24.82 ± 0.07 mg GAE/gd.w.) and total flavonoid content (4.42 ± 0.01 mg QE/gd.w.), while the water extract of tobacco SN-2 exhibited the highest value in the total condensed tannin (1.12 ± 0.03 mg CE/gd.w.). The radical scavenging capacities of tobacco SP-28 were relatively high in DPPH (18.20 ± 0.01 mg AAE/gd.w.) and FRAP (3.02 ± 0.10 mg AAE/gd.w.), whereas the ABTS value was the highest in tobacco SN-2 (37.25 ± 0.03 mg AAE/gd.w.), and the total antioxidant capacity was the highest in tobacco SN-1 (7.43 ± 0.18 mg AAE/gd.w.). LC-ESI-QTOF-MS/MS identified a total of 49 phenolic compounds, including phenolic acids (14), flavonoids (30), and other polyphenols (5) in four different tobacco varieties. Tobacco SP-28 showed the highest number of phenolic compounds, especially enriched in flavones. Our study highlights the antioxidant potential of tobacco extracts and reveals the phenolic distribution among different tobacco varieties that could support tobacco utilization in different pharmaceutical industries.
Collapse
Affiliation(s)
- Xinda Zou
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amrit BK
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Swabi 23430, Anbar-23561 KPK, Pakistan
| | - Muhammad Saeed
- Department
of Agriculture, University of Swabi, Swabi 23430, Anbar-23561 KPK, Pakistan
| | - Yahya S. Al-Awthan
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
- Department
of Biology, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Mohammed A. Al-Duais
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
- Biochemistry
Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Omar Bahattab
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Hafiz A. R. Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
117
|
Jiang H, Zhang W, Li X, Shu C, Jiang W, Cao J. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
118
|
Bashmil YM, Ali A, BK A, Dunshea FR, Suleria HAR. Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants (Basel) 2021; 10:1521. [PMID: 34679656 PMCID: PMC8532736 DOI: 10.3390/antiox10101521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/11/2023] Open
Abstract
Bananas are an essential source of staple food and fruit worldwide and are widely regarded as the world's largest fruit crop, with more than 100 million tons total annual production. Banana peel, a by-product that represents about 40% of the entire banana's weight, and pulp are rich in bioactive compounds and have a high antioxidant capacity. As the production of polyphenols in fruit and vegetables is highly dependent on environmental conditions, genetic factors, and the level of maturity, this study aims to characterize six Australian banana cultivars in various stages of ripening for their phenolic compounds using the liquid chromatography-electrospray ionization quadrupole time of flight mass spectrometry (LC-ESI-QTOF-MS/MS), polyphenols quantification with the high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA), and their antioxidant capacity. All bananas were analysed for total polyphenols content (TPC), total flavonoids content (TFC), and total tannin content (TTC) and their antioxidant activities. Ripe Ducasse peel and pulp contained the highest amounts of total polyphenols content (1.32 and 1.28 mg gallic acid equivalent (GAE) per gram of sample), total tannin contents (3.34 mg catechin equivalent (CE) per gram of sample), and free radical scavenging capacity (106.67 mg ascorbic acid equivalent (AAE) per g of sample). In contrast, ripe Plantain peel had the greatest total flavonoids (0.03 mg quercetin equivalent (QE) per g of sample). On the other hand, unripe Ladyfinger pulp possessed the highest total antioxidant activity (1.03 mg AAE/g of sample). There was a positive correlation between flavonoids and antioxidant activities. By using LC-ESI-QTOF-MS/MS, a total of 24 phenolic compounds were tentatively characterized in this research, including six phenolic acids, 13 flavonoids, and five other polyphenols. Quantification of phenolic compounds by the high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) revealed a higher content of phenolic acids. These findings confirmed that banana peel and pulp have considerable antioxidant activity and can be employed in human food and animal feed for variant health enhancement uses.
Collapse
Affiliation(s)
- Yasmeen M. Bashmil
- Department of Food Science and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
| | - Akhtar Ali
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
| | - Amrit BK
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (A.B.); (F.R.D.)
| |
Collapse
|
119
|
Mostafa HS. Banana plant as a source of valuable antimicrobial compounds and its current applications in the food sector. J Food Sci 2021; 86:3778-3797. [PMID: 34337757 DOI: 10.1111/1750-3841.15854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Bananas (Musaceae) are one of the world's most common fruit crops and the oldest medicinal plants that are used to treat a variety of infections. There has been recent interest in elucidating the efficiency of the naturally active ingredients, particularly the antimicrobials, in this plant. This review begins with a short background of the banana plant and its cultivars as well as a brief description of its parts. Different experimental tests of the antimicrobial effects and the responsible bioactive compounds of the banana part extracts are then elaborated. A variety of recent and evolving applications of banana parts in the development of functional bakery, dairy, beverage, and meat products as a wheat substitute, fiber/prebiotic source, fat/sucrose substitute, and natural antioxidant are also discussed. Finally, the recent challenges and opportunities presented by different banana parts in creating bio-packaging materials and bactericidal nanoparticles are addressed. This plant contains a variety of antimicrobial substances, including dopamine, gentisic acid, ferulic acid, lupeol, and 3-carene. However, few studies have been conducted on its use as a bio-preservative in food products; it should also be seen as a natural source of both antimicrobial and antioxidant agents. It offers a potentially simple eco-friendly alternative to antibacterial and fungicidal agents rather than chemicals. Low cost, reliable methods for purifying these compounds from banana waste could be useful for food storage and creating more value-added bio-packaging products for perishable food goods.
Collapse
Affiliation(s)
- Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
120
|
Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
121
|
Lee FY, Vo GT, Barrow CJ, Dunshea FR, Suleria HAR. Mango rejects and mango waste: Characterization and quantification of phenolic compounds and their antioxidant potential. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fung Ying Lee
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville VIC Australia
| | - Gia Toan Vo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville VIC Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville VIC Australia
- Faculty of Biological Sciences The University of Leeds Leeds UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville VIC Australia
- Centre for Chemistry and Biotechnology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
| |
Collapse
|
122
|
LC-ESI-QTOF-MS/MS Characterisation of Phenolics in Herbal Tea Infusion and Their Antioxidant Potential. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ginger (Zingiber officinale R.), lemon (Citrus limon L.) and mint (Mentha sp.) are commonly consumed medicinal plants that have been of interest due to their health benefits and purported antioxidant capacities. This study was conducted on the premise that no previous study has been performed to elucidate the antioxidant and phenolic profile of the ginger, lemon and mint herbal tea infusion (GLMT). The aim of the study was to investigate and characterise the phenolic contents of ginger, lemon, mint and GLMT, as well as determine their antioxidant potential. Mint recorded the highest total phenolic content, TPC (14.35 ± 0.19 mg gallic acid equivalent/g) and 2,2′-azino-bis(3-e-thylbenzothiazoline-6-sulfonic acid), ABTS (24.25 ± 2.18 mg ascorbic acid equivalent/g) antioxidant activity. GLMT recorded the highest antioxidant activity in the reducing power assay, RPA (1.01 ± 0.04 mg ascorbic acid equivalent/g) and hydroxyl radical scavenging assay, •OH-RSA (0.77 ± 0.08 mg ascorbic acid equivalent/g). Correlation analysis showed that phenolic content positively correlated with the antioxidant activity. Venn diagram analysis revealed that mint contained a high proportion of exclusive phenolic compounds. Liquid chromatography coupled with electrospray ionisation and quadrupole time of flight tandem mass spectrometry (LC-ESI-QTOF-MS/MS) characterised a total of 73 phenolic compounds, out of which 11, 31 and 49 were found in ginger, lemon and mint respectively. These characterised phenolic compounds include phenolic acids (24), flavonoids (35), other phenolic compounds (9), lignans (4) and stilbene (1). High-performance liquid chromatography photometric diode array (HPLC-PDA) quantification showed that GLMT does contain a relatively high concentration of phenolic compounds. This study presented the phenolic profile and antioxidant potential of GLMT and its ingredients, which may increase the confidence in developing GLMT into functional food products or nutraceuticals.
Collapse
|
123
|
LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products. SEPARATIONS 2021. [DOI: 10.3390/separations8050062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Custard apple is an edible fruit grown in tropical and subtropical regions. Due to its abundant nutrient content and perceived health benefits, it is a popular food for consumption and is utilized as a medicinal aid. Although some published research had provided the phenolic compound of custard apple, the comprehensive phenolic profiling of Australian grown custard apple is limited. Hence, this research aimed to evaluate the phenolic content and antioxidant potential by various phenolic content and antioxidant assays, followed by characterization and quantification of the phenolic profile using LC-ESI-QTOF-MS/MS and HPLC-PDA. African Pride peel had the highest value in TPC (61.69 ± 1.48 mg GAE/g), TFC (0.42 ± 0.01 mg QE/g) and TTC (43.25 ± 6.70 mg CE/g), followed by Pink’s Mammoth peel (19.37 ± 1.48 mg GAE/g for TPC, 0.27 ± 0.03 mg QE/g for TFC and 10.25 ± 1.13 mg CE/g for TTC). African Pride peel also exhibited the highest antioxidant potential for TAC (43.41 ± 1.66 mg AAE/g), FRAP (3.60 ± 0.14 mg AAE/g) and ABTS (127.67 ± 4.60 mg AAE/g), whereas Pink’s Mammoth peel had the highest DPPH (16.09 ± 0.34 mg AAE/g), RPA (5.32 ± 0.14 mg AAE/g), •OH-RSA (1.23 ± 0.25 mg AAE/g) and FICA (3.17 ± 0.18 mg EDTA/g). LC-ESI-QTOF-MS/MS experiment successfully characterized 85 phenolic compounds in total, encompassing phenolic acids (20), flavonoids (42), stilbenes (4), lignans (6) and other polyphenols (13) in all three parts (pulp, peel and seeds) of custard apple. The phenolic compounds in different portions of custard apples were quantified by HPLC-PDA, and it was shown that African Pride peel had higher concentrations of the most abundant phenolics. This is the first study to provide the comprehensive phenolic profile of Australian grown custard apples, and the results highlight that each part of custard apple can be a rich source of phenolics for the utilization of custard apple fruit and waste in the food, animal feeding and nutraceutical industries.
Collapse
|
124
|
Ali A, Wu H, Ponnampalam EN, Cottrell JJ, Dunshea FR, Suleria HAR. Comprehensive Profiling of Most Widely Used Spices for Their Phenolic Compounds through LC-ESI-QTOF-MS 2 and Their Antioxidant Potential. Antioxidants (Basel) 2021; 10:721. [PMID: 34064351 PMCID: PMC8147794 DOI: 10.3390/antiox10050721] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Spices have long been used to improve food flavor, due to their appealing fragrance and sensory attributes. Nowadays, spices-based bioactives, particularly phenolic compounds, have gained attention due to their wide range of significant effects in biological systems. The present study was conducted to characterize the 12 widely used spices (allspice, black cardamom, black cumin, black pepper, cardamom, cinnamon, clove, cumin, fennel, nutmeg, star-anise, and turmeric) for their phenolics with the liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS2), polyphenols estimation, and their antioxidant potential. Total phenolics, total flavonoids, and total tannin content and their antioxidant activities were estimated in all spices. Clove and allspice had the highest value of total polyphenol content (215.14 and 40.49 mg gallic acid equivalent (GAE) per g of sample), while clove and turmeric had the highest total flavonoids (5.59 mg quercetin equivalent (QE) per g of sample) and total tannin contents (23.58 mg catechin equivalent (CE) per g of sample), respectively. On the other hand, black cumin and black pepper had the highest phosphomolybdate activity (15.61 and 15.43 mg ascorbic acid equivalent (AAE) per g of sample), while clove was almost identified with highest free radical scavenging capacity. A positive correlation was observed among phenolic compounds and antioxidant activities. In this quest, a total of 79 phenolic compounds were tentatively characterized by using LC-ESI-QTOF-MS2 including 26 phenolic acids, 33 flavonoids, 16 other polyphenols, and 4 lignans. The high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) quantification of phenolic compounds exhibited higher phenolic acids. These results provided us some valuable information that spices have powerful antioxidant potential that can be further used in human food and animal feed as a supplement for different health promoting applications.
Collapse
Affiliation(s)
- Akhtar Ali
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
| | - Hanjing Wu
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
| | - Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, VIC 3083, Australia;
| | - Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
- Faculty of Biological Sciences, University of Leads, Leads LS2 9JT, UK
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (H.W.); (J.J.C.); (F.R.D.)
| |
Collapse
|
125
|
Characterization of Phenolics in Rejected Kiwifruit and Their Antioxidant Potential. Processes (Basel) 2021. [DOI: 10.3390/pr9050781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Kiwifruit hold significant nutritional value and are a good source of antioxidants due to their diverse range of bioactive compounds. Kiwifruit waste is generated throughout the food supply chain, particularly during transportation and storage. Kiwifruit rejected from the retail market due to unfavorable appearance still possess potential economic value as kiwifruit are abundant in phenolic compounds. The present work studied the phenolic profile and antioxidant potential of rejected kiwifruit, including SunGold (Actinidia chinensis), Hayward (Actinidia deliciosa), and round organic Hayward (Actinidia deliciosa). Regarding phenolics estimation, SunGold possessed the highest TPC (0.72 ± 0.01 mg GAE/g), while Hayward exhibited the highest TFC (0.05 ± 0.09 mg QE/g). In antioxidant assays, SunGold showed the highest antioxidant activities in DPPH (0.31 ± 0.35 mg AAE/g), FRAP (0.48 ± 0.04 mg AAE/g), ABTS (0.69 ± 0.07 mg AAE/g), •OH-RSA (0.07 ± 0.03 mg AAE/g) assays, and FICA (0.19 ± 0.07 mg EDTA/g), whereas Hayward showed the highest RPA (0.09 ± 0.02 mg AAE/g) and TAC (0.57 ± 0.04 mg AAE/g). Separation and characterization of phenolics were conducted using LC-ESI-QTOF-MS/MS. A total of 97 phenolics were tentatively characterized from rejected SunGold (71 phenolics), Hayward (55 phenolics), and round organic Hayward (9 phenolics). Hydroxycinnamic acids and flavonols were the most common phenolics characterized in the three samples. The quantitative analysis was conducted by HPLC-PDA and found that chlorogenic acid (23.98 ± 0.95 mg/g), catechin (23.24 ± 1.16 mg/g), and quercetin (24.59 ± 1.23 mg/g) were the most abundant phenolics present in the rejected kiwifruit samples. The notable presence of phenolic compounds and their corresponding antioxidant capacities indicate the potential value of rescuing rejected kiwifruit for further utilization and commercial exploitation.
Collapse
|
126
|
Birch Pollen Related Pear Allergy: A Single-Blind Oral Challenge TRIAL with 2 Pear Cultivars. Nutrients 2021; 13:nu13041355. [PMID: 33919631 PMCID: PMC8073155 DOI: 10.3390/nu13041355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
Approximately 70% of birch pollen allergic patients in Europe experience hypersensitivity reactions to Immunoglobulin E (IgE) cross-reactive food sources. This so-called pollen-food syndrome (PFS) is defined by allergic symptoms elicited promptly by the ingestion of fruits, nuts, or vegetables in these patients. So far, in the literature, less attention has been given to Bet v 1 cross-reactive symptoms caused by pear (Pyrus communis). In the Netherlands, pears are widely consumed. The primary objective of this study was to measure the type and severity of allergic symptoms during pear challenges in birch pollen allergic patients, with a positive history of pear allergy, using two different pear varieties. Fifteen patients were included, skin prick test (SPT), prick-to-prick test (PTP), specific Immunoglobulin E (sIgE), and single-blind oral challenges were performed with two pear (Pyrus communis) varieties: the ‘Cepuna’ (brand name Migo®) and the ‘Conference’ pears. All patients were sensitized to one or both pear varieties. A total of 12 out of 15 participants developed symptoms during the ‘Cepuna’ food challenge and 14/15 reacted during the ‘Conference’ challenge. Challenges with the ‘Cepuna’ pears resulted in less objective symptoms (n = 2) in comparison with challenges with ‘Conference’ pears (n = 7). Although we did not find significance between both varieties in our study, we found a high likelihood of fewer and less severe symptoms during the ‘Cepuna’ challenges. Consequently selected pear sensitized patients can try to consume small doses of the ‘Cepuna’ pear outside the birch pollen season.
Collapse
|
127
|
Abstract
Apples (Malus domestica) are one of the most widely grown and consumed fruits in the world that contain abundant phenolic compounds that possess remarkable antioxidant potential. The current study characterised phenolic compounds from five different varieties of Australian grown apples (Royal Gala, Pink Lady, Red Delicious, Fuji and Smitten) using LC-ESI-QTOF-MS/MS and quantified through HPLC-PDA. The phenolic content and antioxidant potential were determined using various assays. Red Delicious had the highest total phenolic (121.78 ± 3.45 mg/g fw) and total flavonoid content (101.23 ± 3.75 mg/g fw) among the five apple samples. In LC-ESI-QTOF-MS/MS analysis, a total of 97 different phenolic compounds were characterised in five apple samples, including Royal Gala (37), Pink Lady (54), Red Delicious (17), Fuji (67) and Smitten (46). In the HPLC quantification, phenolic acid (chlorogenic acid, 15.69 ± 0.09 mg/g fw) and flavonoid (quercetin, 18.96 ± 0.08 mg/g fw) were most abundant in Royal Gala. The obtained results highlight the importance of Australian apple varieties as a rich source of functional compounds with potential bioactivity.
Collapse
|
128
|
High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants (Basel) 2021; 10:antiox10020234. [PMID: 33557299 PMCID: PMC7914583 DOI: 10.3390/antiox10020234] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.
Collapse
|
129
|
Industrial Fruits By-Products and Their Antioxidant Profile: Can They Be Exploited for Industrial Food Applications? Foods 2021; 10:foods10020272. [PMID: 33572919 PMCID: PMC7912430 DOI: 10.3390/foods10020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
Fruit by-products have a low economic value and have proven biological activities, such as antioxidant capacity due to the presence of active compounds. The main objective of this study was to obtain and determine the antioxidant capacity, through DPPH radical assay and β-carotene bleaching assay, of three food grade extracts from apple, lemon, and orange industrial by-products. Furthermore, the extracts were characterized by ultra-high performance liquid chromatography coupled to mass spectrometry (UHPLC-MS/MS). LC with diode array detector (LC-DAD) was used for the quantification of the main polyphenols. Lemon extract presented the highest inhibition percentage of DPPH radical (51.7%) and the highest total phenolics content (43.4 mg GAE/g) from the by-products studied. Orange by-product was that with the higher number of polyphenols while lemon extract was that with the highest content of individual phenolics. The by-product obtained from the lemon was that with higher amounts of hydroxycinnamic acids (407 µg/g of by-product), mainly chlorogenic acid (386.7 µg/g), followed by the apple by-product (128.0 µg/g of by-product), which showed higher amounts of rosmarinic and chlorogenic acids. These industrial by-products have great potential as a source of natural antioxidants to be used directly as food additives or to be incorporated in packaging to produce active food packaging.
Collapse
|
130
|
Wang Z, Barrow CJ, Dunshea FR, Suleria HAR. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants (Basel) 2021; 10:antiox10020151. [PMID: 33498549 PMCID: PMC7909527 DOI: 10.3390/antiox10020151] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pear (Pyrus communis L.) is widely spread throughout the temperate regions of the world, such as China, America and Australia. This fruit is popular among consumers due to its excellent taste and perceived health benefits. Various bioactive compounds, which contribute to these health benefits, have been detected in the pear fruits, including a range of phenolic compounds. Five Australian grown pear varieties, which include Packham’s Triumph, Josephine de Malines, Beurre Bosc, Winter Nelis and Rico were selected for this study to examine the phenolic compounds in pears. Beurre Bosc exhibited the highest total polyphenol content (TPC) (3.14 ± 0.02 mg GAE/g), total tannin content (TTC) (1.43 ± 0.04 mg CE/g) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) (5.72 ± 0.11 mg AAE/g), while the Josephine de Malines variety was high in total flavonoid content (TFC) (1.53 ± 0.09 mg QE/g), ferric reducing antioxidant power (FRAP) (4.37 ± 0.04 mg AAE/g), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (4.44 ± 0.01 mg AAE/g) and total antioxidant capacity (TAC) (5.29 ± 0.09 mg AAE/g). The liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) data indicate that a total of 73 phenolic compounds were detected in Beurre Bosc (37 compounds), Josephine de Malines (34), Rico (22), Packham’s Triumph (15) and Winter Nelis (9), respectively. From HPLC-PDA quantification, the Beurre Bosc pear variety showed significantly higher in phenolic acids (chlorogenic acid; 17.58 ± 0.88 mg/g) and while flavonoids were significantly higher in Josephine de Malines (catechin; 17.45 ± 1.39 mg/g), as compared to other pear varieties. The analyses suggest that the Australian grown pears might contain an ideal source of phenolic compounds which benefit human health. The information provided by the present work can serve as practical supporting data for the use of pears in the nutraceutical, pharmaceutical and food industries.
Collapse
Affiliation(s)
- Zening Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
- Correspondence: ; Tel.: +61-470-439-670
| |
Collapse
|
131
|
Screening, Identification, and Quantification of Nutritional Components and Phytochemicals in Foodstuffs. Foods 2021; 10:foods10010125. [PMID: 33435630 PMCID: PMC7827746 DOI: 10.3390/foods10010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
|
132
|
Subbiah V, Zhong B, Nawaz MA, Barrow CJ, Dunshea FR, Suleria HAR. Screening of Phenolic Compounds in Australian Grown Berries by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential. Antioxidants (Basel) 2020; 10:E26. [PMID: 33383900 PMCID: PMC7824486 DOI: 10.3390/antiox10010026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022] Open
Abstract
Berries are grown worldwide with the most consumed berries being blackberries (Rubus spp.), blueberries (Vaccinium corymbosum), red raspberries (Rubus idaeus) and strawberries (Fragaria spp.). Berries are either consumed fresh, frozen, or processed into wines, juices, and jams. In recent times, researchers have focused their attention on berries due to their abundance in phenolic compounds. The current study aimed to evaluate the phenolic content and their antioxidant potential followed by characterization and quantification using LC-ESI-QTOF-MS/MS and HPLC-PDA. Blueberries were highest in TPC (2.93 ± 0.07 mg GAE/gf.w.) and TFC (70.31 ± 1.21 µg QE/gf.w.), whereas the blackberries had the highest content in TTC (11.32 ± 0.13 mg CE/gf.w.). Blueberries had the highest radical scavenging capacities for the DPPH (1.69 ± 0.09 mg AAE/gf.w.), FRAP (367.43 ± 3.09 µg AAE/gf.w.), TAC (1.47 ± 0.20 mg AAE/gf.w.) and ABTS was highest in strawberries (3.67 ± 0.14 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS study identified a total of 65 compounds including 42 compounds in strawberries, 30 compounds in raspberries, 28 compounds in blueberries and 21 compounds in blackberries. The HPLC-PDA quantification observed phenolic acid (p-hydroxybenzoic) and flavonoid (quercetin-3-rhamnoside) higher in blueberries compared to other berries. Our study showed the presence of phenolic acids and provides information to be utilized as an ingredient in food, pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Vigasini Subbiah
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
| | - Biming Zhong
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
| | - Malik A. Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee, VIC 3030, Australia;
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| |
Collapse
|